

Sam	n	e
Quili	μ	

Sample Name: Sample ID:	ссч
Origin:	toc doc 4 reps method.met
Status	Completed
Chk. Result	

Туре	Anal.	Manual Dilution	Result	
Unknown	NPOC	1.000	NPOC:1.987n	ng/L 🗸

1. Det

Anal.: NPOC

1 304.0 1.986mg/L 2500uL 1 05252016 toc-4 curve.2016_05_2(10/3/2016 9:00:39 P 2 304.8 1.991mg/L 2500uL 1 05252016 toc-4 curve.2016_05_2(10/3/2016 9:00:39 P 3 302.3 1.975mg/L 2500uL 1 05252016 toc-4 curve.2016_05_2(10/3/2016 9:09:38 P 4 305.3 1.995mg/L 2500uL 1 05252016 toc-4 curve.2016_05_2(10/3/2016 9:09:38 P Mean Area 304.1 05252016 toc-4 curve.2016_05_2(10/3/2016 9:14:07 P Mean Conc. 1.987mg/L Signal[mV] 200 140 140 140	No.	Area	Conc.	Inj. Vol.	Aut.	Ex.	C	al. Curve			Date	/ Time	r.			
2 304.8 1.991mg/L 2500uL 1 05252016 toc-4 curve.2016_05_2(10/3/2016 9:05:10 P) 3 302.3 1.975mg/L 2500uL 1 05252016 toc-4 curve.2016_05_2(10/3/2016 9:09:38 P) 4 305.3 1.995mg/L 2500uL 1 05252016 toc-4 curve.2016_05_2(10/3/2016 9:14:07 P) Mean Area Mean Conc. 304.1 Signal[mV] 200 140 140 140	1	304.0	1.986mg/L	2500uL	. 1	0	5252016 to	c-4 curve.201	6_05_	2:10	/3/2016	9:00:	39 F	5		
3 302.3 1.975mg/L2500uL 1 05252016 toc-4 curve.2016_05_2(10/3/2016 9:09:38 P) 4 305.3 1.995mg/L2500uL 1 05252016 toc-4 curve.2016_05_2(10/3/2016 9:14:07 P) Mean Area 304.1 Signal[mV] 200 Mean Conc. 1.987mg/L 140	2	304.8	1.991mg/L	2500uL	1	0	5252016 to	c-4 curve.201	6_05_	_210	/3/2016	9:05:	10 F)		
4 305.3 1.995mg/L2500uL 1 05252016 toc-4 curve.2016_05_210/3/2016 9:14:07 P Mean Area 304.1 Signal[mV] 200 Mean Conc. 1.987mg/L 140	3	302.3	1.975mg/L	2500uL	1	0	5252016 to	c-4 curve.201	6_05	210	/3/2016	9:09:	38 F	>		
Mean Area 304.1 Signal[mV] 200 Mean Conc. 1.987mg/L 140 140	4	305.3	1.995mg/L	2500uL	. 1	0	5252016 to	c-4 curve.201	6_05	_210	/3/2016	9:14:	07 F	2		
	Mea Mea	an Area an Conc.	304.1 1.987	mg/L		Sign	al[mV] 200 140									
							70	<u> </u>	A						 	

8

10

12

14

16

18

20

Time[min]

6

4

2

-20

Sample

10/4/2016 6:17:09 AM

2016_10_03_001.t32

Sample Name:ccbSample ID:toc doc 4 reps method.metOrigin:toc doc 4 reps method.metStatusCompletedChk. Result

Туре	Anal.	Manual Dilution	Result
Unknown	NPOC	1.000	NPOC:-0.03418mg/L

1. Det

dw

Anal.: NPOC

No.	Area	Conc.	lnj. Vol.	Aut. Dil.	Ex.	Cal. Curve	Date / Time
1	4.411	-0.03848mg/L	2500uL	1		05252016 toc-4 curve.2016_05_2	10/3/2016 9:24:41 P
2	5.142	-0.03354mg/L	2500uL	1		05252016 toc-4 curve.2016_05_2	10/3/2016 9:29:32 P
3	5.297	-0.03249mg/L	2500uL	1		05252016 toc-4 curve.2016_05_2	10/3/2016 9:34:14 P
4	5.341	-0.03220mg/L	2500uL	1	-	05252016 toc-4 curve.2016_05_2	10/3/2016 9:39:00 P

05092016 toc-3 curve

Completed

05092016 toc-3.2016_05_09_09_55_51.cal

Cal. Curve

Sample Name: Sample ID: Cal. Curve: Status

Туре	Anal.
Standard	NPOC

Conc: 0.000mg/L

No.	Area	Inj. Vol.	Aut. Dil.	Rem.	Ex.	Date / Time
1	11.55	2500uL	1	******	E	5/9/2016 10:04:29 AM
2	9.448	2500uL	1	******		5/9/2016 10:09:05 AM
3	9.120	2500uL	1	******		5/9/2016 10:13:42 AM

Acid Add. Sp. Time Mean Area 3.000% 180.0sec 9.284

TOC-3 curve 0509(6

Conc: 0.2000mg/L

No.	Area	Inj. Vol.	Aut. Dil.	Rem.	Ex.	Date / Time
1	46.87	2500uL	1	******		5/9/2016 10:24:17 AM
2	46.35	2500uL	1	******		5/9/2016 10:28:33 AM

Acid Add. Sp. Time Mean Area	3.000% 180.0sec 46.61	Signal[mV]	20 14		
inour , iou		,	7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
			-2	0 2 4 6 8 10 12 14 16 18 20	Time[min]

Conc: 0.5000mg/L

05092016.t32

No. Area 1 98.92 2 96.85 Acid Add. Sp. Time Mean Area	Inj. Vol. Aut. Rem. Dil. 2500uL 1 ******* 3.000% 180.0sec 97.89	Ex. Date / Tii 5/9/2016 10:39 5/9/2016 10:43 Signal[mV]	$\begin{array}{c} me \\ \hline 331 \text{ AM} \\ \hline 342 \text{ AM} \\ \hline \\ 30 \\ 20 \\ 10 \\ -4 \\ 0 \\ 2 \\ 4 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \\ 10 \\ -4 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \end{array}$	Time[min]
No. Area 1 168.5 2 174.4 3 171.1 Acid Add. Sp. Time Mean Area	ng/L Inj. Vol. Aut. Rem. Dil. 2500ul 1 ******* 2500ul 1 ******* 3.000% 180.0sec 169.8	Ex. Date / Tir 5/9/2016 10:54 E 5/9/2016 10:59 5/9/2016 11:03 Signal[mV]	$\begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 2 \\ 3 \\ 4 \\ 4 \\ 0 \\ 2 \\ 0 \\ 2 \\ 4 \\ 0 \\ 2 \\ 4 \\ 0 \\ 2 \\ 4 \\ 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \end{array}$	Time[min]
Conc: 2.000m No. Area 1 346.8 2 349.8 Acid Add. Sp. Time Mean Area	ng/L Inj. Vol. Aut. Rem. 2500uL 1 ******* 2500uL 1 ******* 3.000% 180.0sec 348.3	Ex. Date / Tir 5/9/2016 11:14 5/9/2016 11:18 Signal[mV]	$\begin{array}{c} 140 \\ -20 \\ -20 \\ 0 \\ 2 \\ -2 \\ 0 \\ 2 \\ -2 \\ 0 \\ 2 \\ -2 \\ 0 \\ 2 \\ -2 \\ 0 \\ 2 \\ -2 \\ -$	Time[min]
Conc: 5.000m	ng/L Inj. Vol. Aut. Rem.	Ex. Date / Tir	ne	

No.	Area	Inj. Vol.	Aut. Dil.	Rem.	Ex.	Date / Time
1	850.0	2500uL	1	******		5/9/2016 11:29:52 AM
2	841.4	2500uL	1	******		5/9/2016 11:34:29 AM

5/6

6/6

10042016.t32

Instr.Information

System Detector TOC-VW Wet Chemical

Sample

di
toc-3 4 reps method.met
Completed
 Company of the state - Company of the model of

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:0.08875mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Inj. Vol.	Aut. Dil	Ex.			Cal.	Curv	е					Date	/ Ti	me						
1	33.89	0.1566ma/L	2500uL	1		050920	16 to	c-3.20	016 0	5 0	9 09	55	5	10/4/2	2016	8:56	5:24	AM					
2	21.24	0.08223mg/L	2500uL	1	1	050920	16 to	c-3.20	016 0	5 0	9 09	55	5	10/4/2	2016	9:02	2:57	AM					
3	17.91	0.06266mg/L	2500uL	1		050920	16 to	c-3.20	016_0	5_0	9_09	_55	5	10/4/2	2016	9:07	:54	AM					
4	16.36	0.05355mg/L	2500uL	1		050920	16 to	c-3.20)16_0	5_0	9_09	_55	_5	10/4/2	2016	9:12	2:37	AM					
Mean Mean	n Area n Conc.	22.35 0.0887	5mg/L		Sig	nal[mV]	20 14 7 -2	0	2	4				8		- I 	+					20	Time[min]
Samp	ole																						
Samp Samp Origin Statu Chk.	ole Name ole ID: n: s Result	:			ic cl toc- Cor	k std 10p 3 4 reps npleted	opm meth	nod.m	et														
	Туре	Anal,	C	Dil.					,			Re	sul	lt									/
Unkn	own	NPOC		1.0	00								7					NPO	C:0.1	425r	ng/L		
1 De	et .	Ann ann an An Mir a' Ann an Ann an																					\bigcirc

Anal.: NPOC

10042016.t32

No.	Area	Conc.	Inj. Vol.	Aut.	Ex.	Cal. Curve Date / Time	
1 2 3 4	49.70 27.15 24.98 24.14	0.2495mg/L 0.1170mg/L 0.1042mg/L 0.09927mg/L	2500uL 2500uL 2500uL 2500uL	Dil. 1 1 1 1		05092016 toc-3.2016_05_09_09_55_5 10/4/2016 9:23:35 AM 05092016 toc-3.2016_05_09_09_55_5 10/4/2016 9:27:42 AM 05092016 toc-3.2016_05_09_09_55_5 10/4/2016 9:31:56 AM 05092016 toc-3.2016_05_09_09_55_5 10/4/2016 9:36:58 AM	
Mea Mea	n Area n Conc.	31.49 0.1425r	ng/L		Sig	nal[mV] 20 14 7 -2 0 2 4 6 8 10 12 14 16 18 20	Time[min]
Sam	nple						
Sarr Sarr Orig Stat Chk	nple Name nple ID: jin: us Result	9:			icv 2 toc-3 Com	2ppm 3 4 reps method.met npleted	/
<u> </u>	-	Anal			-	Posult	
	Type	Anai.		m.		Nesuit	\mathcal{I}
Unk	Type	NPOC		1.00	00	NPOC:2.014mg/L	J
Unk 1. D Ana	Type mown bet il.: NPOC	NPOC		1.00	00	NPOC:2.014mg/L	J
Unk 1. D Ana No.	Type mown Det I.: NPOC Area	NPOC Conc.	Inj. Vol.	1.00)0 Ex.	Cal. Curve Date / Time	J
Unk 1. D Ana No. 1 2 3 4	Type mown het I.: NPOC Area 346.7 351.1 350.5 351.8	Conc. 1.995mg/L 2.021mg/L 2.017mg/L 2.025mg/L	Inj. Vol. 2500ul 2500ul 2500ul 2500ul	Aut. Dil. 1 1	Ex.	NPOC:2.014mg/L Cal. Curve Date / Time 05092016 toc-3.2016_05_09_09_55_510/4/2016 9:48:16 AM 05092016 toc-3.2016_05_09_09_55_510/4/2016 9:52:43 AM 05092016 toc-3.2016_05_09_09_55_510/4/2016 9:57:12 AM 05092016 toc-3.2016_05_09_09_55_510/4/2016 10:01:49 AM	J

Sample

10042016.t32

NPOC:0.03323mg/L

Sample Name	:		icb		
Sample ID: Origin: Status Chk. Result			toc-3 4 reps method.met Completed		
Туре	Anal.	Dil.		Result	

Unknown

NPOC

Anal.: NPOC

No.	Area	Conc.	Inj. Vol.	Aut. Dil.	Ex.			Cal. Cu	irve				Date	e / Tim	е			
1	13.49	0.03669mg/L	2500uL	1		0509201	6 toc	-3.2016	_05_	09_09	55_	_51	0/4/2016	10:12	:29 A	M		
2	12.69	0.03198mg/L	2500uL	1		0509201	6 toc	-3.2016	_05_	09_09	55	_51	0/4/2016	10:17	:11 A	M		
3	12.29	0.02963mg/L	2500uL	1		0509201	6 toc	-3.2016	_05_	09_09	9_55	_51	0/4/2016	10:21	:50 A	M		
4	13.14	0.03463mg/L	2500uL	1		0509201	6 toc	-3.2016	_05_	09_09	9_55	_51	0/4/2016	10:26	:30 A	M		
Меа Меа	n Area n Conc.	12.90 0.0332	3mg/L		Sig	nal[mV]	10							-+		$-\frac{1}{1}$		
							6			<u> </u>	-	<u> </u>	1	+				 +
										+				+		t - T	- + - 7	 1

10

12

6

8

14

16

18

20

Time[min]

0.03

Sample

Sample Name:	mb
Sample ID:	n an a se a s
Origin:	toc-3 4 reps method.met
Status	Completed
Chk. Result	

1.000

Туре	Anal.	Dil.	Result
Jnknown	NPOC	1.000	NPOC:0.03187mg/L

-1

0

2

4

1. Det

Anal.: NPOC

No.	Area	Conc.	Inj. Vol.	Aut. Dil.	Ex.	Cal. Curve	Date / Time
1	14.05	0.03998mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 10:37:12 AM
2	12.79	0.03257mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 10:41:52 AM
3	11.82	0.02687mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 10:46:29 AM
4	12.02	0.02805mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 10:51:07 AM

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:4.739mg/L

134

1. Det

dw

Anal.: NPOC

No.	Area	Conc.	Inj. Vol.	Aut. Dil.	Ex.		Cal. Cur	ve			[Date /	Time				
1	752.0	4.376mg/L	2500uL	1	E	05092016 toc-	3.2016	05_09	09 5	55_5	10/4/20	016 1	1:34:40	AM (
2	794.1	4.624mg/L	2500uL	1		05092016 toc-	3.2016	05_09	09 5	55_5	10/4/20	016 1	1:39:40	AM			
3	833.2	4.853mg/L	2500uL	1		05092016 toc-	3.2016_0	05_09	09 5	55_5	10/4/20	016 1	1:45:07	AM			
Mear Mear	n Area n Conc.	813.7 4.739m	ng/L		Sig	inal[mV] 400 300 200 100 -40	0 2				8	10			16		Time[min]

Sample

Sample Nar	ne:	:	30846-09 spk 80ppm 20x						
Origin: Status Chk. Result		1	toc-3 2 reps method.met Completed						
Туре	Anal.	Dil.		Result					
Unknown	NPOC	1.00			NPOC:6.686mg/L				

1. Det

Anal.: NPOC

No.	Area	Conc.	Inj. Vol.	Aut. Dil.	Ex.			Cal. Cu	irve					Date	e / Ti	ne					
	1087	6.345mg/L	2500uL	1	E	0509201	6 toc-	3.2016	_05_	09_	09_5	55_5	10/4/2	2016	11:5	6:27	AM				
	1145	6.686mg/L	2500uL	1		0509201	6 toc-	3.2016	05_	09_	09_5	55_5	10/4/2	2016	12:0	1:32	PM				
	1145	6.686mg/L	2500uL	1		0509201	6 toc-	3.2016	05	09_	09_5	55_5	10/4/2	2016	12:0	6:28	PM				
Aear Aear	n Area n Conc.	1145 6.686m	ng/L		Sig	nal[mV]	600				- +							-		1-	-
							400	À.		A	1	TA:			1			1	1	1	
							200														_
							-60		<u> </u>		 								<u> </u>		4
							-00	0	2	4	(6	8	10		12	14	1	6 1	18	3

Sample

Time[min]

10042016.t32

1.16

Sample Nar	ne:	31095-01 doc						
Sample ID: Origin: Status Chk. Result			toc-3 4 reps method.met Completed					
Туре	Anal.	Dil.	Result		1			
Unknown	NPOC	1.00	00	NPOC:5.146mg/L	SN'			

1. Det

dw

Anal.: NPOC

No.	Area	Conc.	Inj. Vol.	Aut. Dil.	Ex.	Cal. Curve	Date / Time
1	853.0	4.970mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 12:18:14 PM
2	887.5	5.173mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 12:23:30 PM
3	895.2	5.218mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 12:28:46 PM
4	896.2	5.224mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 12:34:02 PM

Sample

Sample Name:	31095-02 doc
Sample ID:	
Origin:	toc-3 4 reps method.met
Status	Completed
Chk. Result	

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:1.155mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Inj. Vol.	Aut. Dil.	Ex.	Cal. Curve	Date / Time
1	205.4	1.164mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 12:47:51 PM
2	200.3	1.134mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 12:55:59 PM
3	202.0	1.144mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 1:04:07 PM
4	207.4	1.176mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 1:12:20 PM

dw			10/5/2016 6:01:45 AM	10042016.t32
Mean Area Mean Conc.	203.8 1.155mg	g/L	Signal[mV] 20 14 7 -2 0 2 4 6 8 10 12 14 16 18 20	Time[min]
Sample				
Sample Name Sample ID: Origin: Status Chk. Result	2	3 [.] to C	1095-03 doc c-3 4 reps method.met ompleted	
Туре	Anal.	Dil.	Result	O.SY
Unknown	NPOC	1.000	NPOC:0.5690mg/L	
1. Det				
Anal.: NPOC				
No. Area 1 106.9 2 100.6 3 99.19 4 109.6 Mean Area Mean Conc.	Conc. 0.5856mg/L 0.5486mg/L 0.5403mg/L 0.6014mg/L 104.1 0.5690n	Inj. Vol. Aut. E Dil. 2500uL 1 2500uL 1 2500uL 1 2500uL 1 2500uL 1 sg/L	x. Cal. Curve Date / Time 05092016 toc-3.2016_05_09_09_55_510/4/2016 1:26:09 PM 05092016 toc-3.2016_05_09_09_55_510/4/2016 2:00:45 PM 05092016 toc-3.2016_05_09_09_55_510/4/2016 2:08:44 PM Signal[mV] 10 6 3 -1 0 2 4 6 8 10 12 14 16 18 20	Time[min]
Sample Sample Name Sample ID: Origin: Status Chk. Result	2:	3 ta C	1095-04 doc c-3 4 reps method.met ompleted	
Туре	Anal.	Dil.	Result	<u>.</u>
Unknown	NPOC	1.000	NPOC:0.2910mg/L	2.29
				0.

1. Det

dw

Anal.: NPOC

No.	Area	Conc.	Inj. Vol.	Aut. Dil.	Ex.		Cal. Curve	}		1	Date / 1	ſime		
1	45.94	0.2274mg/L	2500uL	1		05092016 tc	oc-3.2016_0	5_09_09	_55_5	510/4/2	016 2:3	32:32 PI	M	
2	63.10	0.3282mg/L	2500uL	1		05092016 tc	oc-3.2016_0	5_09_09	_55_5	510/4/2	016 2:4	10:29 PI	M	
3	55.29	0.2823mg/L	2500uL	1		05092016 tc	oc-3.2016_0	5_09_09	_55_5	510/4/2	016 3:1	11:15 PI	M	
4	62.72	0.3260mg/L	2500uL	1		05092016 tc	oc-3.2016_0	5_09_09	_55_5	510/4/2	016 3:1	19:13 PI	M	
Mea Mea	n Area n Conc.	56.76 0.2910)mg/L		Sig	nal[mV] 10 6 3 -1								

Sample

Sample Name:	31095-05 doc
Sample ID:	
Origin:	toc-3 4 reps method.met
Status	Completed
Chk. Result	

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:0.07056mg/L

0

2

4

6

8

10

12

14

16

18

20

Time[min]

0.07

1. Det

Anal.: NPOC

No.	Area	Conc.	Inj. Vol.	Aut. Dil.	Ex.	Cal. Curve	Date / Time
1	13.73	0.03810mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 4:40:01 PM
2	20.93	0.08040mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 4:46:23 PM
3	22.49	0.08957mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 4:52:57 PM
4	19.87	0.07418mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 5:15:07 PM

Sample

10042016.t32

Sample Name: Sample ID: Origin: t Status C Chk. Result			31095-06 doc	
			oc-3 4 reps method.met Completed	
Туре	Anal.	Dil.	Result	· \}
Unknown	NPOC	1.00	0 NPOC:0.1271mg/L	0.

Unknown	NPOC	1.000	NPOC:0.1271mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Inj. Vol.	Aut. Dil.	Ex.	Cal. Curve	Date / Time
1	28.23	0.1233mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 5:32:02 PM
2	27.71	0.1202mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 5:39:10 PM
3	32.22	0.1467mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	510/4/2016 5:59:12 PM
4	27.35	0.1181mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 6:08:32 PM

Sample

Sample Nar	ne:		ccv						
Origin: Status Chk. Result			c-3 4 reps method.met ompleted						
Туре	Anal.	Dil.	Result	7					
Unknown	NPOC	1.00	NPOC:1.937mg	元					

1. Det

Anal.: NPOC

No.	Area	Conc.	Inj. Vol.	Aut. Ex. Dil.	Cal. Curve	Date / Time
1	317.7	1.824mg/L	2500uL	1	05092016 toc-3.2016_05_09_09_55_5	10/4/2016 6:26:47 PM
2	344.6	1.982mg/L	2500uL	1	05092016 toc-3.2016_05_09_09_55_5	10/4/2016 6:35:55 PM
3	343.5	1.976mg/L	2500uL	1	05092016 toc-3.2016_05_09_09_55_5	10/4/2016 6:44:29 PM
4	342.0	1.967mg/L	2500uL	1	05092016 toc-3.2016_05_09_09_55_5	10/4/2016 6:50:49 PM

dw			10/5/2016 6:01:45 AM	10042016.t32
Mean Area Mean Conc.	336.9 1.937mg	Signal[/L	mV] 200 140 70 -20 0 2 4 6 8 10 12 14 16 18 20	Time[min]
Sample				
Sample Name Sample ID: Origin: Status Chk. Result	::	ccb toc-3 4 r Complet	eps method.met ed	/
Туре	Anal.	Dil.	Result	\bigcirc
Unknown	NPOC	1.000	NPOC:0.00980mg/L	
1. Det				
Anal.: NPOC				
No. Area 1 8.975 2 8.412 3 8.749 4 9.520 Mean Area Mean Conc.	Conc. Ir 0.01015mg/L 2 0.00685mg/L 2 0.00883mg/L 2 0.01336mg/L 2 8.914 0.00980m	ij. Vol. Aut. Ex. Dil. 2500uL 1 0500 500uL 1 0500 500uL 1 0500 500uL 1 0500 500uL 1 0500 Signal[i ng/L	Cal. Curve Date / Time 92016 toc-3.2016_05_09_09_55_5 10/4/2016 7:01:25 PM 92016 toc-3.2016_05_09_09_55_5 10/4/2016 7:06:03 PM 92016 toc-3.2016_05_09_09_55_5 10/4/2016 7:10:40 PM 92016 toc-3.2016_05_09_09_55_5 10/4/2016 7:15:16 PM mV] 10 6 3	
			-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	Time[min]
Sample				
Sample Name Sample ID: Origin: Status Chk. Result	1	31095-7 toc-3 4 re Complet	eps method.met ed	
Туре	Anal.	Dil.	Result	
Unknown	NPOC	1.000	NPOC:0.08289mg/L	0.08

10042016.t32

10/5/2016 6:01:45 AM

1. Det

Anal.: NPOC

Sample

Page 71 of 106

				5	
dw				10/5/2016 6:01:45 AM	10042016.t32
Sam Sam Origi Statu Chk.	ple Name ple ID: n: s Result	e:	3 to C	1095-8 dup	
	Туре	Anal.	Dil.	Result	- 0
Unkr	iown	NPOC	1.000	NPOC:1.002mg/L	1.00
1. De Anal.	et : NPOC				
No.	Area	Conc.	Inj. Vol. Aut. E	x. Cal. Curve Date / Time	
1 2 3 4	166.2 175.2 174.4 195.4	0.9340mg/L 0.9869mg/L 0.9822mg/L 1.106mg/L	2500uL 1 2500uL 1 2500uL 1 2500uL 1 2500uL 1	05092016 toc-3.2016_05_09_09_55_5 10/4/2016 8:36:50 PM 05092016 toc-3.2016_05_09_09_55_5 10/4/2016 8:44:57 PM 05092016 toc-3.2016_05_09_09_55_5 10/4/2016 9:06:59 PM 05092016 toc-3.2016_05_09_09_55_5 10/4/2016 9:24:26 PM	
Mear Mear	n Area n Conc.	177.8 1.002m	ıg/L	Signal[mV] 20 14 7 -2 0 2 4 6 8 10 12 14 16 18 20	Time[min]
Samj	ole			21002 100214	
Samı Samı Origi Statu Chk.	ole Name ole ID: n: s Result	9:	3 tc C	1095-8 ms Inc-3 4 reps method.met ompleted	
-	Туре	Anal.	Dil.	Result	
Unkn	own	NPOC	1.000	NPOC:2.816mg/L	42
1. De	et				1.0

Anal.: NPOC

No.	Area	Conc.	Inj. Vol.	Aut. Dil.	Ex.	Cal. Curve	Date / Time
1	496.7	2.876mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 9:46:00 PM
2	468.1	2.708mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 10:03:15 PM
3	476.9	2.760mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 10:21:10 PM
4	504.4	2.921mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	10/4/2016 10:33:38 PM

dw			10/5/2016 6:01:45 AM	10042016.t32
Mean Area Mean Conc.	486.5 2.816mg/L	Signal[m∖	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Time[min]
Sample		30	2 Thereway wonfirm	
Sample Name Sample ID: Origin: Status Chk. Result	:	31095-8 ms toc-3 4 reps Completed	s method.met	2.31
Туре	Anal.	Dil.	Result	
Unknown	NPOC	1.000	NPOC:2.812mg/L	
1. Det				

```
Anal.: NPOC
```

1 504.7 2.923mg/L 2500uL 1 05092016 toc-3.2016_05_09_09_55_5 10/4/2016 10:59:30 PM 2 464.6 2.687mg/L 2500uL 1 05092016 toc-3.2016_05_09_09_55_5 10/4/2016 11:17:50 PM 3 482.9 2.795mg/L 2500uL 1 05092016 toc-3.2016_05_09_09_55_5 10/4/2016 11:28:31 PM 4 491.3 2.844mg/L 2500uL 1 05092016 toc-3.2016_05_09_09_55_5 10/4/2016 11:38:48 PM Mean Area 485.9 2.812mg/L 1 05092016 toc-3.2016_05_09_09_55_5 10/4/2016 11:38:48 PM Mean Conc. 2.812mg/L 30 1	No.	Area	Conc.	Inj. Vol.	Aut. Dil.	Ex.	Cal. Curve Date / Time
2 464.6 2.687mg/L 2500uL 1 05092016 toc-3.2016_05_09_09_55_5 10/4/2016 11:17:50 PM 3 482.9 2.795mg/L 2500uL 1 05092016 toc-3.2016_05_09_09_55_5 10/4/2016 11:28:31 PM 4 491.3 2.844mg/L 2500uL 1 05092016 toc-3.2016_05_09_09_55_5 10/4/2016 11:28:31 PM Mean Area 485.9 2.812mg/L 1 05092016 toc-3.2016_05_09_09_55_5 10/4/2016 11:38:48 PM Mean Conc. 2.812mg/L 30	1	504.7	2.923mg/L	2500uL	1		05092016 toc-3.2016 05 09 09 55 510/4/2016 10:59:30 PM
3 482.9 2.795mg/L 2500uL 1 05092016 toc-3.2016_05_09_09_55_5 10/4/2016 11:28:31 PM 4 491.3 2.844mg/L 2500uL 1 05092016 toc-3.2016_05_09_09_55_5 10/4/2016 11:38:48 PM Mean Area 485.9 2.812mg/L Signal[mV] 40 1	2	464.6	2.687mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_510/4/2016 11:17:50 PM
4 491.3 2.844mg/L 2500uL 1 05092016 toc-3.2016_05_09_09_55_5 10/4/2016 11:38:48 PM Mean Area Mean Conc. 485.9 2.812mg/L Signal[mV] 40 30 20 40 30 40	3	482.9	2.795mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5 10/4/2016 11:28:31 PM
Mean Area 485.9 Mean Conc. 2.812mg/L Signal[mV] 40 20	4	491.3	2.844mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_510/4/2016 11:38:48 PM
	Mean Mean	Area Conc.	485.9 2.812m	ig/L		Sig	gnal[mV] 40 30 20

-4 🗅

Sample

Sample Name:			CCV						
Origin:			toc-3 4 reps method.met	toc-3 4 reps method.met					
Chk. Result			Completed						
Туре	Anal.	Dil.		Result					

Time[min]

 Type
 Anal.
 Dil.
 Result

 Unknown
 NPOC
 1.000
 NPOC:1.936mg/L

10042016.t32

Time[min]

10/5/2016 6:01:45 AM

1. Det

Anal.: NPOC

No.	Area	Conc.	Inj. Vol.	Aut. Dil.	Ex.			Cal. Cu	rve				Dat	e / Tir	ne			
1	331.6	1.906mg/L	2500uL	1		0509201	6 toc-	3.2016	05_0	9_09_	55_5	5 10/4	4/2016	3 11:5	0:00 F	Μ		
2	340.1	1.956mg/L	2500uL	1		0509201	6 toc-	3.2016	05_0	9_09_	55_5	5 10/4	4/2016	5 11:5	6:32 F	M		
3	338.6	1.947mg/L	2500uL	1		0509201	5 toc-	3.2016	05_0	9_09_	55_5	5 10/	5/2016	6 12:0	2:24 A	M		
4	336.4	1.934mg/L	2500uL	1		0509201	6 toc-	3.2016	05_0	9_09_	55_5	5 10/	5/2016	5 12:0	8:00 A	M		
Meai Meai	n Area n Conc.	336.7 1.936m	ng/L		Sig	nal[mV]	200 140 70											
							-20										+-+	

2 4 6 8 10 12 14 16 18 20

Sample

Sample Name:	ccb
Sample ID:	
Origin:	toc-3 4 reps method.met
Status	Completed
Chk. Result	

Туре	Anal.	Dil.	Result	
Unknown	NPOC	1.000	NPOC:0.02358mg/L	

0

1. Det

Anal.: NPOC

No.	Area	Conc.	Inj. Vol.	Aut. Dil.	Ex.	Cal. Curve	Date / Time
1	11.64	0.02581mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	5 10/5/2016 12:18:41 AM
2	11.64	0.02581mg/L	2500uL	1		05092016 toc-3.2016_05_09_09_55_5	5 10/5/2016 12:23:26 AM
3	10.80	0.02088mg/L	2500uL	. 1		05092016 toc-3.2016_05_09_09_55_5	5 10/5/2016 12:28:06 AM
4	10.96	0.02182mg/L	2500uL	. 1		05092016 toc-3.2016_05_09_09_55_5	5 10/5/2016 12:32:47 AM

Mean Area Mean Conc.	11.26 0.02358mg/L	Signal[mV]	10		H	Ŧ									
	Ū	¥	6		+	+			·				i		
			3	- i -	1-i-	$\frac{1}{\Lambda_{i}}$					<u>+ - +</u>		i		
			-1			12									
				0	2	4	6	8	10	12	14	16	18	20	Time[min]

Work Group

ALPHA ANALYTICAL LABORATORIES, INC.

Alpha WORK GROUP REPORT (wk02)

Oct 06 2016, 02:58 pm

Work Group: WG938151 for Department: 7 Wet Chemistry

Created:	03-OCT-16	Due:	Operator:	dw

Sample		Client ID	С	Product	Matrix	Stat	UA	HOLD	DUE	PR	Location
L1630892-01 L1630892-02 L1631095-01 L1631095-02 L1631095-04 L1631095-04 L1631095-06 L1631095-06 L1631095-07 L1631095-08 WG938151-1 WG938151-2 WG938151-3 WG938151-4		OW-66S-09292016 OW-50S-09292016 OV-02_092716_SW_10 WQ1B-C_092716_SW_10 WQ2-C_092616_SW_10 ES-15_092616_SW_10 WQ-ECH_092616_SW_10 WQ-FPT_092616_SW_10 WQ1B-C_092716_SW_10_ Laboratory Method B1 Laboratory Control S Duplicate Sample Matrix Spike	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TOC-9060 TOC-9060 TOC-9060 TOC-9060 TOC-9060 TOC-9060 TOC-9060 TOC-9060 TOC-9060 TOC-9060 TOC-9060 TOC-9060 TOC-9060	WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER	DONE DONE DONE DONE DONE DONE DONE DONE		1027 1025 1025 1024 1024 1024 1024 1024 1025	1006 1007 1007 1007 1007 1007 1007 1007	S0 S0 S0 S0 S0 S0 S0 S0	Vial-D Vial-D Vial-D Vial-D Vial-D Vial-D Vial-D Vial-D Vial-D Vial-D
Comments:											
WG938151-4	L1631095	-02									

Page 1

ALPHA ANALYTICAL LABORATORIES, INC.

Alpha WORK GROUP REPORT (wk02)

Oct 06 2016, 02:58 pm

Work Group: WG938495 for Department: 7 Wet Chemistry

Created:	04-OCT-16	Due:	Operator:	dw
----------	-----------	------	-----------	----

Sample		Client ID	С	Product	Matrix	Stat	UA :	HOLD DUI	PI	R Location
L1631095-01 L1631095-02 L1631095-03 L1631095-05 L1631095-05 L1631095-07 L1631095-08 WG938495-1 WG938495-2 WG938495-3 WG938495-4		OV-02_092716_SW_10 WQ1B-C_092716_SW_10 WQ2-C_092616_SW_10 ES-15_092616_SW_10 ES-15_092616_SW_10 WQ-EFL_092616_SW_10 WQ1B-C_092716_SW_10_ Laboratory Method B1 Laboratory Control S Duplicate Sample Matrix Spike	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	DOC-9060 DOC-9060 DOC-9060 DOC-9060 DOC-9060 DOC-9060 DOC-9060 DOC-9060 DOC-9060 DOC-9060 DOC-9060 DOC-9060	WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER	DONE DONE DONE DONE DONE DONE DONE DONE	U U U U U U U U U U U U U U U U U U U	1025 100 1025 100 1024 100 1024 100 1024 100 1024 100 1024 100 1025 100	17 S(17 S(17 S(17 S(17 S(17 S(17 S(17 S(D Vial-D Vial-D Vial-D Vial-D Vial-D Vial-D Vial-D Vial-D Vial-D
Comments:										
WG938495-3 WG938495-4	L1631095	5-02 5-02								

Page 1

Alpha Report

ANALYTICAL REPORT

Lab Number:	L1631095
Client:	AMEC Foster Wheeler E & I, Inc.
	511 Congress Street
	P.O. Box 7050
	Portland, ME 04112-7050
ATTN:	Rod Pendleton
Phone:	(207) 828-3692
Project Name:	PENOBSCOT RIVER ESTUARY
Project Number:	3616166052
Report Date:	10/07/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:PENOBSCOT RIVER ESTUARYProject Number:3616166052

Lab Number:	L1631095
Report Date:	10/07/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1631095-01	OV-02_092716_SW_10	WATER	WINTERPORT, ME	09/27/16 16:10	09/30/16
L1631095-02	WQ1B-C_092716_SW_10	WATER	WINTERPORT, ME	09/27/16 11:30	09/30/16
L1631095-03	WQ2-C_092616_SW_10	WATER	WINTERPORT, ME	09/26/16 14:10	09/30/16
L1631095-04	WQ3-L_092616_SW_10	WATER	WINTERPORT, ME	09/26/16 13:30	09/30/16
L1631095-05	ES-15_092616_SW_10	WATER	WINTERPORT, ME	09/26/16 12:45	09/30/16
L1631095-06	WQ-ECH_092616_SW_10	WATER	WINTERPORT, ME	09/26/16 11:00	09/30/16
L1631095-07	WQ-FPT_092616_SW_10	WATER	WINTERPORT, ME	09/26/16 11:55	09/30/16
L1631095-08	WQ1B- C_092716_SW_10_DUP	WATER	WINTERPORT, ME	09/27/16 11:30	09/30/16

Project Name:PENOBSCOT RIVER ESTUARYProject Number:3616166052

 Lab Number:
 L1631095

 Report Date:
 10/07/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name: PENOBSCOT RIVER ESTUARY Project Number: 3616166052
 Lab Number:
 L1631095

 Report Date:
 10/07/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Total Organic Carbon

L1631095-04 through -07: The sample has an elevated detection limit due to the dilution required by the sample matrix.

The WG938151-4 MS recovery (70%), performed on L1631095-02, is outside the acceptance criteria;

however, the associated LCS recovery is within criteria. No further action was taken.

The WG938151-3 Laboratory Duplicate RPD (24%), performed on L1631095-02, is outside the acceptance criteria. The elevated RPD has been attributed to the non-homogeneous nature of the native sample.

Dissolved Organic Carbon

The samples were field filtered; a filter blank was not received.

The WG938495-4 MS recovery (40%), performed on L1631095-02, is outside the acceptance criteria;

however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Aululle M. Uning Michelle M. Morris

Title: Technical Director/Representative

Date: 10/07/16

INORGANICS & MISCELLANEOUS

Project Name:	PENOBSCOT RIVER ESTUARY	Lab Number:	L1631095
Project Number:	3616166052	Report Date:	10/07/16

Lab ID:	L1631095-01	Date Collected:	09/27/16 16:10
Client ID:	OV-02_092716_SW_10	Date Received:	09/30/16
Sample Location:	WINTERPORT, ME	Field Prep:	Field Filtered (DOC)
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	b								
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	10/01/16 15:45	121,2540D	SG
Total Organic Carbon	5.5		mg/l	0.50	0.11	1	-	10/03/16 08:02	1,9060A	DW
Dissolved Organic Carbon	5.2		mg/l	1.0	0.04	1	10/04/16 09:48	10/04/16 09:48	1,9060A	DW

L1631095

10/07/16

Lab Number:

Report Date:

Project Name:	PENOBSCOT RIVER ESTUARY	

Project Number: 3616166052

Lab ID:	L1631095-02	Date Collected:	09/27/16 11:30
Client ID:	WQ1B-C_092716_SW_10	Date Received:	09/30/16
Sample Location:	WINTERPORT, ME	Field Prep:	Field Filtered (DOC)
Matrix:	Water		

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lal	b								
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	10/01/16 15:45	121,2540D	SG
Total Organic Carbon	2.8		mg/l	1.0	0.23	2	-	10/03/16 08:02	1,9060A	DW
Dissolved Organic Carbon	1.2		mg/l	1.0	0.04	1	10/04/16 09:48	10/04/16 09:48	1,9060A	DW

Project Name:	PENOBSCOT RIVER ESTUARY	Lab Num
Project Number:	3616166052	Report Da

 ab Number:
 L1631095

 eport Date:
 10/07/16

Lab ID:	L1631095-03	Date Collected:	09/26/16 14:10
Client ID:	WQ2-C_092616_SW_10	Date Received:	09/30/16
Sample Location:	WINTERPORT, ME	Field Prep:	Field Filtered (DOC)
Matrix:	Water		

Parameter	Resu	lt Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough L	.ab								
Solids, Total Suspended	7.9		mg/l	5.0	NA	1	-	10/01/16 15:45	121,2540D	SG
Total Organic Carbon	1.7		mg/l	1.0	0.23	2	-	10/03/16 08:02	1,9060A	DW
Dissolved Organic Carbon	0.57	J	mg/l	1.0	0.04	1	10/04/16 09:48	10/04/16 09:48	1,9060A	DW

L1631095

10/07/16

Lab Number:

Report Date:

Project Name:	PENOBSCOT RIVER ESTUARY	

Project Number: 3616166052

Lab ID:	L1631095-04	Date Collected:	09/26/16 13:30
Client ID:	WQ3-L_092616_SW_10	Date Received:	09/30/16
Sample Location:	WINTERPORT, ME	Field Prep:	Field Filtered (DOC)
Matrix:	Water		

Parameter	Resul	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough La	ab								
Solids, Total Suspended	8.6		mg/l	5.0	NA	1	-	10/01/16 15:45	121,2540D	SG
Total Organic Carbon	0.81	J	mg/l	1.0	0.23	2	-	10/03/16 08:02	1,9060A	DW
Dissolved Organic Carbon	0.29	J	mg/l	1.0	0.04	1	10/04/16 09:48	10/04/16 09:48	1,9060A	DW

L1631095 10/07/16

Project Name:	PENOBSCOT RIVER ESTUARY	Lab Number:
Project Number:	3616166052	Report Date:

Lab ID:	L1631095-05	Date Collected:	09/26/16 12:45
Client ID:	ES-15_092616_SW_10	Date Received:	09/30/16
Sample Location:	WINTERPORT, ME	Field Prep:	Field Filtered (DOC)
Matrix:	Water		

Parameter	Resu	lt Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough L	ab								
Solids, Total Suspended	16.		mg/l	5.0	NA	1	-	10/01/16 15:45	121,2540D	SG
Total Organic Carbon	ND		mg/l	1.0	0.23	2	-	10/03/16 08:02	1,9060A	DW
Dissolved Organic Carbon	0.07	J	mg/l	1.0	0.04	1	10/04/16 09:48	10/04/16 09:48	1,9060A	DW

L1631095

10/07/16

Lab Number:

Report Date:

Project Name:	PENOBSCOT RIVER ESTUARY

Project Number: 3616166052

Lab ID:	L1631095-06	Date Collected:	09/26/16 11:00
Client ID:	WQ-ECH_092616_SW_10	Date Received:	09/30/16
Sample Location:	WINTERPORT, ME	Field Prep:	Field Filtered (DOC)
Matrix:	Water		

Parameter	Resu	t Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough L	ab								
Solids, Total Suspended	9.2		mg/l	5.0	NA	1	-	10/01/16 15:45	121,2540D	SG
Total Organic Carbon	ND		mg/l	1.0	0.23	2	-	10/03/16 08:02	1,9060A	DW
Dissolved Organic Carbon	0.13	J	mg/l	1.0	0.04	1	10/04/16 09:48	10/04/16 09:48	1,9060A	DW

Project Name:	PENOBSCOT RIVER ESTUARY
Project Number:	3616166052

Lab Number: L1631095 Report Date: 10/07/16

Lab ID:	L1631095-07	Date Collected:	09/26/16 11:55
Client ID:	WQ-FPT_092616_SW_10	Date Received:	09/30/16
Sample Location:	WINTERPORT, ME	Field Prep:	Field Filtered (DOC)
Matrix:	Water		

Parameter	Resu	lt Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough L	.ab								
Solids, Total Suspended	13.		mg/l	5.0	NA	1	-	10/01/16 15:45	121,2540D	SG
Total Organic Carbon	ND		mg/l	1.0	0.23	2	-	10/03/16 08:02	1,9060A	DW
Dissolved Organic Carbon	0.08	J	mg/l	1.0	0.04	1	10/04/16 09:48	10/04/16 09:48	1,9060A	DW

Project Name:	PENOBSCOT RIVER ESTUARY	Lab Number:	L1631095
Project Number:	3616166052	Report Date:	10/07/16

Lab ID:	L1631095-08	Date Collected:	09/27/16 11:30
Client ID:	WQ1B-C_092716_SW_10_DUP	Date Received:	09/30/16
Sample Location:	WINTERPORT, ME	Field Prep:	Field Filtered (DOC)
Matrix:	Water		

Parameter	Resu	It Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough L	.ab								
Solids, Total Suspended	ND		mg/l	5.0	NA	1	-	10/01/16 15:45	121,2540D	SG
Total Organic Carbon	2.1		mg/l	1.0	0.23	2	-	10/03/16 08:02	1,9060A	DW
Dissolved Organic Carbon	0.95	J	mg/l	1.0	0.04	1	10/04/16 09:48	10/04/16 09:48	1,9060A	DW

Project Name:PENOBSCOT RIVER ESTUARYProject Number:3616166052

 Lab Number:
 L1631095

 Report Date:
 10/07/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifie	r Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab for sa	mple(s): 01	-08 Ba	tch: W0	G938151-1				
Total Organic Carbon	ND	mg/l	0.50	0.11	1	-	10/03/16 08:02	1,9060A	DW
General Chemistry - Wes	stborough Lab for sa	mple(s): 01	-08 Ba	tch: WO	G938195-1				
Solids, Total Suspended	ND	mg/l	5.0	NA	1	-	10/01/16 15:45	121,2540D	SG
General Chemistry - Wes	stborough Lab for sa	mple(s): 01	-08 Ba	tch: W	G938495-1				
Dissolved Organic Carbon	ND	mg/l	1.0	0.04	1	10/04/16 09:48	10/04/16 09:48	1,9060A	DW

Lab Control Sample Analysis Batch Quality Control

Project Name: PENOBSCOT RIVER ESTUARY

Project Number: 3616166052

 Lab Number:
 L1631095

 Report Date:
 10/07/16

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab Asso	ciated sample(s): 01-08	Batch: WG93818	51-2					
Total Organic Carbon	102		-		90-110	-			
General Chemistry - Westborough Lab Asso	ciated sample(s): 01-08	Batch: WG93849	95-2					
Dissolved Organic Carbon	91		-		90-110	-			

79-120

-

-

Project Name: Project Number:	PENOBSCOT RIV 3616166052	Matrix Spike Analysis Batch Quality Control 3616166052									
Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Q	Recovery ual Limits	RPD Q	RPD ual Limits		
General Chemistry - We C_092716_SW_10	estborough Lab Asso	ciated samp	ole(s): 01-08	QC Batch II	D: WG938151-4	QC Sample: L163	31095-02 Clie	nt ID: WQ	1B-		
Total Organic Carbon	2.8	8	8.4	70	Q -	-	80-120	-	20		
General Chemistry - We C_092716_SW_10	estborough Lab Asso	ciated samp	ole(s): 01-08	QC Batch II	D: WG938495-4	QC Sample: L163	31095-02 Clie	nt ID: WQ	1B-		

40

Q

-

2.8

20

Dissolved Organic Carbon

1.2

4

Project Name: Project Number:	PENOBSCO 3616166052	T RIVER ESTUARY		Lab D Bat	uplicate Ar tch Quality Cor	L F	.ab Numbe leport Dat	er: e:	L1631095 10/07/16	
Parameter		N	ative Sam	ple D	Ouplicate Samp	le Units	RPD	Qual	RPD	Limits
General Chemistry - We C_092716_SW_10	estborough Lab	Associated sample(s): 01-08	QC Batch ID:	WG938151-3	QC Sample:	L1631095-02	Client ID:	WQ1B-	
Total Organic Carbon			2.8		2.2	mg/l	24	Q		20
General Chemistry - We C_092716_SW_10	estborough Lab	Associated sample(s): 01-08	QC Batch ID:	WG938195-2	QC Sample:	L1631095-02	Client ID:	WQ1B-	
Solids, Total Suspended			ND		ND	mg/l	NC			29
General Chemistry - We C_092716_SW_10	estborough Lab	Associated sample(s): 01-08	QC Batch ID:	WG938495-3	QC Sample:	L1631095-02	Client ID:	WQ1B-	
Dissolved Organic Carbor	ı		1.2		1.0	mg/l	18			20

Serial_No:10071610:53

Project Name: PENOBSCOT RIVER ESTUARY Project Number: 3616166052

Lab Number: L1631095 Report Date: 10/07/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information Custody Seal

Cooler

A

Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1631095-01A	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-01B	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-01C	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-01D	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-01E	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-01F	Plastic 950ml unpreserved	А	N/A	4.1	Y	Absent	TSS-2540(7)
L1631095-02A	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-02A1	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-02A2	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-02B	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-02B1	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-02B2	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-02C	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-02C1	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-02C2	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-02D	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-02D1	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-02D2	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-02E	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-02E1	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-02E2	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-02F	Plastic 950ml unpreserved	А	N/A	4.1	Y	Absent	TSS-2540(7)
L1631095-02F1	Plastic 950ml unpreserved	А	N/A	4.1	Y	Absent	TSS-2540(7)
L1631095-02F2	Plastic 950ml unpreserved	А	N/A	4.1	Y	Absent	TSS-2540(7)
L1631095-03A	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-03B	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-03C	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-03D	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-03E	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)

Project Name: PENOBSCOT RIVER ESTUARY Project Number: 3616166052

Lab Number: L1631095 Report Date: 10/07/16

Container Information

Container Info	ormation			Temp	_		
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1631095-03F	Plastic 950ml unpreserved	А	N/A	4.1	Y	Absent	TSS-2540(7)
L1631095-04A	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-04B	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-04C	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-04D	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-04E	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-04F	Plastic 950ml unpreserved	А	N/A	4.1	Y	Absent	TSS-2540(7)
L1631095-05A	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-05B	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-05C	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-05D	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-05E	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-05F	Plastic 950ml unpreserved	А	N/A	4.1	Y	Absent	TSS-2540(7)
L1631095-06A	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-06B	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-06C	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-06D	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-06E	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-06F	Plastic 950ml unpreserved	А	N/A	4.1	Y	Absent	TSS-2540(7)
L1631095-07A	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-07B	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-07C	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-07D	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-07E	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-07F	Plastic 950ml unpreserved	А	N/A	4.1	Y	Absent	TSS-2540(7)
L1631095-08A	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-08A1	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	-
L1631095-08A2	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	-
L1631095-08B	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-08B1	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	-
L1631095-08B2	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	-
L1631095-08C	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	TOC-9060(28)
L1631095-08C1	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	-
L1631095-08C2	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	-
L1631095-08D	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-08D1	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	-

Project Name: PENOBSCOT RIVER ESTUARY Project Number: 3616166052

Lab Number: L1631095 Report Date: 10/07/16

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1631095-08D2	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	-
L1631095-08E	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	DOC-9060(28)
L1631095-08E1	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	-
L1631095-08E2	Vial H2SO4 preserved	А	N/A	4.1	Y	Absent	-
L1631095-08F	Plastic 950ml unpreserved	А	N/A	4.1	Y	Absent	TSS-2540(7)
L1631095-08F1	Plastic 950ml unpreserved	А	N/A	4.1	Y	Absent	-
L1631095-08F2	Plastic 950ml unpreserved	А	N/A	4.1	Y	Absent	-

Serial_No:10071610:53

Project Name: PENOBSCOT RIVER ESTUARY

Project Number: 3616166052

Lab Number: L1631095

Report Date: 10/07/16

GLOSSARY

Acronyms

EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
NC	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodiphenylamine/Diphenylamine.
NI	- Not Ignitable.
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NDD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte able to explore the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

Project Name: PENOBSCOT RIVER ESTUARY

Project Number: 3616166052

Lab Number: L1631095

Report Date: 10/07/16

Data Qualifiers

reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Project Name:PENOBSCOT RIVER ESTUARYProject Number:3616166052

 Lab Number:
 L1631095

 Report Date:
 10/07/16

REFERENCES

- 1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270D: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. EPA 300: <u>DW</u>: Bromide EPA 6860: <u>NPW and SCM</u>: Perchlorate EPA 9010: <u>NPW and SCM</u>: Amenable Cyanide Distillation EPA 9012B: <u>NPW</u>: Total Cyanide EPA 9050A: <u>NPW</u>: Specific Conductance SM3500: <u>NPW</u>: Ferrous Iron SM4500: <u>NPW</u>: Amenable Cyanide, Dissolved Oxygen; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3. SM5310C: <u>DW</u>: Dissolved Organic Carbon

Mansfield Facility SM 2540D: TSS EPA 3005A <u>NPW</u> EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: *EPA 3050B*

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D. EPA 624: Volatile Halocarbons & Aromatics, EPA 628: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Chain Of Custody/Analysis Request Form

AN Sti	AEC, Sui reet, Porti	te 200, 5 land, MI	11 Congress Tech L E Work#	ead - Lou 770-421-	ise Venn -3461	e		Proj Chemist - 1 508-789-1738	Denise King			
Samp #	Sample Date	Sample Time	Field Sample ID	QC Code	Qty Total	Qty Each		Bottle Size and Materia	l Preservative	Media	Method	Fraction
1642	9/27/201	6 16:10	OV-02_092716_SW_10		6	*************	2944R 00-		ningen of the second	199 — 60x Januar (1997)	inde ante independies - 19 - 40 - 400 Milliondoare 19 - 54	anna isi
				FS		1 1	L	Plastic	4 deg C	SW	TSS (Mod 2450D)	т
				FS		2 40	mL	Glass Vial	H2SO4/4 deg C	SW	DOC (SW846 9060)	т
				FS		3 40	mL	Glass Vial	H2SO4/4 deg C	SW	TOC (SW846 9060)	т
1643	9/27/2010	3 11:30	WQ1b-c_092716_SW_10	(*)	6							
				FS		2 40	mL	Glass Vial	H2SO4/4 deg C	SW	DOC (SW846 9060)	т
				FS		3 40	mL	Glass Vial	H2SO4/4 deg C	SW	TOC (SW846 9060)	т
				FS		1 1	L	Plastic	4 deg C	SW	TSS (Mod 2450D)	т
1644	9/26/2016	5 14:10	WQ2-c_092616_SW_10		6							
				FS		3 40	mL	Glass Vial	H2SO4/4 deg C	SW	TOC (SW846 9060)	т
				FS		2 40	mL	Glass Vial	H2SO4/4 deg C	SW	DOC (SW846 9060)	т
				FS		1 1	L	Plastic	4 deg C	SW	TSS (Mod 2450D)	т
1645	9/26/2016	5 13:30	WQ3-L_092616_SW_10		6							
			о. – – – – – – – – – – – – – – – – – – –	FS		2 40	mL	Glass Vial	H2SO4/4 deg C	SW	DOC (SW846 9060)	т
				FS		3 40	mL	Glass Vial	H2SO4/4 deg C	SW	TOC (SW846 9060)	т
				FS		1 1	L	Plastic	4 deg C	SW	TSS (Mod 2450D)	т

Thursday, September 29, 2016

USDC - Penobscot River

Page 1 of 3

Lab: Alpha

L1631695

L1631095

Samp #	Sample Date	Sample Time	Field Sample ID	QC Code	Qty Total	Qty Each	!	Bottle Size and Materia	al Preservative	Media	Method	Fraction
1646	9/26/2016	12:45	ES-15_092616_SW_10		6							
				FS		2 40	mL	Glass Vial	H2SO4/4 deg C	SW	DOC (SW846 9060)	т
				FS		1 1	L	Plastic	4 deg C	SW	TSS (Mod 2450D)	т
				FS		3 40	mL	Glass Vial	H2SO4/4 deg C	SW	TOC (SW846 9060)	т
1647	9/26/2016	11:00	WQ-ECH_092616_SW_10		6							
				FS		3 40	mL	Glass Vial	H2SO4/4 deg C	SW	TOC (SW846 9060)	Т
				FS		2 40	mL	Glass Vial	H2SO4/4 deg C	SW	DOC (SW846 9060)	т
				FS		1 1	L	Plastic	4 deg C	SW	TSS (Mod 2450D)	Т
1648	9/26/2016	11:55	WQ-FPT_092616_SW_10		6							
				FS		1 1	L	Plastic	4 deg C	SW	TSS (Mod 2450D)	т
				FS		2 40	mL	Glass Vial	H2SO4/4 deg C	SW	DOC (SW846 9060)	т
				FS		3 40	mL	Glass Vial	H2SO4/4 deg C	SW	TOC (SW846 9060)	т
1651	9/27/2016	11:30	WQ1b-c_092716_SW_10_0	DUP	6							
				FD		2 40	mL	Glass Vial	H2SO4/4 deg C	SW	DOC (SW846 9060)	т
				FD		3 40	mL	Glass Vial	H2SO4/4 deg C	SW	TOC (SW846 9060)	т
				FD		1 1	L	Plastic	4 deg C	SW	TSS (Mod 2450D)	т
1652	9/27/2016	11:30	WQ1b-c_092716_SW_10_N	ИS	6							
				MS		2 40	mL	Glass Vial	H2SO4/4 deg C	SW	DOC (SW846 9060)	т
				MS		3 40	mL	Glass Vial	H2SO4/4 deg C	SW	TOC (SW846 9060)	Т
			2 2	MS		1 1	L	Plastic	4 deg C	SW	TSS (Mod 2450D)	т

Thursday, September 29, 2016

Page 2 of 3

.

.

Serial_No:10071610:53

L1631095

Samp #	Sample Date	Sample Time	Field Sample ID	QC Code	Qty Total	Qty Each		Bottle Size and Materia	l Preservative	Media	Method	Fraction
1653	9/27/201	16 11:30	WQ1b-c_092716_SW_1	0_MD	6							
				MSD		2 40	mL	Glass Vial	H2SO4/4 deg C	SW	DOC (SW846 9060)	т
				MSD		3 40	mL	Glass Vial	H2SO4/4 deg C	SW	TOC (SW846 9060)	т
				MSD		1 1	L	Plastic	4 deg C	SW	TSS (Mod 2450D)	Т
QC C	Codes: F	S = Field	Sample, EB = Equi	oment Ri	nsate	Blank,	MS	S - Matrix Spik Date: 9	re, MSD = Ma	trix Spi	ke Duplicate	
Rece	ived:	(Junto	A.	.12		Dai	te:	561	/ /;(7 Time: 0(14	
		1	Ed EX 1	9750	64	740)	9220				
			NOTE : DOC		WA.	5 F	<i>-</i> 10	erd Fi	LTORO	>		
			TOTAL	1	Cou	NER	2					

Thursday, September 29, 2016

Page 3 of 3

-

۲ 4 ¢

Frontier Global Sciences

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 425.686.1996 Phone 425.686.3096 Fax

29 November 2016

Rod Pendleton AMEC Foster Wheeler 511 Congress Street Portland, ME 04101

RE: Penobscot Seawater Total And Diss Hg and MMHg

Enclosed are the analytical results for samples received by Eurofins Frontier Global Sciences. All quality control measurements are within established control limits and there were no analytical difficulties encountered with the exception of those listed in the case narrative section of this report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Amy Jodall.

Amy Goodall Project Manager

Frontier Global Sciences

AMEC Foster Wheeler	Project:	Penobscot Seawater Total And Diss Hg and MMHg	
511 Congress Street	Project Number:	3616166052	Reported:
Portland ME, 04101	Project Manager:	Rod Pendleton	29-Nov-16 12:46

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
WQ1b-c_102516_SW_10	1610860-01	Water	25-Oct-16 12:30	28-Oct-16 09:40
WQ1b-c_102516_SW_10 Dissolved	1610860-02	Water	25-Oct-16 12:30	28-Oct-16 09:40
WQ1b-c_102516_SW_10_DUP	1610860-03	Water	25-Oct-16 12:30	28-Oct-16 09:40
WQ1b-c_102516_SW_10_DUP Dissolved	1610860-04	Water	25-Oct-16 12:30	28-Oct-16 09:40
ES15_102616_SW_10	1610860-05	Water	26-Oct-16 11:00	28-Oct-16 09:40
ES15_102616_SW_10 Dissolved	1610860-06	Water	26-Oct-16 11:00	28-Oct-16 09:40
WQ-FPT_102616_SW_10	1610860-07	Water	26-Oct-16 11:45	28-Oct-16 09:40
WQ-FPT_102616_SW_10 Dissolved	1610860-08	Water	26-Oct-16 11:45	28-Oct-16 09:40
WQ_ECH_102616_SW_10	1610860-09	Water	26-Oct-16 12:20	28-Oct-16 09:40
WQ_ECH_102616_SW_10 Dissolved	1610860-10	Water	26-Oct-16 12:20	28-Oct-16 09:40
WQ3-L_102616_SW_10	1610860-11	Water	26-Oct-16 13:20	28-Oct-16 09:40
WQ3-L_102616_SW_10 Dissolved	1610860-12	Water	26-Oct-16 13:20	28-Oct-16 09:40
WQ2-C_102616_SW_10	1610860-13	Water	26-Oct-16 14:05	28-Oct-16 09:40
WQ2-C_102616_SW_10 Dissolved	1610860-14	Water	26-Oct-16 14:05	28-Oct-16 09:40
OV-02_102616_SW_10	1610860-15	Water	26-Oct-16 17:50	28-Oct-16 09:40
OV-02_102616_SW_10 Dissolved	1610860-16	Water	26-Oct-16 17:50	28-Oct-16 09:40
EB_102616_SW_QC	1610860-17	Water	26-Oct-16 17:25	28-Oct-16 09:40
EB_102616_SW_QC Dissolved	1610860-18	Water	26-Oct-16 17:25	28-Oct-16 09:40

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

Frontier Global Sciences

AMEC Foster Wheeler	Project: Penobscot Seawater Total And Diss Hg and	MMHg
511 Congress Street	Project Number: 3616166052	Reported:
Portland ME, 04101	Project Manager: Rod Pendleton	29-Nov-16 12:46

SAMPLE RECEIPT

Samples were received at Eurofins Frontier Global Sciences (EFGS) on 10/28/2016 9:40:00 AM. The samples were received intact, on-ice within a sealed cooler at 0.9 degrees Celsius.

SAMPLE PREPARATION AND ANALYSIS

Samples were prepared and analyzed for total mercury by flow injection atomic fluorescence spectrometry (FI-AFS) in accordance with EPA 1631E.

Samples were prepared and analyzed for methyl mercury by cold vapor gas chromatography atomic fluorescence spectrometry (CV-GC-AFS) in accordance with EPA 1630 (EFGS-070).

ANALYTICAL AND QUALITY CONTROL ISSUES

The samples were prepped for total Mercury in batch F611343. The samples 1610860-01 and 1610860-02 were used as the source sample for batch QC. The samples were prepped in two batches for Methyl Mercury; F611346 and F611388. The samples 1610860-01 and 1610860-02 were used as the source sample for batch QC in batch F611346. There were no QC issues with these batches.

Method blanks were prepared for every preparation to assess possible blank contribution from the sample preparation procedure. The method blanks were carried through the entire analytical procedure. All blanks fell within the established acceptance criteria with the exception of any items narrated above or flagged and described in the notes and definitions section of the report.

Liquid spikes, certified reference material (CRM) or a quality control samples (QCS) were prepared for every preparation as a measure of accuracy. All liquid spikes, CRMs and/or QCS samples fell within the established acceptance criteria with the exception of any items narrated above or flagged and described in the notes and definitions section of the report.

As an additional measure of the accuracy of the methods used and to check for matrix interference, matrix spikes (MS) and matrix spike duplicates (MSD) were digested and analyzed. All of the matrix spike recoveries fell within the established acceptance criteria with the exception of any items flagged and described in the notes and definitions section of the report.

A reasonable measure of the precision of the analytical methods is the relative percent difference (RPD) between a matrix spike recovery and a matrix spike duplicate recovery and between laboratory control sample recovery and laboratory control sample duplicate recoveries. All of the relative percent differences established acceptance criteria with the exception of any items flagged and described in the notes and

Eurofins Frontier Global Sciences, Inc.

Amy Andall.

Frontier Global Sciences

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 425.686.1996 Phone 425.686.3096 Fax

AMEC Foster Wheeler	Project: Penobscot Seawater Total And Diss Hg and	d MMHg
511 Congress Street	Project Number: 3616166052	Reported:
Portland ME, 04101	Project Manager: Rod Pendleton	29-Nov-16 12:46

definitions section of the report.

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

💸 eurofins

Frontier Global Sciences

			5	Sample	Receipt	Checklis	st	EFGS	Work Order:	. 161	086	0
Client: Amec	_				Date & Time I	Received: 10/28	16 940	Dat	e Labeled:	28/16	abeled By	1: <u>BG</u>
Project:					Received By:_	(5p		Lab	el Verified By	1: <u>65</u>		
# of Coolers Received:	7	Sample	s Arrived E	By: Ship	ping Service	Courier	Hand	Other	(Specify:		3)
Coolant: 🗆 None/A Notify Project Manage	mbient r if packa	Loose Ice	Gel I Gel I	ce Dry Ice without coolar	e Coolant R nt or with thawe	equired Y N	Temp a temperat	Blank Use	ed (Y) N for ess of 6°C.	Cooler(PM noti	s): fied: Y/N	
Cooler Information:		Y/N/	NA	Commer	nts	TID: 315) CF: +0.4	G°C Dat	e/time: 10/2	8/16	940 BV:	14
The coolers do not appear to be tampered with:					Cooler 1: 0.5	°C w/ CF	: ().9 °C	Cooler 4:	°C	w/ CF:	C	
Custody Seals are present an	nd intact:		1	- 32.14		Cooler 2: 3.5	°C w/ CF	:3.9°C	Cooler 5:	°C	w/ CF:	°C
Custody seals signed:		W U				Cooler 3:	°C w/ CF	°C	Cooler 6:	°C	w/CF:	°C
Chain of Custody:	Y/N/NA		Comments		Sample Condition	n/Integrity:		Y/N/NA		Comme	ents	
Sample ID/Description:	Y				Sample containe	rs intact/present:		4				
Date and time of collection:	Y				Sample labels ar	e present and legible		Y	- 18 C			
Sampled by:	4				Sample ID on co	ntainer/bag matches	COC:	1				
Preservation type:	4				Correct sample of	ontainers used:	- 71 - 11 Mary	Ý				
Requested analyses:	V.		n - 10		Samples received	within holding time		2				
Required signatures:	Y				Sample volume s	ufficient for requeste	d analyses:	9			1	
Internal COC required:	N)		·····		Correct preserva	tive used for request	ed analyses:	Ý		9		
Anomalies/Non-conform	ances (atta	ch additional pa	ges if need	ed):				· · ·				

Page 5 of 290

1610860

Chain of Custody Record & Laboratory Analysis Request: Air, Water, Sediments, Plant and Animal Tissue, Hydrocarbon & Other Samples

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 Phone: 425-686-1996 Fax: 425-686-3096 info@frontiergs.com http://www.frontiergs.com

🔅 eurofins

Frontier Global Sciences

Page ___ of ___

Client: AMEC Fos	TOR WHORE CONT	act: Dew	t: DENISE ICING						Analyses Requested					EFGS PM:
AUUIESS, 511 CO	Phone Phone	e: 300 - 709	173R				1.1.1.1	- @		1		1 19		Date: 10 2766
Drojact Nama: USD	E-ma	II: DOVISE	Kinl6	CAM	EZ FW. CON	1		10	1	dit,	اد	0		IAI (business days):20 (std)
Penort To:	Fewoisscor Conu					-		12.5	06	0	TM	63		(For TAT < 10 days contact PM
Repuir TO. DONISE	KING TITU		D PEN	DLET	Val		Î	₽	m	in.	Ya:	- 3		Surcharges apply for expedited TAT)
Address: 2 MILL CHOLMSF	ROAD Addree	PORTLA	KRESS ND M	E CU	STE 20	3	h کرا	Brd:	9-6	1 :6	15 20 20	t t t		Saturday delivery? Y N (If yes, please contact PM)
Phone: Fa	x: 978 692 6633 Phon	e:	Fax:			n de	ere	D Ser	5	T,	12	23		EDD SOY DN
E-mail:	E-ma	11:] j	一是	Pa		b r	12-1	8		QA 🖾 Standard 🗆 High
No. Engraved Bottle ID	Sample ID	# of Bottles	Matrix	Date	& Time	Samp	Field	Field HNO ₃	ter a	SIC	10-1-	DIS		Comments
1	WQ 16-c -102516 -	sw_10 4	\$B	16-251	6 1230	Kcg,	Y	γ	1) (1			PROJECT A
2	WQ 16-C-102516 SW.	10-DUP 4		1025	16 1230		1	1	(((1		5616166052.01.01
3	WQ 16-C-102516-SW	JID MS 4		1	1231				1	1	1			2 coolons
4	WQ 16-C-102516-501.	10 MD 4			(23				1	1	1	1		FODOX #
5	ES 15-102616-SW_10	4		10261	6 110				1		(1		B093 9790 5110
6	WQ - FPT 102616-5W-1	4		1	1145				1	1	C	1		
7	WQ_ECH_102616-5W-	10 4			1220				(1	(1		-
8	WQ 3-L-102616-SW-10	4			1320				1	1	(
9	WG2-C-102616 -SW-10	y 4			1405				١	(١	1	,	1
10	0V-0Z_102616_SW.10	y 4			1750				1	((1		N 21
11	EB-1026-6-5W-QC	4		A	1725			}	1	((1		
12			<u>r</u>				<u> </u>		K	<u>13</u>				
For Labora	atory Use Only	Matr	ix Codes		Relinqui	shed By	:		Rece	lved	By:	/		Received By:
OC Seal: W/	Comments:	WW: Waste V	Vater						4	1				
ooler Temp: 0,90	- OA°C	SB: Sea and E	Brackish W	/ater	Name:	K. BAV	vn		Nam	e:C	DEN	1.1	Pour	Name:
arrier: Fully	C9P1012210	TS: Plant and	Animal Ti	ssue	Organiz	ation: A	MEC F	ΞW	Orga	nizat	ion:F	FG	5	Organization:
TSR: 946		HC: Hydrocari	HC: Hydrocarbons			Time: 10	2716	1100	Date	& Th	me:]	01281	1694r	Date & Time:
of Coolers:		OT: Other			Tracking	numbe	r:	FOD	X	8	309	3 5	790	5110
ample Disposal:] Return (shipping fee - Standard Disposal –	es may apply) 30 Days after report		2			By signi you auti	ng, you norize E	declare FGS to	e tha perfo	it you orm t	he sp	ee witi ecified	n EFGS' I analys	terms and conditions, and that es.
I Retain for Wee	ks after report (storage fee	es may apply	/)	ALCONTRACTOR		Custome	er Appro	oval:	W. Dr. and your second					Date: Page 6 of

Frontier Global Sciences

AMEC Foster Wheeler 511 Congress Street Portland ME, 04101			F Project N Project Ma	Project: umber: anager:	Penobscot 361616605 Rod Pendle	Seawater T 2 eton	Fotal And Di	ss Hg and N	ſMHg	Reported: 29-Nov-16 12	:46		
	WQ1b-c_102516_SW_10 1610860-01												
Analyte Sample Preparation: EFGS-013 M	Result Iethyl Hg Dist	Detection Limit	Reporting Limit r Water	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes		
Methyl Mercury (as Mercury)	0.120	0.026	0.050	ng/L	1.25	F611346	14-Nov-16	6K17015	16-Nov-16	EPA 1630/FGS-070			
Sample Preparation: EPA 1631E	BrCl Oxidation	n											
Mercury	4.95	0.08	0.50	ng/L	1	F611343	29-Oct-16	6K14016	14-Nov-16	EPA 1631E			

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 425.686.1996 Phone 425.686.3096 Fax

Frontier Global Sciences

AMEC Foster Wheeler 511 Congress Street			F Project N	Project: 1 umber: 2	Penobscot 361616605	Seawater T	Fotal And Dis	ss Hg and M	ſMHg	Reported:	
Portland ME, 04101	Project Manager: Rod Pendleton										46
		W	Q1b-c_10	2516_9	SW_10 I	Dissolved	l				
				161080	50-02						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EFGS-013 Meth	yl Hg Disti	llation for	r Water								
Methyl Mercury (as Mercury)	0.106	0.026	0.050	ng/L	1.25	F611346	14-Nov-16	6K17015	16-Nov-16	EPA 1630/FGS-070	
Sample Preparation: EPA 1631E BrC	Oxidation	1									
Mercury	4.35	0.08	0.50	ng/L	1	F611343	29-Oct-16	6K14016	14-Nov-16	EPA 1631E	

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 425.686.1996 Phone 425.686.3096 Fax

Frontier Global Sciences

AMEC Foster Wheeler 511 Congress Street Portland ME, 04101	Project: Penobscot Seawater Total And Diss Hg and MMHg Project Number: 3616166052 Project Manager: Rod Pendleton WO1b-c 102516 SW 10 DUP										46
		Ň	vQIb-c_	102510	50-03	J_DUP					
Analyte Sample Preparation: EFGS-013 Methy	Result	Detection Limit	Reporting Limit r Water	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Methyl Mercury (as Mercury)	0.157	0.026	0.050	ng/L	1.25	F611346	14-Nov-16	6K17015	16-Nov-16	EPA 1630/FGS-070	
Sample Preparation: EPA 1631E BrCl	Oxidation	1									
Mercury	5.64	0.08	0.50	ng/L	1	F611343	29-Oct-16	6K14016	14-Nov-16	EPA 1631E	

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 425.686.1996 Phone 425.686.3096 Fax

Frontier Global Sciences

AMEC Foster Wheeler 511 Congress Street Portland ME, 04101		Reported: 29-Nov-16 12:	46								
		WQ1b	o-c_1025	16_SW	/_10_DU 50-04	P Dissol	ved			25 1101 10 12.	10
Analyte Sample Preparation: EFGS-013 Methy	Result y l Hg Dist i	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Methyl Mercury (as Mercury)	0.098	0.026	0.050	ng/L	1.25	F611346	14-Nov-16	6K17015	16-Nov-16	EPA 1630/FGS-070	
Sample Preparation: EPA 1631E BrCl	Oxidation	1									
Mercury	4.33	0.08	0.50	ng/L	1	F611343	29-Oct-16	6K14016	14-Nov-16	EPA 1631E	

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

Frontier Global Sciences

AMEC Foster Wheeler 511 Congress Street Portland ME, 04101			Project Na Project Ma ES15	Project: umber: anager:	Penobscot 361616605 Rod Pendle	Seawater 7 52 eton	Fotal And Di	ss Hg and M	IMHg	Reported: 29-Nov-16 12	:46
			Lore	16108	60-05	10					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EFGS-013 Met	thyl Hg Disti	illation fo	r Water								
Methyl Mercury (as Mercury)	0.045	0.026	0.050	ng/L	1.25	F611346	14-Nov-16	6K17015	16-Nov-16	EPA 1630/FGS-070	J
Sample Preparation: EPA 1631E Br	Cl Oxidation	1									
Mercury	2.35	0.08	0.50	ng/L	1	F611343	29-Oct-16	6K14016	14-Nov-16	EPA 1631E	

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 425.686.1996 Phone 425.686.3096 Fax

Frontier Global Sciences

Project: Penobscot Seawater Total And Diss Hg and MMHg											
	Project N	umber:	361616605	2				Reported:			
		29-Nov-16 12:	46								
F	CS15_102	616_SV	W_10 Di	ssolved							
		161080	60-06								
Detection sult Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes		
Distillation fo	r Water										
ID 0.026	0.050	ng/L	1.25	F611346	14-Nov-16	6K17015	16-Nov-16	EPA 1630/FGS-070	U		
ation											
36 0.08	0.50	ng/L	1	F611343	29-Oct-16	6K14016	14-Nov-16	EPA 1631E			
	E Detection Esult Limit Distillation fo ND 0.026 ation 86 0.08	F Project N Project Ma ES15_102 Detection Reporting esult Limit Limit Distillation for Water ND 0.026 0.050 ation 86 0.08 0.50	Project: Project Number: Project Manager: ES15_102616_S 161080 Detection Reporting esult Limit Limit Units Distillation for Water ND 0.026 0.050 ng/L ation 86 0.08 0.50 ng/L	Project: Penobscot Project Number: 361616605 Project Manager: Rod Pendle ES15_102616_SW_10 Dis 1610860-06 Detection Reporting esult Limit Limit Units Dilution Distillation for Water ND 0.026 0.050 ng/L 1.25 ation 86 0.08 0.50 ng/L 1	Project: Penobscot Seawater T Project Number: 3616166052 Project Manager: Rod Pendleton ES15_102616_SW_10 Dissolved 1610860-06 Detection Reporting esult Limit Limit Units Dilution Batch Distillation for Water ND 0.026 0.050 ng/L 1.25 F611346 ation 86 0.08 0.50 ng/L 1 F611343	Project: Penobscot Seawater Total And Dis Project Number: 3616166052 Project Manager: Rod Pendleton ES15_102616_SW_10 Dissolved 1610860-06 Detection Reporting esult Limit Limit Units Dilution Batch Prepared Distillation for Water ND 0.026 0.050 ng/L 1.25 F611346 14-Nov-16 ation 86 0.08 0.50 ng/L 1 F611343 29-Oct-16	Project: Penobscot Seawater Total And Diss Hg and N Project Number: 3616166052 Project Manager: Rod Pendleton ES15_102616_SW_10 Dissolved 1610860-06 Detection Reporting esult Limit Units Dilution Batch Prepared Sequence Distillation for Water ND 0.026 0.050 ng/L 1.25 F611346 14-Nov-16 6K17015 ation 86 0.08 0.50 ng/L 1 F611343 29-Oct-16 6K14016	Project: Penobscot Seawater Total And Diss Hg and MMHg Project Number: 3616166052 Project Manager: Rod Pendleton ES15_102616_SW_10 Dissolved 1610860-06 Detection Reporting Esult Limit Units Dilution Batch Prepared Sequence Analyzed Distillation for Water ND 0.026 0.050 ng/L 1.25 F611346 14-Nov-16 6K17015 16-Nov-16 ation 86 0.08 0.50 ng/L 1 F611343 29-Oct-16 6K14016 14-Nov-16	Project Number: 3616166052 Reported: Project Number: 3616166052 29-Nov-16 12: Project Manager: Rod Pendleton 29-Nov-16 12: ES15_102616_SW_10 Dissolved 1610860-06 Prepared Sequence Analyzed Method Detection Reporting Limit Units Dilution Batch Prepared Sequence Analyzed Method Distillation for Water ND 0.026 0.050 ng/L 1.25 F611346 14-Nov-16 6K17015 16-Nov-16 EPA 1630/FGS-070 ation 86 0.08 0.50 ng/L 1 F611343 29-Oct-16 6K14016 14-Nov-16 EPA 1631E		

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

Frontier Global Sciences

AMEC Foster Wheeler	Project: Penobscot Seawater Total And Diss Hg and MM										
511 Congress Street			Project N	umber:	361616605	2			Reported:		
Portland ME, 04101			Project Ma	inager:	Rod Pendle	eton				29-Nov-16 12:	46
			WQ-FI	PT_102	2616_SW	/_10					
				161080	60-07						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EFGS-013 Methyl	Hg Dist	illation fo	r Water								
Methyl Mercury (as Mercury)	ND	0.026	0.050	ng/L	1.25	F611346	14-Nov-16	6K17015	16-Nov-16	EPA 1630/FGS-070	U
Sample Preparation: EPA 1631E BrCl (Oxidatio	1									
Mercury	1.64	0.08	0.50	ng/L	1	F611343	29-Oct-16	6K14016	14-Nov-16	EPA 1631E	

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 425.686.1996 Phone 425.686.3096 Fax

Frontier Global Sciences

AMEC Foster Wheeler	Project: Penobscot Seawater Total And Diss Hg and MMHg												
511 Congress Street			Project N	umber:	361616605	2				Reported:			
Portland ME, 04101	Project Manager: Rod Pendleton										:46		
		WQ	FPT_1 (02616	SW_101	Dissolve	d						
				16108	60-08								
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes		
Sample Preparation: EFGS-013 Methyl	Hg Disti	illation fo	r Water										
Methyl Mercury (as Mercury)	ND	0.026	0.050	ng/L	1.25	F611346	14-Nov-16	6K17015	16-Nov-16	EPA 1630/FGS-070	U		
Sample Preparation: EPA 1631E BrCl (Oxidation	n											
Mercury	1.25	0.08	0.50	ng/L	1	F611343	29-Oct-16	6K14016	14-Nov-16	EPA 1631E			

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

Frontier Global Sciences

AMEC Foster Wheeler 511 Congress Street Portland ME, 04101			F Project N Project Ma	Project: umber: anager:	Penobscot 361616605 Rod Pendle	Seawater 7 2 eton	ſMHg	Reported: 29-Nov-16 12:46				
WQ_ECH_102616_SW_10 1610860-09												
Analyte Sample Preparation: EFGS-013 Met	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes	
Methyl Mercury (as Mercury)	0.136	0.026	0.050	ng/L	1.25	F611346	14-Nov-16	6K17015	16-Nov-16	EPA 1630/FGS-070		
Sample Preparation: EPA 1631E Bro	Cl Oxidation	1										
Mercury	8.49	0.08	0.50	ng/L	1	F611343	29-Oct-16	6K14016	14-Nov-16	EPA 1631E		

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 425.686.1996 Phone 425.686.3096 Fax

Frontier Global Sciences

AMEC Foster Wheeler 511 Congress Street Portland ME, 04101	Project: Penobscot Seawater Total And Diss Hg and Project Number: 3616166052 Project Manager: Rod Pendleton WQ_ECH_102616_SW_10 Dissolved 1610860-10								IMHg	Reported: 29-Nov-16 12	:46
				10100	00-10						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EFGS-013 Methy	l Hg Disti	llation for	r Water								
Methyl Mercury (as Mercury)	0.048	0.026	0.050	ng/L	1.25	F611346	14-Nov-16	6K17015	16-Nov-16	EPA 1630/FGS-070	J
Sample Preparation: EPA 1631E BrCl	Oxidatior	1									
Mercury	2.17	0.08	0.50	ng/L	1	F611343	29-Oct-16	6K14016	14-Nov-16	EPA 1631E	

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

Frontier Global Sciences

AMEC Foster Wheeler 511 Congress Street Portland ME, 04101		ſMHg	Reported: 29-Nov-16 12:46									
WQ3-L_102616_SW_10 1610860-11												
Analyte Sample Preparation: EFGS-013 Met	Result hyl Hg Disti	Detection Limit	Reporting Limit r Water	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes	
Methyl Mercury (as Mercury)	0.113	0.026	0.050	ng/L	1.25	F611346	14-Nov-16	6K17015	16-Nov-16	EPA 1630/FGS-070		
Sample Preparation: EPA 1631E Bro	Cl Oxidation	l										
Mercury	5.42	0.08	0.50	ng/L	1	F611343	29-Oct-16	6K14016	14-Nov-16	EPA 1631E		

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 425.686.1996 Phone 425.686.3096 Fax

Frontier Global Sciences

AMEC Foster Wheeler	Project: Penobscot Seawater Total And Diss Hg and MMHg												
511 Congress Street			Project N	umber:	361616605	52				Reported:			
Portland ME, 04101		29-Nov-16 12:46											
		W	Q3-L_10	2616_8	SW_10 D	oissolved							
				16108	60-12								
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes		
Sample Preparation: EFGS-013 Methy	'l Hg Dist	illation fo	r Water										
Methyl Mercury (as Mercury)	ND	0.026	0.050	ng/L	1.25	F611388	17-Nov-16	6K21024	18-Nov-16	EPA 1630/FGS-070	U		
Sample Preparation: EPA 1631E BrCl	Oxidatio	n											
Mercury	0.95	0.08	0.50	ng/L	1	F611343	29-Oct-16	6K14016	14-Nov-16	EPA 1631E			

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 425.686.1996 Phone 425.686.3096 Fax

Frontier Global Sciences

AMEC Foster Wheeler 511 Congress Street Portland ME, 04101	Project: Penobscot Seawater Total And Diss Hg and MMHg Project Number: 3616166052 Project Manager: Rod Pendleton WQ2-C_102616_SW_10 1610860-13										:46
				161080	50-13						
Analyte Sample Preparation: EFGS-013 Methy	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Methyl Mercury (as Mercury)	0.124	0.026	0.050	ng/L	1.25	F611388	17-Nov-16	6K21024	18-Nov-16	EPA 1630/FGS-070	
Sample Preparation: EPA 1631E BrCl	Oxidation	1									
Mercury	5.27	0.08	0.50	ng/L	1	F611343	29-Oct-16	6K14016	14-Nov-16	EPA 1631E	

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 425.686.1996 Phone 425.686.3096 Fax

Frontier Global Sciences

AMEC Foster Wheeler 511 Congress Street Portland ME, 04101		W	IMHg	Reported: 29-Nov-16 12:	46						
1610860-14											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EFGS-013 Methy	l Hg Disti	llation for	r Water								
Methyl Mercury (as Mercury)	0.034	0.026	0.050	ng/L	1.25	F611388	17-Nov-16	6K21024	18-Nov-16	EPA 1630/FGS-070	J
Sample Preparation: EPA 1631E BrCl	Oxidation	1									
Mercury	1.89	0.08	0.50	ng/L	1	F611343	29-Oct-16	6K14016	14-Nov-16	EPA 1631E	

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

Frontier Global Sciences

AMEC Foster Wheeler 511 Congress Street Portland ME, 04101	Project: Penobscot Seawater Total And Diss Hg and MMHg Project Number: 3616166052 Project Manager: Rod Pendleton OV-02 102616 SW 10										:46
1610860-15											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EFGS-013 Met	hyl Hg Disti	illation for	r Water								
Methyl Mercury (as Mercury)	0.078	0.026	0.050	ng/L	1.25	F611388	17-Nov-16	6K21024	18-Nov-16	EPA 1630/FGS-070	
Sample Preparation: EPA 1631E Bro	Cl Oxidation	1									
Mercury	0.96	0.08	0.50	ng/L	1	F611343	29-Oct-16	6K14016	14-Nov-16	EPA 1631E	

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

Г

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 425.686.1996 Phone 425.686.3096 Fax

Frontier Global Sciences

AMEC Foster Wheeler 511 Congress Street	Project: Penobscot Seawater Total And Diss Hg and MMHg Project Number: 3616166052										
Portland ME, 04101	Project Manager: Rod Pendleton										46
		0	V-02_102	616_S	W_10 D	issolved					
				161080	50-16						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EFGS-013 Methy	yl Hg Disti	llation for	r Water								
Methyl Mercury (as Mercury)	0.066	0.026	0.050	ng/L	1.25	F611388	17-Nov-16	6K21024	18-Nov-16	EPA 1630/FGS-070	
Sample Preparation: EPA 1631E BrCl	Oxidation	l									
Mercury	0.62	0.08	0.50	ng/L	1	F611343	29-Oct-16	6K14016	14-Nov-16	EPA 1631E	

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

Г

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 425.686.1996 Phone 425.686.3096 Fax

Frontier Global Sciences

AMEC Foster Wheeler 511 Congress Street Portland ME, 04101			H Project N Project Ma	Project: umber: anager:	Penobscot 361616605 Rod Pendle	Seawater 7 2 eton	fotal And Di	ss Hg and M	ſМНg	Reported: 29-Nov-16 12;	46
			FR [–]	16108	_SW_Q 60-17	L					
Analyte Sample Preparation: EFGS-013 Methy	Result I Hg Dist	Detection Limit	Reporting Limit r Water	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Methyl Mercury (as Mercury)	ND	0.026	0.050	ng/L	1.25	F611388	17-Nov-16	6K21024	18-Nov-16	EPA 1630/FGS-070	U
Sample Preparation: EPA 1631E BrCl	Oxidatio	n									
Mercury	ND	0.08	0.50	ng/L	1	F611343	29-Oct-16	6K14016	14-Nov-16	EPA 1631E	U

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

Г

11720 Northcreek Pkwy N, Suite 400 Bothell, WA 98011 425.686.1996 Phone 425.686.3096 Fax

Frontier Global Sciences

AMEC Foster Wheeler			P	Project:	Penobscot	Seawater 7	Fotal And Dis	ss Hg and N	IMHg		
511 Congress Street			Project N	umber:	361616605	52				Reported:	
Portland ME, 04101			Project Ma	anager:	Rod Pendle	eton				29-Nov-16 12:	.46
		F	CB_10261	l6_SW	_QC Dis	solved					
				16108	50-18						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EFGS-013 Met	hyl Hg Disti	illation fo	r Water								
Methyl Mercury (as Mercury)	ND	0.026	0.050	ng/L	1.25	F611388	17-Nov-16	6K21024	18-Nov-16	EPA 1630/FGS-070	U
Sample Preparation: EPA 1631E Br(Cl Oxidation	1									
Mercury	ND	0.08	0.50	ng/L	1	F611343	29-Oct-16	6K14016	14-Nov-16	EPA 1631E	U

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

Frontier Global Sciences

AMEC Foster Wheeler	Project: Penobscot Seawater Total And Diss Hg and MMHg	
511 Congress Street	Project Number: 3616166052	Reported:
Portland ME, 04101	Project Manager: Rod Pendleton	29-Nov-16 12:46

Quality Control Data

		Detection	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6K14016 - F611343											
Cal Standard (6K14016-CAL1)					Prepared &	Analyzed:	14-Nov-16				
Mercury	0.53	-		ng/L	0.50100		107				
Cal Standard (6K14016-CAL2)					Prepared &	Analyzed:	14-Nov-16				
Mercury	1.03	-		ng/L	1.0020		103				
Cal Standard (6K14016-CAL3)					Prepared &	Analyzed:	14-Nov-16				
Mercury	4.72	-		ng/L	5.0100		94.2				
Cal Standard (6K14016-CAL4)					Prepared &	Analyzed:	14-Nov-16				
Mercury	19.34	-		ng/L	20.040		96.5				
Cal Standard (6K14016-CAL5)					Prepared &	Analyzed:	14-Nov-16				
Mercury	39.64	-		ng/L	40.080		98.9				
Calibration Blank (6K14016-CCB1)					Prepared &	Analyzed:	14-Nov-16				
Mercury	0.07	-		ng/L							
Calibration Blank (6K14016-CCB2)					Prepared &	Analyzed:	14-Nov-16				
Mercury	0.07	-		ng/L							
Calibration Blank (6K14016-CCB3)					Prepared &	Analyzed:	14-Nov-16				
Mercury	0.09	-		ng/L							
Calibration Blank (6K14016-CCB4)					Prepared &	Analyzed:	14-Nov-16				
Mercury	0.05	-		ng/L							
Calibration Blank (6K14016-CCB5)					Prepared &	Analyzed:	14-Nov-16				
Mercury	0.08	-		ng/L							

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Amy Goodall, Project Manager

Frontier Global Sciences

AMEC Foster Wheeler	Project: Penobscot Seawater Total And Diss Hg and MMHg	
511 Congress Street	Project Number: 3616166052	Reported:
Portland ME, 04101	Project Manager: Rod Pendleton	29-Nov-16 12:46

Quality Control Data

		Detection	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6K14016 - F611343											
Calibration Blank (6K14016-CCB6)					Prepared &	Analyzed:	: 14-Nov-16				
Mercury	0.08	-		ng/L							
Calibration Blank (6K14016-CCB7)					Prepared &	Analyzed:	: 14-Nov-16				
Mercury	0.08	-		ng/L							
Calibration Blank (6K14016-CCB8)					Prepared &	Analyzed:	: 14-Nov-16				
Mercury	0.07	-		ng/L							
Calibration Check (6K14016-CCV1)					Prepared &	Analyzed:	: 14-Nov-16				
Mercury	4.63	-		ng/L	5.0000		92.7	77-123			
Calibration Check (6K14016-CCV2)					Prepared &	Analyzed:	: 14-Nov-16				
Mercury	4.58	-		ng/L	5.0000		91.6	77-123			
Calibration Check (6K14016-CCV3)					Prepared &	Analyzed:	: 14-Nov-16				
Mercury	4.41	-		ng/L	5.0000		88.2	77-123			
Calibration Check (6K14016-CCV4)					Prepared &	Analyzed:	: 14-Nov-16				
Mercury	4.51	-		ng/L	5.0000		90.2	77-123			
Calibration Check (6K14016-CCV5)					Prepared &	Analyzed:	: 14-Nov-16				
Mercury	4.69	-		ng/L	5.0000		93.8	77-123			
Calibration Check (6K14016-CCV6)					Prepared 8	Analyzed:	: 14-Nov-16				
Mercury	4.76	-		ng/L	5.0000		95.1	77-123			
Calibration Check (6K14016-CCV7)					Prepared &	Analyzed:	: 14-Nov-16				
Mercury	4.59	-		ng/L	5.0000		91.8	77-123			

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

Frontier Global Sciences

AMEC Foster Wheeler	Project: Penobscot Seawater Total And Diss Hg and	l MMHg
511 Congress Street	Project Number: 3616166052	Reported:
Portland ME, 04101	Project Manager: Rod Pendleton	29-Nov-16 12:46

Quality Control Data

		Detection	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6K14016 - F611343											
Calibration Check (6K14016-CCV8)					Prepared &	k Analyzed:	14-Nov-16				
Mercury	4.46	-		ng/L	5.0000		89.2	77-123			
Instrument Blank (6K14016-IBL1)					Prepared &	k Analyzed:	14-Nov-16				
Mercury	ND	0.08	0.50	ng/L							U
Instrument Blank (6K14016-IBL2)					Prepared &	k Analyzed:	14-Nov-16				
Mercury	ND	0.08	0.50	ng/L							U
Instrument Blank (6K14016-IBL3)					Prepared &	& Analyzed:	14-Nov-16				
Mercury	ND	0.08	0.50	ng/L							U
Initial Cal Check (6K14016-ICV1)					Prepared &	k Analyzed:	14-Nov-16				
Mercury	5.01	-		ng/L	5.0000		100	77-123			
Batch 6K17015 - F611346											
Cal Standard (6K17015-CAL1)					Prepared &	k Analyzed:	16-Nov-16				
Methyl Mercury (as Mercury)	0.052	-		ng/L	0.050050		104				
Cal Standard (6K17015-CAL2)					Prepared 8	k Analyzed:	16-Nov-16				
Methyl Mercury (as Mercury)	0.201	-		ng/L	0.20020		100				
Cal Standard (6K17015-CAL3)					Prepared &	k Analyzed:	16-Nov-16				
Methyl Mercury (as Mercury)	0.976	-		ng/L	1.0010		97.5				
Cal Standard (6K17015-CAL4)					Prepared &	& Analyzed:	16-Nov-16				
Methyl Mercury (as Mercury)	1.813	-		ng/L	2.0020		90.6				

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

Frontier Global Sciences

AMEC Foster Wheeler	Project: Penobscot Seawater Total And Diss Hg and MMHg	
511 Congress Street	Project Number: 3616166052	Reported:
Portland ME, 04101	Project Manager: Rod Pendleton	29-Nov-16 12:46

Quality Control Data

		Detection	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6K17015 - F611346											
Cal Standard (6K17015-CAL5)					Prepared &	Analyzed:	16-Nov-16				
Methyl Mercury (as Mercury)	4.276	-		ng/L	4.0040		107				
Calibration Blank (6K17015-CCB1)					Prepared &	Analyzed:	16-Nov-16				
Methyl Mercury (as Mercury)	0.012	-		ng/L							
Calibration Blank (6K17015-CCB2)					Prepared &	Analyzed:	: 16-Nov-16				
Methyl Mercury (as Mercury)	0.009	-		ng/L							
Calibration Blank (6K17015-CCB3)					Prepared &	Analyzed:	: 16-Nov-16				
Methyl Mercury (as Mercury)	0.004	-		ng/L							
Calibration Check (6K17015-CCV1)					Prepared &	Analyzed:	16-Nov-16				
Methyl Mercury (as Mercury)	0.571	-		ng/L	0.50049		114	67-133			
Calibration Check (6K17015-CCV2)					Prepared &	Analyzed:	16-Nov-16				
Methyl Mercury (as Mercury)	0.625	-		ng/L	0.50049		125	67-133			
Calibration Check (6K17015-CCV3)					Prepared &	Analyzed:	16-Nov-16				
Methyl Mercury (as Mercury)	0.578	-		ng/L	0.50049		115	67-133			
Instrument Blank (6K17015-IBL1)					Prepared &	Analyzed:	16-Nov-16				
Methyl Mercury (as Mercury)	ND	0.021	0.040	ng/L							U
Initial Cal Blank (6K17015-ICB1)					Prepared &	Analyzed:	: 16-Nov-16				
Methyl Mercury (as Mercury)	0.010	-		ng/L							
Initial Cal Check (6K17015-ICV1)					Prepared &	Analyzed:	16-Nov-16				
Methyl Mercury (as Mercury)	0.530	-		ng/L	0.50049		106	67-133			

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

Frontier Global Sciences

AMEC Foster Wheeler	Project: Penobscot Seawater Total And Diss F	Ig and MMHg
511 Congress Street	Project Number: 3616166052	Reported:
Portland ME, 04101	Project Manager: Rod Pendleton	29-Nov-16 12:46

Quality Control Data

		Detection	Reporting		Spike	Source	AVR. D. D. D.	%REC		RPD	
Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6K21024 - F611388											
Cal Standard (6K21024-CAL1)					Prepared &	Analyzed:	18-Nov-16				
Methyl Mercury (as Mercury)	0.041	-		ng/L	0.050050		82.3				
Cal Standard (6K21024-CAL2)					Prepared &	Analyzed:	18-Nov-16				
Methyl Mercury (as Mercury)	0.191	-		ng/L	0.20020		95.4				
Cal Standard (6K21024-CAL3)					Prepared & Analyzed: 18-Nov-16						
Methyl Mercury (as Mercury)	1.026	-		ng/L	1.0010		102				
Cal Standard (6K21024-CAL4)					Prepared &	Analyzed:	18-Nov-16				
Methyl Mercury (as Mercury)	2.006	-		ng/L	2.0020		100				
Cal Standard (6K21024-CAL5)					Prepared &	Analyzed:	18-Nov-16				
Methyl Mercury (as Mercury)	4.770	-		ng/L	4.0040		119				
Calibration Blank (6K21024-CCB1)					Prepared &	Analyzed:	18-Nov-16				
Methyl Mercury (as Mercury)	0.005	-		ng/L							
Calibration Blank (6K21024-CCB2)					Prepared &	Analyzed:	18-Nov-16				
Methyl Mercury (as Mercury)	0.008	-		ng/L							
Calibration Blank (6K21024-CCB3)					Prepared &	Analyzed:	18-Nov-16				
Methyl Mercury (as Mercury)	0.0009	-		ng/L							
Calibration Blank (6K21024-CCB4)					Prepared &	Analyzed:	18-Nov-16				
Methyl Mercury (as Mercury)	-0.004	-		ng/L							U
Calibration Check (6K21024-CCV1)					Prepared &	Analyzed:	18-Nov-16				
Methyl Mercury (as Mercury)	0.499	-		ng/L	0.50049		99.7	67-133			

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

Frontier Global Sciences

AMEC Foster Wheeler	Project:	Penobscot Seawater Total And Diss Hg and MMHg	
511 Congress Street	Project Number:	3616166052	Reported:
Portland ME, 04101	Project Manager:	Rod Pendleton	29-Nov-16 12:46

Quality Control Data

		Detection	Reporting		Spike	Source	AVRE C	%REC		RPD	
Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 6K21024 - F611388											
Calibration Check (6K21024-CCV2)					Prepared &	Analyzed:	18-Nov-16				
Methyl Mercury (as Mercury)	0.569	-		ng/L	0.50049		114	67-133			
Calibration Check (6K21024-CCV3)					Prepared &	Analyzed:	18-Nov-16				
Methyl Mercury (as Mercury)	0.578	-		ng/L	0.50049		116	67-133			
Calibration Check (6K21024-CCV4)					Prepared &	Analyzed:	18-Nov-16				
Methyl Mercury (as Mercury)	0.576	-		ng/L	0.50049		115	67-133			
Instrument Blank (6K21024-IBL1)					Prepared &	Analyzed:	18-Nov-16				
Methyl Mercury (as Mercury)	ND	0.021	0.040	ng/L							U
Initial Cal Blank (6K21024-ICB2)					Prepared &	Analyzed:	18-Nov-16				
Methyl Mercury (as Mercury)	-0.004	-		ng/L							U
Initial Cal Check (6K21024-ICV2)					Prepared &	Analyzed:	18-Nov-16				
Methyl Mercury (as Mercury)	0.509	-		ng/L	0.50049		102	67-133			
Batch F611343 - EPA 1631E BrCl Ox	idation										
Blank (F611343-BLK1)					Prepared &	Analyzed:	14-Nov-16				
Mercury	0.14	0.08	0.50	ng/L							J
Blank (F611343-BLK2)					Prepared &	Analyzed:	14-Nov-16				
Mercury	ND	0.08	0.50	ng/L							U
Blank (F611343-BLK3)					Prepared &	Analyzed:	14-Nov-16				
Mercury	ND	0.08	0.50	ng/L							U

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

Frontier Global Sciences

AMEC Foster Wheeler	Project: Penobscot Seawater Total And Diss Hg and M	MMHg
511 Congress Street	Project Number: 3616166052	Reported:
Portland ME, 04101	Project Manager: Rod Pendleton	29-Nov-16 12:46

Quality Control Data

Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch F611343 - EPA 1631E BrCl Ox	ridation										
LCS (F611343-BS1)					Prepared &	k Analyzed:	14-Nov-16				
Mercury	15.15	0.08	0.50	ng/L	15.679		96.6	80-120			
LCS Dup (F611343-BSD1)					Prepared &	k Analyzed:	14-Nov-16	5			
Mercury	15.46	0.08	0.50	ng/L	15.679		98.6	80-120	1.98	24	
Duplicate (F611343-DUP1)		Source:	Source: 1610860-09			k Analyzed:	14-Nov-16	5			
Mercury	8.41	0.08	0.50	ng/L	1	8.49			0.937	24	
Matrix Spike (F611343-MS1)		Source:	: 1610860-02		Prepared &	k Analyzed:	14-Nov-16	5			
Mercury	24.16	0.08	0.50	ng/L	20.240	4.35	97.9	71-125			
Matrix Spike (F611343-MS2)		Source:	1610860-01		Prepared & Analyzed: 14-Nov-16						
Mercury	24.64	0.08	0.50	ng/L	20.240	4.95	97.3	71-125			
Matrix Spike Dup (F611343-MSD1)		Source:	1610860-02		Prepared & Analyzed: 14-Nov-16						
Mercury	24.07	0.08	0.50	ng/L	20.240	4.35	97.4	71-125	0.365	24	
Matrix Spike Dup (F611343-MSD2)		Source:	1610860-01		Prepared & Analyzed: 14-Nov-16						
Mercury	24.94	0.08	0.50	ng/L	20.240	4.95	98.7	71-125	1.21	24	
Batch F611346 - EFGS-013 Methyl H	Ig Distillatio	on for Wate	r								
Blank (F611346-BLK1)	- <u>g</u> 2-150000000		-		Prenared	14-Nov-16	Analyzed: 1	6-Nov-16			
Methyl Mercury (as Mercury)	ND	0.026	0.050	ng/L	Trepareu.	14-1107-102	Anaryzeu. 1	0-110/-10			U
				c	Duranada	14 Nov 16	A	(N 1(
Blank (F011346-BLK2)					Prepared:	14-INOV-16	Analyzed: I	0-INOV-16			
Methyl Mercury (as Mercury)	ND	0.026	0.050	ng/L							U

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

Frontier Global Sciences

AMEC Foster Wheeler	Project: Penobscot Seawater Total And Diss Hg ar	nd MMHg
511 Congress Street	Project Number: 3616166052	Reported:
Portland ME, 04101	Project Manager: Rod Pendleton	29-Nov-16 12:46

Quality Control Data

		Detection	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch F611346 - EFGS-013 Methyl H	Ig Distillatio	on for Wate	r								
Blank (F611346-BLK3)					Prepared: 1	14-Nov-16	Analyzed: 1	6-Nov-16			
Methyl Mercury (as Mercury)	ND	0.026	0.050	ng/L							U
LCS (F611346-BS1)						14-Nov-16	Analyzed: 1	6-Nov-16			
Methyl Mercury (as Mercury)	1.217	0.026	0.050	ng/L	1.0010		122	70-130			
LCS Dup (F611346-BSD1)						Prepared: 14-Nov-16 Analyzed: 16-Nov-16					
Methyl Mercury (as Mercury)	1.262	0.026	0.050	ng/L	1.0010		126	70-130	3.67	35	
Duplicate (F611346-DUP1)		Source:	Source: 1610860-03		Prepared: 1	14-Nov-16	Analyzed: 1	6-Nov-16			
Methyl Mercury (as Mercury)	0.122	0.026	0.050	ng/L		0.157			25.6	35	
Matrix Spike (F611346-MS1)		Source:	1610860-01		Prepared: 14-Nov-16 Analyzed: 16-Nov-16						
Methyl Mercury (as Mercury)	1.432	0.026	0.050	ng/L	1.0010	0.120	131	65-130			QM-07
Matrix Spike (F611346-MS2)		Source:	1610860-02	1	Prepared: 14-Nov-16 Analyzed: 16-Nov-16						
Methyl Mercury (as Mercury)	1.331	0.026	0.050	ng/L	1.0010	0.106	122	65-130			
Matrix Spike Dup (F611346-MSD1)		Source:	1610860-01		Prepared: 1	14-Nov-16	Analyzed: 1	6-Nov-16			
Methyl Mercury (as Mercury)	1.375	0.026	0.050	ng/L	1.0010	0.120	125	65-130	4.02	35	
Matrix Spike Dup (F611346-MSD2)		Source:	1610860-02	1	Prepared: 1	14-Nov-16	Analyzed: 1	6-Nov-16			
Methyl Mercury (as Mercury)	1.518	0.026	0.050	ng/L	1.0010	0.106	141	65-130	13.1	35	QM-07
Batch F611388 - EFGS-013 Methyl H	Ig Distillatio	n for Wate	r								
Riank (F611388-BLK1)					Prenared: 1	17-Nov-16	Analyzed	8-Nov-16			

 Blank (F011300-BLK1)
 Integrated: 1/-100-10 Knaryzed: 18-100-10

 Methyl Mercury (as Mercury)
 ND
 0.026
 0.050
 ng/L
 U

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

Frontier Global Sciences

AMEC Foster Wheeler	Project: Penobscot Seawater Total And Diss Hg and	l MMHg
511 Congress Street	Project Number: 3616166052	Reported:
Portland ME, 04101	Project Manager: Rod Pendleton	29-Nov-16 12:46

Quality Control Data

		Detection	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch F611388 - EFGS-013 Methyl I	Hg Distillatio	n for Wate	r								
Blank (F611388-BLK2)					Prepared:	17-Nov-16	Analyzed:	18-Nov-16			
Methyl Mercury (as Mercury)	ND	0.026	0.050	ng/L							U
Blank (F611388-BLK3)					Prepared:	17-Nov-16	Analyzed:	18-Nov-16			
Methyl Mercury (as Mercury)	ND	0.026	0.050	ng/L							U
LCS (F611388-BS1)					Prepared:	17-Nov-16	Analyzed:	18-Nov-16			
Methyl Mercury (as Mercury)	1.203	0.026	0.050	ng/L	1.0010		120	70-130			
LCS Dup (F611388-BSD1)					Prepared:	17-Nov-16	Analyzed:	18-Nov-16			
Methyl Mercury (as Mercury)	1.166	0.026	0.050	ng/L	1.0010		117	70-130	3.11	35	
Duplicate (F611388-DUP1)		Source:	1610654-03	;	Prepared:	17-Nov-16	Analyzed:	18-Nov-16			
Methyl Mercury (as Mercury)	1.422	0.026	0.050	ng/L		1.533			7.51	35	
Matrix Spike (F611388-MS1)		Source:	1610654-03	;	Prepared: 17-Nov-16 Analyzed: 18-Nov-16						
Methyl Mercury (as Mercury)	2.780	0.026	0.050	ng/L	1.0010	1.533	125	65-130			
Matrix Spike (F611388-MS2)		Source:	1611168-01		Prepared:	17-Nov-16	Analyzed:	18-Nov-16			
Methyl Mercury (as Mercury)	1.250	0.026	0.050	ng/L	1.0010	ND	125	65-130			
Matrix Spike Dup (F611388-MSD1)		Source:	1610654-03	;	Prepared:	17-Nov-16	Analyzed:	18-Nov-16			
Methyl Mercury (as Mercury)	2.810	0.026	0.050	ng/L	1.0010	1.533	128	65-130	1.07	35	
Matrix Spike Dup (F611388-MSD2)		Source:	1611168-01		Prepared:	17-Nov-16	Analyzed:	18-Nov-16			
Methyl Mercury (as Mercury)	1.290	0.026	0.050	ng/L	1.0010	ND	129	65-130	3.13	35	

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

Frontier Global Sciences

AMEC Fos	ter Wheeler Project:	Penobscot Seawater Total And Diss Hg and MMHg						
511 Congre	ss Street Project Number	3616166052	Reported:					
Portland M	E, 04101 Project Manager	Rod Pendleton	29-Nov-16 12:46					
Notes and Definitions								
U	Analyte was not detected and is reported as less than the LOD or as defined by the client. The LOD has been adjusted for any dilution or concentration of the sample.							
QM-07	The spike recovery was outside control limits for the MS and/or MSD. The batch was accepted based on LCS and LCSD recoveries within control limits and, when analysis permits, acceptable AS/ASD.							
QB-06	The blank was preserved to 5% BrCl rather than 1%. The control limit for blanks preserved to greater than 1% BrCl is the preservation percentage multiplied by the MRL.							
J	The result is an estimated concentration.							
FB	This blank is a filtration blank. Data is reported for informational purport	oses only.						
DET	Analyte DETECTED							
ND	Analyte NOT DETECTED at or above the reporting limit							
NR	Not Reported							
dry	Sample results reported on a dry weight basis							
RPD	Relative Percent Difference							

Eurofins Frontier Global Sciences, Inc.

Amy Jodall.

THg26002-161114-1

🔅 eurofins

Frontier Global Sciences

Analysis	Datasheet	for	Total	Mercury
----------	-----------	-----	-------	---------

Date of Analysis: November 14, 2016	Analyst: DM2
Instrument #: Hg2600-2	Units ng/L
LIMS Sequence #: 6K14016_6K14017	3 , –

Calibration Statistics:

LabNumber	n	True Val	Area	Uncorrected Response Factor	Corrected Peak Height	Corrected Response Factor	% Recovery
SEQ-CAL1	1	0.50 ng/L	132.26 units	264.53	118.70 units	237.39	106.8 %Rec
SEQ-CAL2	1	1.00 ng/L	242.27 units	242.27	228.71 units	228 71	107.9 %Rec
SEQ-CAL3	1	5.00 ng/L	1062.58 units	212.52	1049.01 units	209 80	94 4 % Rec
SEQ-CAL4	1	20.00 ng/L	4309.42 units	215.47	4295.86 units	214 79	96 7 % Pec
SEQ-CAL5	1	40.00 ng/L	8821.00 units	220.53	8807.44 units	220.19	99.1 %Pac
SEQ-CAL6	0	1.55		220100	000711101103	220.19	33.1 70REC
SEQ-CAL7	0						
SEQ-CAL8	0						
SEQ-CAL9	0						
Corr. Mean RF 222.18	Corr. St Dev RF +/- 11.02	Corr. RSD CF 5.0% RSD	Uncorr. Mean RF 231.06				

Blanks:

LabNumber	n	Mean	Std Dev	Mean (ng/L)	Std Dev (ng/L)
SEQ-IBL	3	13.57 units	±3.05	0.06 ng/L	±0.01

Preparation Blanks

Sample Type	Batch ID	n	Mean	Std Dev
BLK	1	3	0.076 ng/L	±0.053
BLK	2	3	0.169 ng/L	±0.082
BLK	3	1	0.105 ng/L	
BLK	4	0	0.000 na/L	
BLK	5	0	0.000 ng/L	
BLK	6	0	0.000 na/L	

QUALITY ASSURANCE PEER - REVIEWED INITIALS: BC 1/15/16

		Sample						Uncorrected	Batch	No DR	-				
Instrument	Analyst	Туре	LabNumber	Dilution	Analyzed	FileID	RunEnd	Response	ID	Correction?	RECD	InitialRecult	FinalBocult	InitialInity	C
Hg2600-2	DM2	CAL	SEQ-IBL1	1	11/14/2016 10:45:47	65643-1.RAW	10:45:47 AM	16.10			2.5	0.011	0.011	InitialUnits	Comments
Hg2600-2	DM2	CAL	SEQ-IBL2	1	11/14/2016 10:49:56	65644-1.RAW	10:49:56 AM	14.42			0.9	0.004	0.011	ng/L	
Hg2600-2	DM2	CAL	SEQ-IBL3	1	11/14/2016 10:54:04	65645-1.RAW	10:54:04 AM	10.18			-3.4	-0.015	-0.015	ng/L	
Hg2600-2	DM2	CAL	SEQ-CAL1	1	11/14/2016 10:58:13	65646-1.RAW	10:58:13 AM	132.26			118.7	0.534	0.534	ng/c	
Hg2600-2	DM2	CAL	SEQ-CAL2	1	11/14/2016 11:02:21	65647-1.RAW	11:02:21 AM	242.27			228.7	1.029	1.029	ng/L	
Hg2600-2	DM2	CAL	SEQ-CAL3	1	11/14/2016 11:06:29	65648-1.RAW	11:06:29 AM	1062.58			1049.0	4 722	4 722	ng/L	
Hg2600-2	DM2	CAL	SEQ-CAL4	1	11/14/2016 11:10:38	65649-1.RAW	11:10:38 AM	4309.42			4295.9	19 335	10 335	ng/L	
Hg2600-2	DM2	CAL	SEQ-CAL5	1	11/14/2016 11:14:46	65650-1.RAW	11:14:46 AM	8821.00			8807.4	39.642	39.642	ng/L	
Hg2600-2	DM2	CAL	SEQ-ICV1	1	11/14/2016 11:18:55	65651-1.RAW	11:18:55 AM	1126.36			1112.8	5.009	5 000	ng/L	
Hg2600-2	DM2	BLK	F611343-BLK1	1	11/14/2016 11:23:03	65652-1.RAW	11:23:03 AM	43.53	1		30.0	0.135	0.135	ng/L	
Hg2600-2	DM2	BLK	F611343-BLK2	1	11/14/2016 11:27:12	65653-1.RAW	11:27:12 AM	27.18	1		13.6	0.051	0.051	ng/L	
Hg2600-2	DM2	BLK	F611343-BLK3	1	11/14/2016 11:31:20	65654-1.RAW	11:31:20 AM	20.89	1		73	0.001	0.001	ng/L	
Hg2600-2	DM2	SAM	F611343-BS1	1	11/14/2016 11:35:28	65655-1.RAW	11:35:28 AM	3363.94	1		3350.4	15 003	15 003	ng/L	
Hg2600-2	DM2	SAM	F611343-BSD1	1	11/14/2016 11:39:37	65656-1.RAW	11:39:37 AM	3430.47	1		3416.9	15 303	15 303	ng/L	
Hg2600-2	DM2	SAM	1610860-01	1	11/14/2016 11:43:45	65657-1.RAW	11:43:45 AM	1119.19	1		1105.6	4 900	4 000	ng/L	
Hg2600-2	DM2	SAM	1610860-02	1	11/14/2016 11:47:54	65658-1.RAW	11:47:54 AM	987.84	1		974 3	4 300	4.900	ng/L	
Hg2600-2	DM2	SAM	1610860-03	1	11/14/2016 11:52:02	65659-1.RAW	11:52:02 AM	1271.13	1		1257.6	5 594	4.509	ng/L	
Hg2600-2	DM2	SAM	1610860-04	1	11/14/2016 11:56:10	65660-1.RAW	11:56:10 AM	982 11	1		968 5	4 292	3.304	ng/L	
Hg2600-2	DM2	SAM	1610860-05	1	11/14/2016 12:00:19	65661-1.RAW	12:00:19 PM	547 47	1		533.0	9.205	4.203	ng/L	
Hg2600-2	DM2	CAL	SEQ-CCV1	1	11/14/2016 12:04:28	65662-1.RAW	12:04:28 PM	1043 30	1		1020.7	2.527	2.327	ng/L	
Hg2600-2	DM2	CAL	SEQ-CCB1	1	11/14/2016 12:08:37	65663-1.RAW	12:08:37 PM	28.03			1029.7	4.035	4.635	ng/L	
Hg2600-2	DM2	SAM	1610860-06	1	11/14/2016 12:12:45	65664-1 RAW	12:12:45 PM	218.02			14.5	0.065	0.065	ng/L	
Hg2600-2	DM2	SAM	1610860-07	1	11/14/2016 12:16:54	65665-1 RAW	12:16:54 PM	300 72	1		205.4	0.848	0.848	ng/L	
Hg2600-2	DM2	SAM	1610860-08	1	11/14/2016 12:21:02	65666-1 RAW	12:21:02 DM	390.72	1		3/7.2	1.621	1.621	ng/L	
Hg2600-2	DM2	SAM	1610860-09	1	11/14/2016 12:25:10	65667-1 RAW	12:25:10 DM	1009.21	1		291.2	1.234	1.234	ng/L	
Hq2600-2	DM2	SAM	1610860-10	1	11/14/2016 12:20:10	55668-1 PAM	12.20.10 PM	1090.31	1		1884./	8.407	8.407	ng/L	
Hq2600-2	DM2	SAM	1610860-11	1	11/14/2016 12:23:13	35660 1 PAW	12.29.19 PM	100.02	1		495.2	2.153	2.153	ng/L	
Hq2600-2	DM2	SAM	1610860-12	1	11/14/2016 12:33:27 0	35670 1 DAIA/	12.33.27 PM	1223.90	1		1210.3	5.371	5.371	ng/L	
Hq2600-2	DM2	SAM	1610860-13	1	11/14/2016 12:37.36 0	5671 1 DAW	12:37:36 PM	239.67	1		226.1	0.941	0.941	ng/L	
Hg2600-2	DM2	SAM	1610860-14		11/14/2016 12:41:44	5672 1 DAM	12:41:44 PM	1189.07	1		1175.5	5.214	5.214	ng/L	
Hg2600-2	DM2	SAM	1610860-15	1	11/14/2016 12:45.52 0	5672 1 DAIA/	12:45:52 PM	447.24	1		433.7	1.876	1.876	ng/L	
Hg2600-2	DM2	CAL	SEO-CCV2	1	11/14/2010 12:50:01 0	55075-1.RAW	12:50:01 PM	242.28	1		228.7	0.953	0.953	ng/L	
Hg2600-2	DM2	CAL	SEQ-CCB2		11/14/2010 12:54:09 0	SECTE 1 DAIA	12:54:09 PM	1031.53			1018.0	4.582	4.582	ng/L	
Hg2600-2	DM2	SAM	1610860-16	4	11/14/2016 12:58:18 0	5075-1.RAW	12:58:18 PM	28.62			15.0	0.068	0.068	ng/L	
Hg2600-2	DM2	SAM	1610860-17	1	11/14/2016 13:02:26 0	50/0-1.RAW	1:02:26 PM	167.22	1		153.7	0.615	0.615	ng/L	
Hg2600-2	DM2	SAM	1610860-18		11/14/2016 13:06:34 6	5077-1.RAW	1:06:34 PM	18.30	1		4.7	-0.055	-0.055	ng/L	
Hg2600-2	DM2	SAM	E611343 DUP1	-	11/14/2016 13:10:43 6	5078-1.RAW	1:10:43 PM	21.84	1		8.3	-0.039	-0.039	ng/L	
Hg2600-2	DM2	SAM	E6113/3.MS1	1	11/14/2016 13:14:51 6	5679-1.RAW	1:14:51 PM	1880.90	1		1867.3	8.328	8.328	ng/L	
Hg2600-2	DM2	CAM	E6113/3 MSD1	1	11/14/2016 13:19:00 6	5680-1.RAW	1:19:00 PM	5345.40	1		5331.8	23.922	23.922	ng/L	
Hg2600-2	DM2	SAM	E6113/3 MC2	1	11/14/2016 13:23:08 6	5681-1.RAW	1:23:08 PM	5326.05	1		5312.5	23.835	23.835	ng/L	
Hg2600-2	DM2	SAM	E611343 MSD2		11/14/2016 13:27:17 6	5682-1.RAW	1:27:17 PM	5450.01	1		5436.4	24.393	24.393	ng/L	
Hg2600-2	DM2	BLK	E611342 PLK1		11/14/2016 13:31:25 6	5683-1.RAW	1:31:25 PM	5515.79	1		5502.2	24.689	24.689	ng/L	
Hg2600-2	DM2	DLK	611342-DEKT	1	11/14/2016 13:35:33 6	5684-1.RAW	1:35:33 PM	71.82	2		58.3	0.262	0.262	ng/L	
Hg2600-2	DM2	CAL	SEO COV2		11/14/2016 13:39:42 6	5685-1.RAW	1:39:42 PM	44.96	2		31.4	0.141	0.141	ng/L	
Hg2600-2	DM2	CAL	SEQ-CCV3		11/14/2016 13:43:50 6	5686-1.RAW	1:43:50 PM	993.61			980.0	4.411	4.411	ng/L	
Hg2600-2	DM2	DIK	5EQ-CCB3		11/14/2016 13:47:59 6	5687-1.RAW	1:47:59 PM	32.71			19.1	0.086	0.086	ng/L	
Hg2600-2	DM2	DLK	-011342-BLK3	1	11/14/2016 13:53:33 6	5688-1.RAW	1:53:33 PM	36.83	2		23.3	0.105	0.105	ng/L	
Hg2600-2	DM2	CAM I	-011342-DER4	1	11/14/2016 13:57:41 6	5689-1.RAW	1:57:41 PM	36.81	3		23.2	0.105	0.105	ng/L	
Hg2600-2	DM2	CAM D	611342-B31		11/14/2016 14:01:49 6	5690-1.RAW	2:01:49 PM	3378.45	2		3364.9	14.976	14.976	ng/L	
Ha2600-2	DM2	SAM A	610566 12		11/14/2016 14:05:58 6	5691-1.RAW	2:05:58 PM	3511.98	2		3498.4	15.577	15.577	ng/L	
Hg2600-2	DM2	CAM 4	610566.14	1	11/14/2016 14:10:06 65	5692-1.RAW	2:10:06 PM	200.82	2		187.3	0.673	0.673	ng/L	
Hg2600-2	DM2	SAM 1	610566 15		11/14/2016 14:14:15 65	5693-1.RAW	2:14:15 PM	96.31	2		82.7	0.203	0.203	ng/L	
Ha2600.2	DM2	SAM 1	010000-10	1	11/14/2016 14:18:23 65	694-1.RAW	2:18:23 PM	26.31	2		12.7	-0.112	-0.112	ng/L	
Ha2600-2	DM2	SAM 1	010300-10	1	11/14/2016 14:22:32 65	0695-1.RAW	2:22:32 PM	34.69	2		21.1	-0.074	-0.074	ng/L	
Ha2600-2	DMD	SAM 1	610600.01	1	11/14/2016 14:26:40 65	696-1.RAW	2:26:40 PM	36.82	2		23.3	-0.065	-0.065	ng/L	
Ho2600-2	DM2	SAM 1	010009-01	1	11/14/2016 14:30:48 65	697-1.RAW	2:30:48 PM	70.31	2		56.7	0.086	0.086	ng/L	
Ha2600-2	DM2	CAL S	EQ-0074	1	11/14/2016 14:34:57 65	698-1.RAW	2:34:57 PM	1015.99			1002.4	4.512	4.512	ng/L	
ng2000-2	UMZ	CAL S	IEQ-0084	1	11/14/2016 14:39:05 65	699-1.RAW	2:39:05 PM	25.43			11.9	0.053	0.053	ng/L	Alexandra and a second and a second

		Sample						Uncorrected	Datah	No DD					
Instrument	Analyst	Туре	LabNumber	Dilution	Analyzed	FileID	RunEnd	Response	TD	Correction?	DECD	Totale Imagents	-		
Hg2600-2	DM2	SAM	1610609-02	1	11/14/2016 14:43:14	65700-1 RAW	2.43.14 DM	1160.21		concettom	11FF C	Indarkesuit	Finalkesuit	InitialUnits	Comments
Hg2600-2	DM2	SAM	1610609-03	1	11/14/2016 14:47:22	65701-1 RAW	2.43.14 PM	360.00	4		1155.0	5.032	5.032	ng/L	
Hg2600-2	DM2	SAM	1610609-04	1	11/14/2016 14:51:30	65702-1 RAW	2:51:30 DM	372.00	2		350.3	1.434	1.434	ng/L	
Hg2600-2	DM2	SAM	1610609-05	1	11/14/2016 14:55:39	65703-1 RAW	2:55:30 PM	427.12	2		358.4	1.444	1.444	ng/L	
Hq2600-2	DM2	SAM	1610609-06	1	11/14/2016 14:50:47	65704-1 RAW	2:50:47 DM	421.12	2		413.6	1.692	1.692	ng/L	
Hg2600-2	DM2	SAM	1610609-07	1	11/14/2016 15:03:56	65705-1 RAW	2.03.47 FM	431.03	2		418.1	1./12	1.712	ng/L	
Hg2600-2	DM2	SAM	1610609-08	1	11/14/2016 15:08:04	65706-1 RAW	3:03:00 PM	420.01	2		414.4	1.696	1.696	ng/L	
Hg2600-2	DM2	SAM	1611118-02	1	11/14/2016 15:12:13	65707-1 RAW	2:12:12 DM	7204.92	2		11.3	-0.118	-0.118	ng/L	
Hg2600-2	DM2	SAM	1611118-04	1	11/14/2016 15:16:21	65708 1 DAW	3.12.13 PM	7204.71	2		/191.1	32.197	32.197	ng/L	
Ha2600-2	DM2	SAM	1611118-06	1	11/14/2010 15:10:21	65700 1 DAW	3:10:21 PM	344.93	2		331.4	1.322	1.322	ng/L	
Hg2600-2	DM2	CAL	SEO-CCV5		11/14/2016 15:20:30	65710 1 DAW	3.20:30 PM	55.10	2		41.5	0.018	0.018	ng/L	
Hg2600-2	DM2	CAL	SEO-CCB5	1	11/14/2010 15:24:36	65711 1 DAW	3:24:38 PM	1055.325762			1041.8	4.689	4.689	ng/L	
Hg2600-2	DM2	SAM	1611118-09		11/14/2010 15:28:40	05/11-1.RAW	3:28:46 PM	32.18			18.6	0.084	0.084	ng/L	
Hg2600-2	DM2	SAM	1611140-01	10	11/14/2016 15:32:55	65/12-1.RAW	3:32:55 PM	23.51	2		9.9	-0.125	-0.125	ng/L	
Hg2600-2	DM2	CAM	1611151.01	10	11/14/2016 15:37:03	65/13-1.RAW	3:37:03 PM	336.11	2		322.5	1.435	14.348	ng/L	
Hg2600-2	DM2	CAM	E611242 DUD1	10	11/14/2016 15:41:12	65/14-1.RAW	3:41:12 PM	976.96	3		963.4	4.326	43.257	ng/L	
Hg2600-2	DM2	SAM	F611342-DUP1	1	11/14/2016 15:45:20	65715-1.RAW	3:45:20 PM	374.98	2	l	361.4	1.457	1.457	ng/L	
Hg2600-2	DM2	SAM	F611342-MS1	1	11/14/2016 15:49:28	65716-1.RAW	3:49:28 PM	5339.94	2		5326.4	23.804	23.804	ng/L	
Hg2600-2	DM2	SAM	F611342-MSD1	1	11/14/2016 15:53:37	65717-1.RAW	3:53:37 PM	5327.39	2		5313.8	23,748	23.748	ng/L	
Hg2600-2	DM2	SAM	F611342-M52	1	11/14/2016 15:57:45	65718-1.RAW	3:57:45 PM	1495.83	2		1482.3	6.502	6.502	ng/L	
Hg2600-2	DM2	SAM	F611342-MSD2	1	11/14/2016 16:01:54	65719-1.RAW	4:01:54 PM	1500.17	2		1486.6	6.522	6.522	na/L	
Hg2600-2	DM2	BLK	F611341-BLK1	1	11/14/2016 16:06:02	65720-1.RAW	4:06:02 PM	43.40		x	29.8	0.134	0.134	ng/l	
Hg2600-2	DM2	BLK	F611341-BLK2	1	11/14/2016 16:10:11	65721-1.RAW	4:10:11 PM	36.50		x	22.9	0.103	0.103	ng/L	
Hg2600-2	DM2	CAL	SEQ-CCV6	1	11/14/2016 16:14:19	65722-1.RAW	4:14:19 PM	1070.21			1056.6	4,756	4,756	ng/c ng/l	
Hg2600-2	DM2	CAL	SEQ-CCB6	1	11/14/2016 16:18:27	65723-1.RAW	4:18:27 PM	32.02			18.4	0.083	0.083	ng/c ng/l	
Hg2600-2	DM2	BLK	F611341-BLK3	1	11/14/2016 16:22:36	65724-1.RAW	4:22:36 PM	20.84		x	7.3	0.033	0.033	ng/c	
Hg2600-2	DM2	SAM	F611341-BS1	1	11/14/2016 16:26:44	65725-1.RAW	4:26:44 PM	3442.01		x	3428.4	15.431	15 431	ng/L	
Hg2600-2	DM2	SAM	F611341-BSD1	1	11/14/2016 16:30:53	65726-1.RAW	4:30:53 PM	3322.17		x	3308.6	14.892	14 892	ng/L	
Hg2600-2	DM2	SAM	F611341-BS2	1	11/14/2016 16:35:01	65727-1.RAW	4:35:01 PM	3406.79		x	3393.2	15 273	15 273	ng/L	
Hg2600-2	DM2	SAM	F611341-BSD2	1	11/14/2016 16:39:10	65728-1.RAW	4:39:10 PM	3449.69		x	3436.1	15 466	15 466	ng/L	
Hg2600-2	DM2	CAL	SEQ-LCV1	1	11/14/2016 16:43:18	65729-1.RAW	4:43:18 PM	172.35			158.8	0.715	0.715	ng/L	
Hg2600-2	DM2	CAL	SEQ-LCV2	1	11/14/2016 16:47:26	55730-1.RAW	4:47:26 PM	97.53			84.0	0.378	0.379	ng/L	
Hg2600-2	DM2	SAM	1610565-05	1	11/14/2016 16:51:35	55731-1.RAW	4:51:35 PM	74.06		×	60.5	0.373	0.378	ng/L	
Hg2600-2	DM2	SAM	1610565-06	1	11/14/2016 16:55:43	55732-1.RAW	4:55:43 PM	74.92		·	61.3	0.272	0.272	ng/L	
Hg2600-2	DM2	SAM	1610565-07	1	11/14/2016 16:59:51	55733-1.RAW	4:59:51 PM	72.88	-		50.3	0.270	0.270	Hg/L	
Hg2600-2	DM2	CAL	SEQ-CCV7	1	11/14/2016 17:04:00 6	55734-1.RAW	5:04:00 PM	1032.87			1010.3	0.207 A EQQ	4 500		
Hg2600-2	DM2	CAL	SEQ-CCB7	1	11/14/2016 17:08:08 6	5735-1.RAW	5:08:08 PM	32 33			1019.5	4.300	4.300	ng/L	
Hg2600-2	DM2	SAM	1610565-08	1	11/14/2016 17:12:17 6	5736-1.RAW	5:12:17 PM	67.21			52.6	0.004	0.084	ng/L	
Hg2600-2	DM2	SAM	1610565-09	1	11/14/2016 17:16:25 6	5737-1 RAW	5:16:25 PM	66.57			53.0	0.241	0.241	ng/L	
Hg2600-2	DM2	SAM	1610565-10	1	11/14/2016 17:20:34 6	5738-1 RAW	5:20:34 PM	60.19			55.0	0.239	0.239	ng/L	
Hg2600-2	DM2	SAM	1610565-11	1	11/14/2016 17:24:42 6	5739-1 RAW	5:24:42 DM	41.61			20.0	0.250	0.250	ng/L	
Hg2600-2	DM2	SAM I	F611341-DUP1	1	11/14/2016 17:28:50 6	5740-1 DAW	5.29.50 DM	41.01	2		28.0	0.126	0.126	ng/L	
Hg2600-2	DM2	SAM I	F611341-MS1	1	11/14/2016 17:33:00 6	5741-1 PAW	5:33:00 PM	604 52	*		48.0	0.219	0.219	ng/L	
Hg2600-2	DM2	SAM I	F611341-MSD1	1	11/14/2016 17:37:00 6	5742.1 DAW	5.33.00 PM	610.30	X		590.9	2.660	2.660	ng/L	
Hg2600-2	DM2	CAL	SEO-CCV8	1	11/14/2016 17:41-17 6	5743-1 DAW	5:57:00 PM	018.38	×		604.8	2.722	2.722	ng/L	
Hg2600-2	DM2	CAL	SEQ-CCB8	1	11/14/2010 17.41:17 0	5744 1 DAW	5:41:17 PM	1004.14			990.6	4.459	4.459	ng/L	
I GLOOV L	STIL .	une s	122 0000	1	11/14/2010 17:45:25 6	3/44-1.KAW	5:45:25 PM	29.42			15.8	0.071	0.071	na/L	

TotalMercury EPA1631	Operati DM Workst THG260	BlankS CalibFa	13.567 222.18	Calib Eqn: Status:	Conc = OC Wa	(Area-13.56 Run Da rnings:4/OC E Run Ti	ate: # me:	##### 13:49:24	Blank SD: Blank RSD%:	3.05439709			
	Method #### Descrip THG260	R:)02-161114	0.9999 4-1	R ² :	0.9998	3			CF SD: CF RSD%:	11.02002766			
Sample/ID	Location Rinse	Dilute	Blank	Conc (ppt)	MB%	FinalConc Rec%	Q	A	RawData	RunEnd	Peak (Raw) Control (etf)	Flage	RupCount
Clean			0.00	9.96					65638-1.RAW	10:26:22	2213 88 Clean	OK	1
CLEAN			0.00	0.03					65639-1.RAW	10.29.14	6 49 Clean	OK	1
WS			13.57	0.01					65640-1 RAW	10.33.22	14 73 Sample	OK	4
WS			13.57	0.00					65641-1.RAW	10:37:30	11 30 Sample	OK	1
WS			13.57	0.00					65642-1.RAW	10:41:39	13 49 Sample	OK	4
SEQ-IBL1	A1	1	0.00	0.07					65643-1 RAW	10:45:47	16 10 Sample	OK	1
SEQ-IBL2	A2	1	0.00	0.06					65644-1 RAW	10:49:56	14.42 Sample	OK	4
SEQ-IBL3	A3	1	0.00	0.05					65645-1 RAW	10:54:04	10.18 Sample	OK	4
SEQ-CAL1	A4	1	13.57	0.53		106	.85		65646-1 RAW	10:58:13	132.26 Sample	OK	1
SEQ-CAL2	A5	1	13.57	1.03		102	.94		65647-1 RAW	11.02.21	242 27 Sample	OK	1
SEQ-CAL3	A6	1	13.57	4.72		94	43		65648-1 RAW	11:06:20	1062 58 Sample	OK	4
SEQ-CAL4	A7	1	13.57	19.34		96	68		65649-1 RAW	11:10:38	1300.42 Sample	OK	1
SEQ-CAL5	A8	1	13.57	39.64		99	10		65650-1 RAW	11:14:46	4309.42 Sample	OK	1
SEQ-ICV1	A9	1	13.57	5.01		100	17		65651-1 RAW	11.19.55	1126.26 Sample	OK	
F611343-BLK1	A10	1	13.57	0.13		100.			65652-1 RAW	11.10.00	120.50 Sample	OK	
F611343-BLK2	A11	1	13.57	0.06				1	65653-1 RAW	11.23.03	43.55 Sample	OK	1
F611343-BLK3	A12	1	13.57	0.03				é	65654-1 RAW	11.27.12	20.80 Sample	OK	
F611343-BS1	A13	1	13.57	15.08				4	56655-1 RAW	11.31.20	20.09 Sample	OK	
F611343-BSD1	A14	1	13.57	15.38				ç	5656-1 RAW	11.30.20	3430.47 Sample	OK	
1610860-01	A15	1	13.57	4.98				F	5657-1 RAW	11:43:45	1110 10 Sample	OK	
1610860-02	A16	1	13.57	4.39				ê	5658-1 RAW	11.43.43	097.94 Sample	OK	1
1610860-03	A17	1	13.57	5.66				F	5659-1 RAW	11.52.02	1271 13 Sample	OK	1
1610860-04	A18	1	13.57	4.36				F	5660-1 RAW	11:56:10	082 11 Sample	OK	
1610860-05	A19	1	13.57	2.40				6	5661-1 RAW	12:00:10	547.47 Sample	OK	1
SEQ-CCV1	A20	1	13.57	4.63		92	70	6	5662-1 RAW	12:00.13	1043 30 Sample	OK	1
SEQ-CCB1	A21	1	13.57	0.07		0.	00	6	5663-1 RAW	12:04:20	28.02 Sample	OK	1
1610860-06	B1	1	13.57	0.92				6	5664-1 RAW	12.00.07	218.02 Sample	OK	1
1610860-07	B2	1	13.57	1.70				6	5665-1 RAW	12:16:54	300.72 Sample	OK	
1610860-08	B3	1	13.57	1.31				6	5666-1 RAW	12.10.04	304 79 Sample	OK	1
1610860-09	B4	1	13.57	8.48				6	5667-1 RAW	12:21:02	1898 31 Sample	OK	1
1610860-10	B5	1	13.57	2.23				6	5668-1 RAW	12:20:10	508.82 Sample	OK	1
1610860-11	B6	1	13.57	5.45				6	5669-1 RAW	12.23.13	1223 00 Sample	OK	1
1610860-12	B7	1	13.57	1.02				6	5670-1 RAW	12:37:36	239.67 Sample	OK	1
1610860-13	B8	1	13.57	5.29				6	5671-1 RAW	12:07:00	1190 07 Sample	OK	
1610860-14	B9	1	13.57	1.95				6	5672-1 RAW	12:45:52	447.24 Sample	OK	1
1610860-15	B10	1	13.57	1.03				6	5673-1 RAW	12:50:01	242.28 Sample	OK	
SEQ-CCV2	B11	1	13.57	4.58		91 F	64	6	5674-1 RAW	12:54:00	1031 53 Sample	OK	1
SEQ-CCB2	B12	1	13.57	0.07		0.0	0	6	5675-1 RAW	12.59.18	28.62 Sample	OK	1
1610860-16	B13	1	13.57	0.69				6	5676-1 RAW	12:02:26	167.22 Sample	OK	
1610860-17	B14	1	13.57	0.02				6	5677-1 RAW	13:06:34	18 30 Sample	OK	1
1610860-18	B15	1	13.57	0.04				6	5678-1 RAW	12.10.12	21.84 Sample	OK	1
F611343-DUP1	B16	1	13.57	8.40				6	5679-1 RAW	13.10.43	1880 00 Sample	OK	1
F611343-MS1	B17	1	13.57	24.00		255 1	17	6	5680-1 RAW	13.10.00	5345 40 Sample	OK	1
						200.1	377	00		10.10.00	July Sample	UN	1

F611343-MSD	1 B18	1	13 57	23 01		65691 1 DAW	12.02.00			
F611343-MS2	B19	1	13.57	20.01	04.42	65682 4 DAW	13:23:08	5326.05 Sample	OK	1
F611343-MSD	2 B20	1	13.57	24.47	94.43	65682-1.RAW	13:27:17	5450.01 Sample	OK	1
F611342-BLK1	B21	1	13.57	0.26		65684 4 DAW	13:31:25	5515.79 Sample	OK	1
F611342-BLK2	C1	1	13.57	0.20		65685 1 DAW	13:35:33	/1.82 Sample	OK	1
SEO-CCV3	C2	1	13.57	0.14	88.33	65685-1.RAW	13:39:42	44.96 Sample	OK	1
SEQ-CCB3	C3	1	13.57	0.00	00.22	65686-1.RAW	13:43:50	993.61 Sample	OK	1
F611342-BLK3	C4	1	13.57	0.09	0.00	65687-1.RAW	13:47:59	32.71 Sample	OK	1
F611342-BLK4	C5		13.57	0.10		65688-1.RAW	13:53:33	36.83 Sample	OK	1
F611342-BEIK4	C6	1	12.57	15.15		65689-1.RAW	13:57:41	36.81 Sample	OK	1
F611342-BSD1	C7	1	12.57	15.15		65690-1.RAW	14:01:49	3378.45 Sample	OK	1
1610566-13	CR	1	12.57	15.75		65691-1.RAW	14:05:58	3511.98 Sample	OK	1
1610566-14	00	1	10.07	0.04		65692-1.RAW	14:10:06	200.82 Sample	OK	1
1610566-15	C10	1	10.07	0.37		65693-1.RAW	14:14:15	96.31 Sample	OK	1
1610566 16	C11	1	13.37	0.00		65694-1.RAW	14:18:23	26.31 Sample	OK	1
1610566-18	C12	1	13.37	0.10		65695-1.RAW	14:22:32	34.69 Sample	OK	1
1610600-10	012	4	13.57	0.10		65696-1.RAW	14:26:40	36.82 Sample	OK	1
SEO COVA	013	1	13.57	0.26		65697-1.RAW	14:30:48	70.31 Sample	OK	1
SEQ-CCV4	014	1	13.57	4.51	90.24	65698-1.RAW	14:34:57	1015.99 Sample	OK	1
1610600.02	015		13.57	0.05	0.00	65699-1.RAW	14:39:05	25.43 Sample	OK	1
1610609-02	017	1	13.57	5.20		65700-1.RAW	14:43:14	1169.21 Sample	OK	1
1610609-03	017	1	13.57	1.60		65701-1.RAW	14:47:22	369.90 Sample	OK	1
1610609-04	C18	1	13.57	1.61		65702-1.RAW	14:51:30	372.00 Sample	OK	1
1610609-05	019	1	13.57	1.86		65703-1.RAW	14:55:39	427.12 Sample	OK	1
1610609-06	C20	1	13.57	1.88		65704-1.RAW	14:59:47	431.63 Sample	OK	1
1610609-07	C21	1	13.57	1.87		65705-1.RAW	15:03:56	428.01 Sample	OK	1
1610609-08	A1	1	13.57	0.05		65706-1.RAW	15:08:04	24.92 Sample	OK	1
1611118-02	A2	1	13.57	32.37		65707-1.RAW	15:12:13	7204.71 Sample	OK	1
1611118-04	A3	1	13.57	1.49		65708-1.RAW	15:16:21	344.93 Sample	OK	1
1611118-06	A4	1	13.57	0.19		65709-1.RAW	15:20:30	55.10 Sample	OK	1
SEQ-CCV5	A5	1	13.57	4.69	93.78	65710-1.RAW	15:24:38	1055.33 Sample	OK	1
SEQ-CCB5	A6	1	13.57	0.08	0.00	65711-1.RAW	15:28:46	32.18 Sample	OK	1
1611118-08	A7	1	13.57	0.04		65712-1.RAW	15:32:55	23.51 Sample	OK	1
1611149-01	A8	10	13.57	14.52		65713-1.RAW	15:37:03	336.11 Sample	OK	1
1611151-01	A9	10	13.57	43.36		65714-1.RAW	15:41:12	976.96 Sample	OK	1
F611342-DUP1	A10	1	13.57	1.63		65715-1.RAW	15:45:20	374.98 Sample	OK	1
F611342-MS1	A11	1	13.57	23.97	912.69	65716-1.RAW	15:49:28	5339.94 Sample	OK	1
F611342-MSD1	A12	1	13.57	23.92		65717-1.RAW	15:53:37	5327.39 Sample	OK	1
F611342-MS2	A13	1	13.57	6.67	25.74	65718-1.RAW	15:57:45	1495.83 Sample	OK	1
F611342-MSD2	A14	1	13.57	6.69		65719-1.RAW	16:01:54	1500.17 Sample	OK	1
F611341-BLK1	A15	1	13.57	0.13		65720-1.RAW	16:06:02	43.40 Sample	OK	1
F611341-BLK2	A16	1	13.57	0.10		65721-1.RAW	16:10:11	36.50 Sample	OK	1
SEQ-CCV6	A17	1	13.57	4.76	95.12	65722-1.RAW	16:14:19	1070.21 Sample	OK	1
SEQ-CCB6	A18	1	13.57	0.08	0.00	65723-1.RAW	16:18:27	32.02 Sample	OK	1
F611341-BLK3	A19	1	13.57	0.03		65724-1.RAW	16:22:36	20.84 Sample	OK	1
F611341-BS1	A20	1	13.57	15.43		65725-1.RAW	16:26:44	3442.01 Sample	OK	1
F611341-BSD1	A21	1	13.57	14.89		65726-1.RAW	16:30:53	3322.17 Sample	OK	1
F611341-BS2	B1	1	13.57	15.27		65727-1.RAW	16:35:01	3406.79 Sample	OK	1
F611341-BSD2	B2	1	13.57	15.47		65728-1.RAW	16:39:10	3449.69 Sample	OK	1
							ACCESSION ACCESSION ACCESSION	state waitiple		

SEQ-LCV1	B3	1	13.57	0.71		65729-1 RAW	16:43:18	172 35 Sample	OK	4
SEQ-LCV2	B4	1	13.57	0.38		65730-1 RAW	16:47:26	97.53 Sample	OK	1
1610565-05	B5	1	13.57	0.27		65731-1 RAW	16:51:35	74.06 Sample	OK	
1610565-06	B6	1	13.57	0.28		65732-1 RAW	16:55:43	74.00 Sample	OK	1
1610565-07	B7	1	13.57	0.27		65733-1 RAW	16:50:51	79.92 Sample	OK	
SEQ-CCV7	B8	1	13.57	4.59	91.76	65734-1 RAW	17:04:00	1022.87 Sample	OK	1
SEQ-CCB7	B9	1	13.57	0.08	0.00	65735-1 RAW	17:09:09	22.22 Sample	OK	1
1610565-08	B10	1	13.57	0.24	0.00	65736-1 RAW	17.00.00	67.21 Sample	OK	
1610565-09	B11	1	13.57	0.24		65737-1 PAW	17.12.17	66 57 Sample	OK	1
1610565-10	B12	1	13.57	0.25		65738-1 PAW	17.10.25	60.19 Sample	OK	1
1610565-11	B13	1	13.57	0.13		65730 1 DAW	17.20.34	41.64 Sample	OK	
F611341-DUP1	B14	1	13.57	0.22		65740-1 PAW	17.24.42	41.01 Sample	OK	1
F611341-MS1	B15		13 57	2.66	218 28	65741 1 DAW	17.20.00	62.12 Sample	OK	1
F611341-MSD1	B16	1	13 57	2 72	210.20	65742 1 DAW	17.33.00	604.52 Sample	OK	1
SEQ-CCV8	B17	4	13.57	4 46	80 17	65742-1.RAW	17:37:08	618.38 Sample	OK	1
SEQ-CCB8	B18	1	13.57	0.07	0.00	65743-1.RAW	17:41:17	1004.14 Sample	OK	1
020 0000	0.0	10	10.07	0.07	0.00	05/44-1.RAW	17:45:25	29.42 Sample	OK	1

Instrument: Hg2600-2

Calibration ID: UNASSIGNED

Analyzed: 11/14/2016

Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
6K14016-IBL1	QC	1			
6K14016-IBL2	QC	2			
6K14016-IBL3	QC	3			
6K14016-CAL1	QC	4	1605412		
6K14016-CAL2	QC	5	1605413		
6K14016-CAL3	QC	6	1605414		
6K14016-CAL4	QC	7	1605415		
6K14016-CAL5	QC	8	1605416		
6K14016-ICV1	QC	9	1605791		
F611343-BLK1	QC	10			
F611343-BLK2	QC	11			
F611343-BLK3	QC	12			
F611343-BS1	QC	13			
F611343-BSD1	QC	14			
1610860-01	Hg-CVAFS-W-1631	15		├───┼	Scan all data - Level IV
1610860-02	Hg-CVAFS-W-1631	16			Scan all data - Level IV
1610860-03	Hg-CVAFS-W-1631	17			Scan all data - Level IV
1610860-04	Hg-CVAFS-W-1631	18			
1610860-05	Hg-CVAFS-W-1631	19			
6K14016-CCV1	OC	20	1605791		Scan an Gata - Level IV
6K14016-CCB1	QC	21			
1610860-06	Hg-CVAFS-W-1631	22			Com all datas to start
1610860-07	Hg-CVAFS-W-1631	23			
1610860-08	Hg-CVAFS-W-1631	24			
1610860-09	Hg-CVAFS-W-1631	25			
1610860-10	Hg-CVAFS-W-1631	26			Scan all data - Level IV
1610860-11	Hg-CVAFS-W-1631	27			Scan all data - Level IV
1610860-12	Hg-CVAFS-W-1631	28			Scan all data - Level IV
1610860-13	Hg-CVAFS-W-1631	20			Scan all data - Level IV
1610860-14	Hg-CVAFS-W-1631	30			Scan all data - Level IV
1610860-15	Hg-CVAFS-W-1631	31			Scan all data - Level IV
6K14016-CCV2	00	32	1605791		Scan all data - Level IV
6K14016-CCB2	00	32	1005791		
1610860-16	Hø-CVAFS-W 1621	34			
1610860-17	Hg-CVAFS W 1621	25			Scan all data - Level IV
	116 C 111 5-W-1051	55	I	- II.	Scan all data - Level IV

Due Date: 11/16/2016

Instrument: Hg2600-2

Calibration ID: UNASSIGNED

Analyzed: 11/14/2016

Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
1610860-18	Hg-CVAFS-W-1631	36			Scan all data - Level IV
F611343-DUP1	QC	37			
F611343-MS1	QC	38			
F611343-MSD1	QC	39			
F611343-MS2	QC	40			
F611343-MSD2	QC	41			
F611342-BLK1	QC	42			
F611342-BLK2	QC	43			
6K14016-CCV3	QC	44	1605791		
6K14016-CCB3	QC	45			
F611342-BLK3	QC	46			
F611342-BLK4	QC	47			
F611342-BS1	QC	48			
F611342-BSD1	QC	49			
1610566-13	Hg-CVAFS-W-1631	50			Scan all data for level IV report
1610566-14	Hg-CVAFS-W-1631	51			Scan all data for level IV report
1610566-15	Hg-CVAFS-W-1631	52			Scan all data for level IV report
1610566-16	Hg-CVAFS-W-1631	53			Scan all data for level IV report
1610566-18	Hg-CVAFS-W-1631	54			Scan all data for lovel IV report
1610609-01	Hg-CVAFS-W-1631	55			
6K14016-CCV4	QC	56	1605791		
6K14016-CCB4	QC	57			
1610609-02	Hg-CVAFS-W-1631	58			
1610609-03	Hg-CVAFS-W-1631	59			
1610609-04	Hg-CVAFS-W-1631	60			
1610609-05	Hg-CVAFS-W-1631	61			
1610609-06	Hg-CVAFS-W-1631	62		· · · · ·	
1610609-07	Hg-CVAFS-W-1631	63			
1610609-08	Hg-CVAFS-W-1631	64			
1611118-02	Hg-CVAFS-W-1631	65			give data to PM for scorning
1611118-04	Hg-CVAFS-W-1631	66			give data to PM for scanning
1611118-06	Hg-CVAFS-W-1631	67			give data to PM for scanning
6K14016-CCV5	QC	68	1605791		give data to FW for scanning
6K14016-CCB5	QC	69			
1611118-08	Hg-CVAFS-W-1631	70			give data to DM for manufic

Due Date: 11/16/2016

Instrument: Hg2600-2

Calibration ID: UNASSIGNED

Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
1611149-01	Hg-CVAFS-W-1631	71			
1611151-01	Hg-CVAFS-W-1631	72			
F611342-DUP1	QC	73			
F611342-MS1	QC	74			
F611342-MSD1	QC	75			
F611342-MS2	QC	76			
F611342-MSD2	QC	77			
6K14016-CCV6	QC	78	1605791		
6K14016-CCB6	QC	79			
6K14016-CCV7	QC	80	1605791		
6K14016-CCB7	QC	81			
6K14016-CCV8	QC	82	1605791		
6K14016-CCB8	QC	83			

Samples Loaded By en

Date Data Processed By pren 11/14/16 Date

Due Date: 11/16/2016

Analyzed: 11/14/2016

Instrument: Hg2600-2

Calibration ID: UNASSIGNED

Analyzed: 11/14/2016

Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
6K14017-IBL1	QC	1	1		
6K14017-IBL2	QC	2			
6K14017-IBL3	QC	3			
6K14017-CAL1	QC	4	1605412		
6K14017-CAL2	QC	5	1605413		
6K14017-CAL3	QC	6	1605414		
6K14017-CAL4	QC	7	1605415		
6K14017-CAL5	QC	8	1605416		
6K14017-ICV1	QC	9	1605791		
6K14017-CCV1	QC	10	1605791		
6K14017-CCB1	QC	11			
6K14017-CCV2	QC	12	1605791		
6K14017-CCB2	QC	13			
6K14017-CCV3	QC	14	1605791		
6K14017-CCB3	QC	15			
6K14017-CCV4	QC	16	1605791		
6K14017-CCB4	QC	17			
6K14017-CCV5	QC	18	1605791		
6K14017-CCB5	QC	19			
F611341-BLK1	QC	20			
F611341-BLK2	QC	21			
6K14017-CCV6	QC	22	1605791		
6K14017-CCB6	QC	23			
F611341-BLK3	OC	24			
F611341-BS1	OC	25			
F611341-BSD1	QC	26			
F611341-BS2	OC	27			
F611341-BSD2	QC	28			
6K14017-LCV1	OC	29	1605412		
6K14017-LCV2	OC	30	1606139		
1610565-05	Hg-CVAFS-W-1631-PRASA	31			
1610565-06	Hg-CVAFS-W-1631-PRASA	32			
1610565-07	Hg-CVAFS-W-1631-PRASA	33			
6K14017-CCV7	OC	34	1605791		
6K14017-CCB7	00	35	1000/71		
	<u>v</u> v	55			

Due Date: 11/16/2016

Page 44 of 290

Instrument: Hg2600-2

Calibration ID: UNASSIGNED

Analyzed: 11/14/2016

Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
1610565-08	Hg-CVAFS-W-1631-PRASA	36			Connecto
1610565-09	Hg-CVAFS-W-1631-PRASA	37	+	<u>├</u>	
1610565-10	Hg-CVAFS-W-1631-PRASA	38			
1610565-11	Hg-CVAFS-W-1631-PRASA	39		┝╼╼╼┼	
F611341-DUP1	QC	40	-		
F611341-MS1	QC	41	-		
F611341-MSD1	QC	42			
6K14017-CCV8	QC	43	1605791		
6К14017-ССВ8	QC	44			

Date Data Processed By Dan M Samples Loaded By FOM

rem 11 14 16 Date

Failing Data Report - 6K14016

Sample ID	Analysis	Result	MRL	Dup Result	Source Result	True Value	Units	% Rec.	Rec. LCL	Rec. UCL	RPD	RPD Limit	Over Cal	Failure		Qualifier
							\cap			_			2 .		STAL AND A	

11/14/10 Analyst Reviewed By rom Date

Peer Reviewed By

Date 11/15

16

Page 46 of 290

Failing Data Report - 6K14017

Result Result Value LCL UCL Limit	Qualifier	
-----------------------------------	-----------	--

11/14/16 n team Date Analyst Reviewed By

11/5/14 Peer Reviewed By

Date

F611343

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: AFS - EPA 1631E BrCl Oxidation

Prepared: 11/14/2016

Lab Number	Sample ID and Source Sample	Initial (mL)	Final (mL)	Spikel ID	µl Spikel	Spike2 ID	μl Spike2	Extraction Comments
F611343-BLK1	Blank	100	101					
F611343-BLK2	Blank	100	101					
F611343-BLK3	Blank	100	101					
F611343-BS1	LCS	50	50.5	1604715	100			
F611343-BSD1	LCS Dup	50	50.5	1604715	100			
F611343-DUP1	Duplicate [1610860-09]	100	101				-	
F611343-MS1	Matrix Spike [1610860-02]	49.50495	50	1605272	100			[Spk] 100mL->101mL; 101mL->101mL; Spiked 50mL
F611343-MS2	Matrix Spike [1610860-01]	49.50495	50	1605272	100			[Spk] 100mL->101mL; 101mL->101mL; Spiked 50mL
F611343-MSD1	Matrix Spike Dup [1610860-02]	49.50495	50	1605272	100			[Spk] 100mL->101mL; 101mL->101mL; Spiked 50mL
F611343-MSD2	Matrix Spike Dup [1610860-01]	49.50495	50	1605272	100			[Spk] 100mL->101mL; 101mL->101mL; Spiked 50mL

Standard ID(s):	Description:
1604715	Nist 1641D 200X
1605272	THg 10ng/mL Calibration Standard

Expiration: 18-Aug-17 00:00 10-Dec-16 00:00

Reagent ID(s):	Description:	Expiration:
1602941	25% Hydroxylamine-HCl working solution	03-Dec-16 00:00
1606163	0.2 N BRCL OCTOBER 2016	19-Apr-17 00:00
1606188	THg Dilute 1% BrCl	26-Mar-17 00:00
1606189	THg Washstation (0.5% BrCl)	03-Dec-16 00:00
1606531	3% SnCl2 THg reductant	29-Apr-17 00:00

F611343

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: AFS - EPA 1631E BrCl Oxidation

Prepared: 11/14/2016

Lab Number	Sample ID	Initial (mL)	Final (mL)	QC Sample	Sample Specs.	Raw Data	Sample Comments	Analysis Comments
1610860-01	WQ1b-c_102516_SW_10	100	101	QC	-	-	MS/MSD Scan all data - Level IV	
1610860-02	WQ1b-c_102516_SW_10 Dissolved	100	101	QC	-	-	MS/MSD Scan all data - Level IV	
1610860-03	WQ1b-c_102516_SW_10_DUP	100	101	-	-	i.	Scan all data - Level IV	
1610860-04	WQ1b-c_102516_SW_10_DUP Dissolved	100	101	-	-	-	Scan all data - Level IV	
1610860-05	ES15_102616_SW_10	100	101	-	-	-	Scan all data - Level IV	
1610860-06	ES15_102616_SW_10 Dissolved	100	101	-	(•)	22	Scan all data - Level IV	
1610860-07	WQ-FPT_102616_SW_10	100	101	-	-		Scan all data - Level IV	
1610860-08	WQ-FPT_102616_SW_10 Dissolved	100	101	-		-	Scan all data - Level IV	
1610860-09	WQ_ECH_102616_SW_10	100	101		-	-	Scan all data - Level IV	
1610860-10	WQ_ECH_102616_SW_10 Dissolved	100	101	-	-	-	Scan all data - Level IV	
1610860-11	WQ3-L_102616_SW_10	100	101	-	-	- 1	Scan all data - Level IV	
1610860-12	WQ3-L_102616_SW_10 Dissolved	100	101	-	-	-	Scan all data - Level IV	
1610860-13	WQ2-C_102616_SW_10	100	101	-	-	i i i	Scan all data - Level IV	
1610860-14	WQ2-C_102616_SW_10 Dissolved	100	101	-	-	-	Scan all data - Level IV	
1610860-15	OV-02_102616_SW_10	100	101	-	-	-	Scan all data - Level IV	
1610860-16	OV-02_102616_SW_10 Dissolved	100	101	1	-	-	Scan all data - Level IV	
1610860-17	EB_102616_SW_QC	100	101	-	-	-	Scan all data - Level IV	
10 60-18	EB_102616_SW_QC Dissolved	100	101	-	-	-	Scan all data - Level IV	

F611343

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: AFS - EPA 1631E BrCl Oxidation

Prepared: 11/14/2016

F611342

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: AFS - EPA 1631E BrCl Oxidation

Prepared: 11/14/2016

Lab Number	Sample ID and Source Sample	Initial (mL)	Final (mL)	Spikel ID	µl Spike1	Spike2 ID	μl Spike2	Extraction Comments
F611342-BLK1	Blank	100	101					SOURCE 1610566-17
F611342-BLK2	Blank	100	101					SOURCE 1610566-17
F611342-BLK3	Blank	100	101		1			SOURCE 1610566-17
F611342-BLK4	Blank	100	105					
F611342-BS1	LCS	50	50.5	1604715	100			
F611342-BSD1	LCS Dup	50	50.5	1604715	100			
F611342-DUP1	Duplicate [1610609-03]	100	101					
F611342-MS1	Matrix Spike [1610609-02]	49.50495	50	1605272	100			[Spk] 100mL->101mL; 101mL->101mL; Spiked 50mL
F611342-MS2	Matrix Spike [1610609-07]	49.50495	50	1605272	25			[Spk] 100mL->101mL; 101mL->101mL; Spiked 50mL
F611342-MSD1	Matrix Spike Dup [1610609-02]	49.50495	50	1605272	100			[Spk] 100mL->101mL; 101mL->101mL; Spiked 50mL
F611342-MSD2	Matrix Spike Dup [1610609-07]	49.50495	50	1605272	25			[Spk] 100mL->101mL; 101mL->101mL; Spiked 50mL

Standard ID(s): Description: 1604715 Nist 1641D 200X 1605272 THg 10ng/mL Calibration Standard Expiration: 18-Aug-17 00:00 10-Dec-16 00:00 10-Dec-16 00:00

Reagent ID(s):	Description:	Expiration:
1602941	25% Hydroxylamine-HCl working solution	03-Dec-16 00:00
1606163	0.2 N BRCL OCTOBER 2016	19-Apr-17 00:00
1606188	THg Dilute 1% BrCl	26-Mar-17 00:00
1606189	THg Washstation (0.5% BrCl)	03-Dec-16 00:00
1606531	3% SnCl2 THg reductant	29-Apr-17 00:00

F611342

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: AFS - EPA 1631E BrCl Oxidation

Prepared: 11/14/2016

Lab Number	Sample ID	Initial (mL)	Final (mL)	QC Sample	Sample Specs.	Raw Data	Sample Comments	Analysis Comments
1610566-13	GBPE-0024-07	100	101	-	-		Preservation Blank created Scan all data	
1610566-14	GBPE-0024-07 Dissolved	100	101	-	-		Preservation Blank created Scan all data	
1610566-15	GBPE-0024-08	100	101	-	-	-	Preservation Blank created Scan all data	
1610566-16	GBPE-0024-08 Dissolved	100	101	-	-		Preservation Blank created Scan all data	
1610566-18	Laboratory Filter Blank	100	101	8		-	Scan all data for level IV report	
1610609-01	P85262-1	100	101		-	-		
1610609-02	P85262-2	100	101	~	9 # 3	-		
1610609-03	P85262-3	100	101	-	-			
1610609-04	P85262-4	100	101	-	-	122		
1610609-05	P85262-5	100	101	~	-	5 - 3		
1610609-06	P85262-6	100	101	-	-	•		
1610609-07	P85262-7	100	101	-	-	-		
1610609-08	P85262-8	100	101	-	-	-		
1611118-02	B-161465 PLANT INFLUENT #16-16855	100	101	-	-	can Dat	give data to PM for scanning	
1611118-04	B-161094 PLANT EFFLUENT #16-16857	100	101	-	-	can Dat	give data to PM for scanning	
1611118-06	B-161473 EQUIP. BLANK #16-16859	100	101	-	-	can Dat	give data to PM for scanning	
1611118-08	B-158988 TRIP BLANK #16-16861	100	101	-	-	can Dat	give data to PM for scanning	
10 ag 49-01	802W-110116-01H	100	101	-	-			
16 N 51-01	WTP-110116-01P	100	105	-	-	-		

D Date: 11/16/2016

F611342

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: AFS - EPA 1631E BrCl Oxidation

Prepared: 11/14/2016

F611341

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: AFS - EPA 1631E BrCl Oxidation

Prepared: 11/14/2016

			0	1	1	-		
Lab Number	Sample ID and Source Sample	Initial (mL)	Final (mL)	Spike1 ID	µl Spike1	Spike2 ID	μl Spike2	Extraction Comments
F611341-BLK1	Blank	100	101					
F611341-BLK2	Blank	100	101					
F611341-BLK3	Blank	100	101					
F611341-BS1	LCS	50	50.5	1604715	100			
F611341-BS2	LCS	50	50.5	1604715	100			2% NACL
F611341-BSD1	LCS Dup	50	50.5	1604715	100			
F611341-BSD2	LCS Dup	50	50.5	1604715	100			2% NACL
F611341-DUP1	Duplicate [1610565-05]	100	101					
F611341-MS1	Matrix Spike [1610565-05]	49.50495	50	1605271	125			[Spk] 100mL->101mL; 101mL->101mL; Spiked 50mL
F611341-MSD1	Matrix Spike Dup [1610565-05]	49.50495	50	1605271	125			[Spk] 100mL->101mL; 101mL->101mL; Spiked 50mL

Standard ID(s):	Description:
1604715	Nist 1641D 200X
1605271	THg lng/mL Calibration Standard

Expiration: 18-Aug-17 00:00 10-Dec-16 00:00

Reagent ID(s):	Description:	Expiration:
1504687	Sodium Chloride, Biological Grade, Certified	23-Jul-18 00:00
1602941	25% Hydroxylamine-HCl working solution	03-Dec-16 00:00
1606163	0.2 N BRCL OCTOBER 2016	19-Apr-17 00:00
1606188	THg Dilute 1% BrCl	26-Mar-17 00:00
1606189	THg Washstation (0.5% BrCl)	03-Dec-16 00:00
1606531	3% SnCl2 THg reductant	29-Apr-17 00:00

F611341

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: AFS - EPA 1631E BrCl Oxidation

Prepared: 11/14/2016

Lab Number	Sample ID	Initial (mL)	Final (mL)	QC Sample	Sample Specs.	Raw Data	Sample Comments	Analysis Comments
1610565-05	Q34079 A4-50	100	101					
1610565-06	Q34084 A4-90	100	101	-	-	-		
1610565-07	Q34090 A5-10	100	101	-	-	3 4 3		
1610565-08	Q34095FD3 A5-10	100	101	.	-	-		
1610565-09	Q34100 A5-50	100	101	-	-	-		
1610565-10	Q34105 A5-90	100	101	-	~	-		
1610565-11	Q34127EB2 FIELDQC	100	101	-	-	-		

F611343

2600.2 11/14/16 Den

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: AFS - EPA 1631E BrCl Oxidation

Prepared: 11/14/2016

Lab Number	Sample ID and Source Sample	Initial (mL)	Final (mL)	Spikel ID	µl Spike1	Spike2 ID	μl Spike2	Extraction Comments
F611343-BLK1	Blank	100	101					1×
F611343-BLK2	Blank	100	101					1×
F611343-BLK3	Blank	100	101					1X
F611343-BS1	LCS	50 100	505 101	1024715	100			1×
F611343-BSD1	LCS Dup	50-100-	9.5 <u>101</u>	104715	100			1×
F611343-DUP1	Duplicate 1610860.09	5-100-	101_					1×
F611343-MS1	Matrix Spike [1610860-02]	100	101	1005272	100			X
F611343-MS2	Matrix Spike [1610860-01]	100	101	1605272	100			X
F611343-MSD1	Matrix Spike Dup [1610860-02]	100	101	1605272	100			IX
F611343-MSD2	Matrix Spike Dup [1610860-01]	100	101	K05272	100			1X

Standard ID(s): Description: Expiration:

1606163 1602941 1605630 DM 11/14/16 1605635 1602531 1606185 1606185

F611343

1/14/16 200

Prepared: 11/14/2016

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: AFS - EPA 1631E BrCl Oxidation

Lab Number	Sample ID	Initial (mL)	Final (mL)	QC Sample	Sample Specs.	Raw Data	Sample Comments	Analysis Comments
1610860-01	WQ1b-c_102516_SW_10	100	101	QC	-	-	MS/MSD Scan all data - Level IV	(X
1610860-02	WQ1b-c_102516_SW_10 Dissolved	100	101	QC	-	R	MS/MSD Scan all data - Level IV	jX
1610860-03	WQ1b-c_102516_SW_10_DUP	100	101		-	-	Scan all data - Level IV	1X
1610860-04	WQ1b-c_102516_SW_10_DUP Dissolved	100	101	3 9 0	-	9 - 3	Scan all data - Level IV	IX
1610860-05	ES15_102616_SW_10	100	101	-	*		Scan all data - Level IV	IX
1610860-06	ES15_102616_SW_10 Dissolved	100	101	-	-		Scan all data - Level IV	1X
1610860-07	WQ-FPT_102616_SW_10	100	101	-	-	-	Scan all data - Level IV	1X
1610860-08	WQ-FPT_102616_SW_10 Dissolved	100	101	Ŧ	-	-	Scan all data - Level IV	IX
1610860-09	WQ_ECH_102616_SW_10	100	101	-	-	-	Scan all data - Level IV	1X
1610860-10	WQ_ECH_102616_SW_10 Dissolved	100	101		-	-	Scan all data - Level IV	jX
1610860-11	WQ3-L_102616_SW_10	100	101	1	÷	-	Scan all data - Level IV	IX.
1610860-12	WQ3-L_102616_SW_10 Dissolved	100	101	-		6 -	Scan all data - Level IV	1×
1610860-13	WQ2-C_102616_SW_10	100	101	-	-	-	Scan all data - Level IV	1×
1610860-14	WQ2-C_102616_SW_10 Dissolved	100	101	-	-	-	Scan all data - Level IV	1×
1610860-15	OV-02_102616_SW_10	100	101	-	-	-	Scan all data - Level IV	1×
1610860-16	OV-02_102616_SW_10 Dissolved	100	101	-	-	-	Scan all data - Level IV	ix
1610260-17	EB_102616_SW_QC	100	101	-		-	Scan all data - Level IV	IX
16 ge 0-18	EB_102616_SW_QC Dissolved	100	101	-	1	-	Scan all data - Level IV	1X

57 of 290 Date: 11/18/2016
F611343

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: AFS - EPA 1631E BrCl Oxidation

Prepared: 11/14/2016

Initial preservation and/or verification

Technician: <u>CSP</u> Date: <u>10/29/16</u> Time Completed: <u>1515</u>

Work Orders:	16108	519,18	610862
1610861;	1610	860	

Page 59 of 290

m

11

Additional preservation and/or verification (as needed)

Technician:	Date:	Time Completed:
Technician:	Date:	Time Completed:

BrCI LIMS ID:	16061	63
---------------	-------	----

Pipette SN	MU32229
Cal. Date:	10/28/16

				Addition	nal preservation (as	needed)
Sample ID	Sample Volume (mL)	Reagent added (mL)	Oxidized? Y / N	Oxidized? Y / N	Reagent added (mL)	Oxidized? Y/N
1610819-08A	300	3,00	N			
1610819-00A	300	3.00	11			
1610862-10A	50	0.50	y l			
1610862-11A	300	3.00	W			
1510861-01A	600	6.00	y			
1610861-02A	600	6.00	n		ne ⁴⁴	
1610861-03A	600	6.00	liv			
16 1086 1-041 A	600	6.00	n			
1610861-054	600	6,00	W			
1610861-06A	600	6.00	N			
1610861-07A	600	6,00	14			
1610861-08A	600	6,00	n			
1610861-04A	600	6.00	IN			
1610861-10A	600	6.00	n			
1610861-11Å	600	6,00	Ih			
1610861-12A	600	6,00 - 6.00	NO	<u>.</u>		
1610861-13A	600	6.00 +29.00	1 m			
1610861-130	600	6.00 +24.00	W			
1610661-14A	600	6.00 .	y1			
1610861-15A	600	6.00 +6.00	1 W			
161086 - 16A	600	6.00	7'			
1610860-01A	300	3.00	U N			
1610860-010	300	3.00	14			
1610860-01E	300	3.00	y			
1610860-02A	300	3.00	y			
1610860-020	300	3.00	n			

Oxidation with BrCl is confirmed by a yellow color change of the sample and/or a purple color change in KI starch paper.

Comments:

Total Mercury	Preservation	Logbook
---------------	--------------	---------

The Margaretters	Samala Ma		Additional preservation (as needed)
Additional preserva	ation and/or verifi Date: Date:	cation (as needed) Time Completed: Time Completed:	BrCI LIMS ID: 1606163 Pipette SN: MU32229 Cal. Date: 10/28/16
Initial preservation Technician: $-\frac{c_{5}}{c_{5}}$	and/or verificatio	n 9/16 Time Completed: 1535	Work Orders: 1610860

Sample ID	(mL)	Reagent added (mL)	Oxidized? Y / N	Oxidized? Y/N	Reagent added	Oxidized
1010860-02E	300	3.00	2		(inc)	Y/N
1610860-03A	300	3.00	W			
610860-04A	300	3,00	h			
610860-054	300	3.00 .	In			
610860-06 A	300	3,00	n			1
610860-07 A	300	3,00	in			
610860-08 A	300	3.00	h			
610560-60 A	300	3.00	in			
610860-10A	300	3.00	Tin			
510860-11A	300	3.00	in			
510860-12A	300	3.00	In			
510860-13A	300	3.00	In			
10860-14A	300	3.00	In			
10860-15A	300	3.00	nit			-
510860-16A	300	3.00	In			
10860-17/	300	300	n			•
10860-18A	300	3.00	TW			
		CSP				~
		10/29/16		-		
2						
idation with BrCl is conf	irmed by a vellow co	lor change of th				

Comments:

REViewed Eurofins Frontier Global Sciences / THg Preservation / LOG-PR-010.02 / Effective: Sept. 26, 2013 / QA2016-155 / Page 22 of 10 Page 60 of 290

F611342

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: AFS - EPA 1631E BrCl Oxidation

Lab Number	Sample ID and Source Sample	Initial (mL)	Final (mL)	Spike1 ID	µl Spike1	Spike2 ID	μl Spike2	Extraction	Comments	
F611342-BLK1	Blank	100	101					Durke	1610566 M	12
F611342-BLK2	Blank	100	101					1)	11	12
F611342-BLK3	Blank	100	101					N	1)	IX
F611342-BS1	LCS	5°100	9.5101	1004715	100			IX	87 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 1	
F611342-BSD1	LCS Dup	50100	50 Joh	1604715	100	_		iX		
F611342-DUP1	Duplicate 1610609.03	100	101					IX		
F611342-MS1	Matrix Spike 1610009 - 02	100	101	1605272	100			12		
F611342-MS2	Matrix Spike 161069.07	100	101	1605272	25			ix	19 19 000 AB	
F611342-MSD1	Matrix Spike Dup 1010009.02	100	101	1605272	100			1×		
F611342-MSD2	Matrix Spike Dup 161069.57	100	101	1605272	25			1×		

Standard ID(s): Description:

Expiration:

BLK 4 Final 105

2620.2 11/14/16 DM

Prepared: 11/14/2016

F611342

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: AFS - EPA 1631E BrCl Oxidation

Lab Number	Sample ID	Initial (mL)	Final (mL)	QC Sample	Sample Specs.	Raw Data	Sample Comments	Analysis Comments
1610566-13	GBPE-0024-07	100	101	-	-	-	Preservation Blank created Scan all data	1X
1610566-14	GBPE-0024-07 Dissolved	100	101	•	E		Preservation Blank created Scan all data	1X
1610566-15	GBPE-0024-08	100	101	-	12	-	Preservation Blank created Scan all data	X
1610566-16	GBPE-0024-08 Dissolved	100	101	-		-	Preservation Blank created Scan all data	IX
1610566-18	Laboratory Filter Blank	100	101			-	Scan all data for level IV report	1X
1610609-01	P85262-1	100	101	-				1X
1610609-02	P85262-2	100	101		-:	-		1X
1610609-03	P85262-3	100	101		-	-		XI
1610609-04	P85262-4	100	101	-	2	140		IX
1610609-05	P85262-5	100	101	-	-	-		1%
1610609-06	P85262-6	100	101	-	-	-		IX
1610609-07	P85262-7	100	101	-	-	Ĥ		1×
1610609-08	P85262-8	100	101	-	-	-		اx ا
1611118-02	B-161465 PLANT INFLUENT #16-16855	100	101	-	-	can Dat	give data to PM for scanning	1×
1611118-04	B-161094 PLANT EFFLUENT #16-16857	100	101	-	-	can Dat	give data to PM for scanning	1×
1611118-06	B-161473 EQUIP. BLANK #16-16859	100	101	-	~	can Dat	give data to PM for scanning	ix
1611118-08	B-158988 TRIP BLANK #16-16861	100	101	-	-	can Dat	give data to PM for scanning	1X
16 ge 19-01	802W-110116-01H	100	101	-	-	-		xor
16 N 11-01	WTP-110116-01P	100	101	-	-	-		xoi

290 D Date: 11/16/2016 2600.2

Prepared: 11/14/2016

F611342

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: AFS - EPA 1631E BrCl Oxidation

Prepared: 11/14/2016

Initial preservation and	/or verification		
Technician: Amm	Date: 11/3/1	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	1700
Additional preservation	and/or verification	(as needed)	1 120
Technician:	Date:	Time of the	
Technician	Date:	Time Completed:	

Technician: _____ Date: _____ Time Completed: _____

Work Orders: 1011118
-1411120 16/1029
BrCI LIMS ID: 16 06/63
Pipette SN: MUSZZ29
Cal. Date: 11/2/10
Additional

Rt Page 64 of 290

C

ulal.

Sample ID		the second s		Additio	nal preservation /	der man and a state
	(mL)	Reagent added (mL)	Oxidized?	Oxidized?	Reagent added	Oxidized
1611118-02A	300	3.00	M	Y/N	(mL)	Y/N
1611118-044	300	3.00	V			
1611118-DIEA-	300	3.00	Y		1	
141118-08A	300	3,00	Y			
1611120-01A	580	5.80	Y		*	
1611120-02A	125	1.25	V			
1611029-01A	300	3.02	N			
Q						
						/
	*					
•		1				
			10000			
		1	pp			
			MISING			
					U	
-						
	/				•	
/						
ation with BrCl is as f				Carlo Car		
ments:	ned by a yellow color	change of the sam	ple and/or a p	urple color ch	ange in KI starch pap	er.
			٩			

Eurofins Frontier Global Sciences / THg Preservation / LOG-PR-010.02 / Effective: Sept. 26, 2013 / QA2016-155 / Page 27 of 100

Initial preservation and/or verification

Technician: AM Date: 10/20116 Time Completed: 1635

Additional preservation and/or verification (as needed)

C

Technician: ______ Date: _____ Time Completed: _____ Technician: _____ Date: _____ Time Completed: _____

Work Orders:	1610009
-161060	0
BrCI LIMS ID:	1405634

Page 65 of 290

cuca

R

.al

Pipette SN:	MU32779
Cal. Date:	10/19/110

Sample ID	Sample Volume	Reagent added	Out it is	Additio	nal preservation (as	needed)
1	(mL)	(mL)	Y/N	Oxidized?	Reagent added	Oxidized
1610609-01B	300	3,00	Y	1/10	(mL)	Y/N
1610609-02B	300	3.00	Y			
1610609-03 B	300	3.00	Y			
610609-04B	300	3,00	N			
1610609-05B	300	3.00	V			
1610609-0103	300	3.00	N N			
1101009-07B	300	3.00	7			
610609-08B	300	3.00	Y			
1610609-09B		- Anno 10	120/10			
e10604-02A	600	10.00	N			
610606-04A	600	(n.DD)	V			
1010000-06A	(600)	600	N			
6107006-08A	300	3.00	J-			
		A				
		Augu				
		10/2	0110-			
/						
tion with BrCl is confirm	ed by a yellow color	change of the com	plo and (And the second	
nents:		and of the same	pie and/or a pi	urple color cha	ange in KI starch pap	er.

Eurofins Frontier Global Sciences / THg Preservation / LOG-PR-010.02 / Effective: Sept. 26, 2013 / QA2016-155 / Page 11 of 100

Initial preservatio	n and/or verificatio	n	C58 10/19/16
Technician: <u>C5</u>	9 Date: 10/	9/6 Time Completed: 18 32	1610551,1610566
Additional preserve	vation and/or verifi	cation (as needed)	BrCI LIMS ID: 1605634
Technician:	Date:	Time Completed:	Discussion 11 - 222 d
Technician:	Date:	Time Completed:	Cal. Date: 10/19/16
			Additional preservation (as no de la

Sample ID	Sample Volume (mL)	Reagent added (mL)	Oxidized? Y/N	Oxidized? Y/N	Reagent added	Oxidized?
1610551-01A	300	3.00	W		(1112)	1/N
1610551-02A	300	3.00	N			
1610551-03A	300	3.00	n			
1610551-04A	300	3,00 "	1 W			
1610551-05B	20	20	W			
1610551-80 ACS	300	3.00	w			
1610566-01B	600	6.00	In			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
1610566-038	600	6.00	ist			
1610566-058	600	6.00	In			
1610566-07B	600	6.00	N			
1610566-09B	600	6.00	Tw			
610566-118	600	6,00	N			
1610566-13B	600	6,00	IN			
610566-153	600	6,00	h			
610566-028	600	6.00	1			
610566-048	600	6.00	The			
610566-068	600	6.00	n			
610566-088	600	6,00	The			
610566-108	600	6.00	h			
610566-12B	600	6.00	Yn			
610566-141B	600	6.00	In			
610566-163	600	6.00	WO			
610566-17A	600	6.00	IN			
610566-18A	300	3.00	w		,	
			1			
	CSP	10/19/16				
Vidation with BrClin and	6 11 11					

Oxidation with BrCl is confirmed by a yellow color change of the sample and/or a purple color change in KI starch paper.

Rev awad

Comments:

Eurofins Frontier Global Sciences / THg Preservation / LOG-PR-010.02 / Effective: Sept. 26, 2013 / QA2016-155 / Page 10 of Page 66 of 290

Initial preservation and/or Technician:M C Additional preservation ar	verification Date: <u>11/4/16</u> nd/or verification (Time Completed:	7:20	Work Or <u>lott</u> BrCl LIN	rders; 16 11 18 4 (6/1/50, 16) m (1/4/16 As ID: A. 160	6163
Technician: [Date:	Time Completed: _	· · · · · · · · · · · · · · · · · · ·	Pipette Cal. Dat	SN: MORLLON te: MORLLON	
Technician: [Date:	Time completed.		Additio	nal preservation (as	needed)
Sample ID	Sample Volume (mL)	Reagent added (mL)	Oxidized? Y / N	Oxidized? Y / N	Reagent added (mL)	Oxidized Y / N
1611148-15A	300	3.00	Y			
16/115 - 07A	300	3.00	Y			
1611152 11-06A	125	1.25	4			
1611: 01 - D2 R	.125	1.25	Ĭ,			
141149-011	570	9.CO	Y			
161444		LMUIA	No		0000	
16/15: UIA	570	5.00	N	N_	20.0	
						\square
						1
						-
						-
				\swarrow		
						-
			1		-	
				./		
		lin	1114h	0		
		1				
				-		-
	-				color change in KI st	arch papei
Oxidation with BrCl is	confirmed by a yell	ow color change of	the sample ar	nd/or a purple		1 1
se ici	114R-1C-A	und 11115	71-67A	are	prestria nel h	unle 1

2600.2

PREPARATION BENCH SHEET

F611341

11/14/16 DM

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: AFS - EPA 1631E BrCl Oxidation

PRASA

Prepared: 11/14/2016

Lab Number	Sample ID and Source Sample	Initial (mL)	Final (mL)	Spike1 ID	μl Spikel	Spike2 ID	μl Spike2	Extraction Comments
F611341-BLK1	Blank	100	101					X
F611341-BLK2	Blank	100	101					1×
F611341-BLK3	Blank	100	101					IX
F611341-BS1	LCS	,0 0 1 ^{C2}	50.5 101.	104715	100			X
F611341-BS2	LCS	۶ ۲ 00	50.5101	1604715	100			2% NOCI IX
F611341-BSD1	LCS Dup	⁵⁰ 100	59.5	1604715	100			1×
F611341-BSD2	LCS Dup	50 100	50.5 101	1604715	001			2% NOCI IX
F611341-DUP1	Duplicate Keloses	100	101					X
F611341-MS1	Matrix Spike (610565.05	100	101	1605271	125			X
F611341-MSD1	Matrix Spike Dup 1610565.05	100	101	160 5271	125			1×

Standard ID(s): Description: Expiration:

LCVI - CALI

1504687

ILOCIC3

1602941

1606531

F611341

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: AFS - EPA 1631E BrCl Oxidation

PRASA

			1	1	1		T	
Lab Number	Sample ID	Initial (mL)	Final (mL)	QC Sample	Sample Specs.	Raw Data	Sample Comments	Analysis Comments
1610565-05	Q34079 A4-50	100	101	-	-	-		١X
1610565-06	Q34084 A4-90	100	101	-	Ξ	-		1X
1610565-07	Q34090 A5-10	100	101	-	-	-		IX
1610565-08	Q34095FD3 A5-10	100	101	-	-	-		1×
1610565-09	Q34100 A5-50	100	101	1		-		1X
1610565-10	Q34105 A5-90	100	101	-	-	-		IX
1610565-11	Q34127EB2 FIELDQC	100	101	~	-	-		IX

200-2 11/14/16 DM

Prepared: 11/14/2016

Initial preservation and/or	verificatio
-----------------------------	-------------

Technician: Am Date: Way Time Completed: 17:07

Work Orders: 1410 565

Additional preservation and/or verification (as needed)

Technician: _____ Date: _____ Time Completed: _____ Technician: ______ Date: _____ Time Completed: _____

BrCl LIMS ID:	10	03634
Pipette SN: _	m	U32229
Cal. Date:	10/1	9/16

REV

Page 70 of 290

		r		Addition	nal preservation (as	needed)
Sample ID	Sample Volume (mL)	Reagent added (mL)	Oxidized? Y / N	Oxidized? Y / N	Reagent added (mL)	Oxidized?
1010565-01A	300	3,00	V			
1610565-02A	300	3,00	N,			
1610569-03A	300	3,00	U,			
16105105-04A	300	3.00	ΙY			-
1610565-05A	300	3.00	Y			
1610565-01eA	300	3.00	Ŷ			
1010565-07A	300	3.00	V			
1410505-087	300	3.00	Y			
1610565-09A	300	3,00	Ý			
[610565-107A	300	3.00	Y			
1610505-LIA	300	3,00	Y			
<u>~</u>						~
۵۹. 			ANDA			
			10/20/10			
)

Oxidation with BrCl is confirmed by a yellow color change of the sample and/or a purple color change in KI starch paper.

Comments:

Peer Review Check List for THg by 2600 CV-AFS (SOP2822) 2016 Rev 1 (04/1/2016)

Analyst:	DON MORAN	Sequence(s) #:	6K14016, 6K14017
Reviewer:	MIS/16	Dataset ID(s):	THG26002-161114-1
Date:	11/14/2016	WO (s) #	VAPIOUS
Batch #(s):	F611343, F611342, F611341		VARIOUS

Select the correct preparation method.

Analyte	Prep Method		Matrix
П тнд	EFAFS-T-AFS-SOP2985	FSTM Trap 70:30 Digest	Air/Gas
П ТНд	EFAFS-T-AFS-SOP2807	Modified Cold Aqua Regia	Sed/Soil
П Тнд	EFAFS-T-AFS-SOP2821	Shared Bomb- HF/HNO3/HCI Digest	Sed/Soil
П ТНд	EFTM-T-TM-SOP2825	Nitric Acid Oven Bomb	Sed/Soil
П тну	EFAFS-T-AFS-SOP2795	70:30 Digest	Tissue
П Тнд	EFAFS-T-AFS-SOP2800	KCI Trap BrCI Oxidation	Air/Gas
ТНд ТНд	EFTM-T-TM-SOP2837	Shared Nitric	Tissue
🗹 тнд	EFSR-P-SP-SOP2796	BrCI Oxidation	Water
Hg0	NA	NA	Water
Inorg Hg	NA	NA	Water

	Analyst	Initials: DM	Reviewer	Bo	~	
1. Compare SampleID w	ith Benchsheet/Sequence/Raw Data (Have all samples b	een imported?)	YES	NO		A
2. Check for transcription	errors from Excel spreadsheet (or Prep Benchsheet)/Ra	aw data	V YES			
(a) On raw data (instru	iment print-out), does correct file (dataset ID#) name app	ear in description?	YES			
Naming convention	n: THg26001-yymmdd-1 or THg26002-yymmdd-1			2		
(b) Check 5% of trans	cription from Instrument print-out and Excel file		YES	□ NO		
Compare the "Dilut	e" and "Peak (raw)" columns to "Dilution" and "Uncorrect	ed Result" in Excel		_		
(c) Check standards 8	reagents in sequence & bench sheet for correct usage (expiries)	YES			
(d) Check and compar	e masses (review prep benchsheet)	expando).				
(e) Check & compare	nitial & final volumes		YES			
(f) Do aliquots and dilu	tions written on benchsheet match those in Excel?		YES			5
50 ml / aliquot = Exc	cel dilution value					
(g) Is the sequence #,	analyst, date, and instrument # on the QC page?		YES			
(h) Is the analysis state	us correct? (analyzed/initial review/reviewed)		YES			
(i) Original prep bench	sheet added to data package?		YES			
(j) Benchsheet prep da	te MUST match actual prep date (check if re-shot vs re-	extract)	YES			
3. High QA?	WO#(s)/Client(s):	and doty				
4. Client specific QC? (if	Yes, refer to Project Notes/LIMS)					
(a) Have the QC requir	ements been met for all WO#s?					F
(b) Prep blanks correct	ions/assigned properly					
5a. 20 or fewer samples i	n batch?		[✓] YES			
(i) 3 PBs, 1 LCS(or BS), 1 LCSD(or BSD), 1 DUP/Batch 1 MS/MSD (or AS/ASD	V/40	[✓] YES	NO NO		0
(ii) 1 CCV and 1 CCB e	verv 10 analytical runs?	/10 samples?	YES	NO NO		9
			✓ YES	NO NO		-

Page 7	2 of	290
--------	------	-----

Peer Review	Check List fo	or THa by 260	CV-AFS	(SOP2822)	2016 Rev 1	(04/1/2016)
	Real to real sector and the sector of the			LOCI LOLL	ZUIU KEV J	104/1/2010

Analyst:	DON MORAN	Sequence(s) #: 6K14016, 6K14017		- <u> </u>		
Reviewer:	0 Bec 145/1	Dataset ID(s): THG26002-161114-1	······		ų	
Date:	11/14/2016	WO (s) #: VARIOUS			- Y	1 - 1 - 1 - 1 - 1
Batch #(s):	<u>F611343, F611342, F611341</u>	0			£	
		Analyst Initials	Reviewer Initials	1	×	<i>m</i> g =
5b. Has the B/	/C section data been uploaded?		YES	NO NO	✓ N/A	9
QA/QC Data (Checked					
6. RSD CF (≤	15%)		PASS	FAIL		R
Comments	8			_		
7. The calibrat Comments:	ion curve included a minimum of 5 Standards		✓ YES	NO		P
8. 1st Calibrati	ion Standard % Recoveries EPA 1631E (75-125%	ó)	PASS	FAIL		
9. ICV and CC	V % Recoveries EPA 1631E (77-123%)	2 	✓ PASS	FAIL		
Comments:						
10. Do all calib	pration points pass acceptance criteria?		YES			
Comments:			AUSSIA			
11.Are qualifie	rs consistant with the data review flowcharts?		V YES	NO NO	□ N/A	P
Comments	:					
12. Explain any	y items on the failed data report from Element					P
Comments:	NONE					,
13. Are the indiv	vidual Preparation Blanks < PQL or <2.2xMDL for WI (refer to appropriate prep method PQL list)	PASS	FAIL		P
(a) If not < F	PQL or <2.2xMDL for WI, note which PB(s) are ab	ove control limit:				
(b) Is the me	ean PB < PQL or <2.2xMDL for WI (for appropriat	e qualification)?	✓ YES	NO NO		B
(c) Was a B	rCl Blank analyzed for each preservation level?		VES	NO		P
(d) Are Prep	paration Blanks summarized on QC page?		VES			
14. Filtration B	lank Prepared (if yes, use FB qualifier)		✓ YES			0
(a) Filtration	Blank prep date same as associated samples' pr	ep date	VES	NO NO	□ N/A	P
(b) Filtration	Blank absolute value < PQL or <2.2xMDL for WI		VES	NO NO	□ N/A	
15. IBLs (3 min Comments:	nimum) individually < 0.50 ng/L, mean < 0.25 ng/	/L and STD of 0.10 ng/L?	PASS	FAIL		2
16. CCBs individ	dually < 0.50 ng/L or 2.2 x MDL for WI?		PASS	FAIL		
Comments:						
17. Have Total	Solids been applied? (If NO, please ensure that t	hey are done or nearly done)	T YES		V N/A	
18. Is the corre	ect 'Source' designated for MD/MS/MSD?		VES			
19. For digeste	d preps: was there a spike witness signature & da	ate on the prep bench sheet?	YES		✓ N/A	

Analyst:	DON MORAN	Sequence(s) #	6K14016 6K14017			/	
Reviewer:	O Bree City IVISIK	Dataset ID(s):	THG26002-161114-1				
Date:	11/14/2016	WO (s) #:	VARIOUS				
Batch #(s):	F611343, F611342, F611341		0	of the method			
		Analyst Initials	DM	Reviewer Initials	B	C	
20. MS/MSD S Comments:	piked at least 1-5 X ambient or 5x MRL (whichever is hig	her) ?		V YES	NO		7
21. Are all sam Comments:	ples within instrument calibration range? (or at minimum	dilution size)		PASS	FAIL	9	
22. Are the sar Comments:	nples run at the correct dilution level for the method?			V YES	NO NO		/
23. Dissolved < Comments:	< Total (if applicable)			VES	NO NO	□ N/A	P
24. Effluent < 1 Comments:	influent (visually confirm if needed)			✓ YES	NO NO	□ N/A	Ð
25. Are re-runs	noted with reason?	and the second		YES		V/A	P
Comments:							
26. FSTM Data the FSTM A (in Comments:	sets: Check to ensure the 'Response' & 'Initial Result' co sequence) & B/C (in batch) traps?	lumns match in b	oth the Excel dataset & LIMS for	YES	NO NO	✓ N/A	G
27. Is the B tra	p <5% A Traps			YES	NO	✓ N/A	R
Comments:							
28. Are spiked	trap recoveries75-125% of true value?			YES	NO NO	✓ N/A	P
Comments:							
29.Have non-re Comments:	eportable samples been imported into LIMS and clicked t	o non-reportable?		YES	NO NO	✓ N/A	
30. Have re-ext	racts been created for non-reportable samples?			T YES			
31. Are there an office before sca	ny HIGH QA projects within the data? If so, place data pa anning.	ackage in QA		YES		☑ N/A	
32. Does the da	ta set need scanning?			YES			P
33. Does the da	taset have an LOQ/LOQ or DOC?			YES			
34. Water samp	les: has the preservation log been included in dataset for	final volume veri	fication?	VES			
35. Water samp	les-is the final volume correct in the sequence?	intervention of the second		YES			
Files located a	t: \\Cuprum\gen_admin\Quality Assurance\Training N	aster\DOCs		2794			
36. Date of anal	yst IDOC/CDOC: 1/18/2016		C/CDOC within last 12 months of	VEC			R
37. Date of anal	yst's SOP reading for method: 5/20/2016	iDC	Current SOP sources and the	VEC			
38. Date of LOD	6/15/2016	and the second	OD within lost 2 month of	YES			
39. Date of LOG	6/15/2016		LOO within last 3 months?	YES			A
Data can not be	e reported without a surrent IDOC(ODOO LOD		eog munn last 5 months?				

Peer Review Check List for THg by 2600 CV-AFS (SOP2822) 2016 Rev 1 (04/1/2016)

Jata can not be reported without a current IDOC/CDOC, LOD or LOQ.

	Peer Revie	ew Check List	for THg by 26	00 CV-AFS (SOP2822) 201	6 Rev 1 (04/1/2	2016)	
Analyst: Reviewer: Date:	DON-MORAN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	s s v	_Sequence(s) #: _Dataset ID(s): WO (s) #:	6K14016, 6K14017 THG26002-161114-1 VARIOUS				
Batch #(s):	F611343, F611342, F611341	50.		0				
40. Peer Revi	ewer's comments (use Peer Review Che	cklist Additional C	omments form if n	ecessary):	DM	Bc		

Additional Page (s)? YES

MMHg27001-161116-1 Waters

RN ng/L

🔹 eurofins

Frontier Global Sciences

Analysis Datasheet for Methyl Mercury in Waters

Date of Analysis: November 16, 2016	Analyst:
Instrument #: Hg2700-1	Units
LIMS Sequence #: 6K17015	

Calibration Statistics:

				Uncorrected	l and the second se	1	
				Response	Corrected Peak	Corrected	
LabNumber	n	True Val	Агеа	Factor	Height	Response Factor	% Recovery
SEQ-CAL1	1	0.05 ng/L	25.03 units	500.68	25.03 units	500.68	104.2 %Rec
SEQ-CAL2	1	0.20 ng/L	96.58 units	482.89	96.58 units	482.89	100.5 %Rec
SEQ-CAL3	1	1.00 ng/L	468.92 units	468.92	468.92 units	468.92	97.6 %Rec
SEQ-CAL4	1	2.00 ng/L	870.94 units	435.47	870.94 units	435.47	90.7 %Rec
SEQ-CAL5	1	4.00 ng/L	2053.72 units	513.43	2053.72 units	513.43	106.9 %Rec
SEQ-CAL6	0						
SEQ-CAL7	0						
SEQ-CAL8	0						
SEQ-CAL9	0						
Corr. Mean RF 480.28	Corr. St Dev RF +/- 30.24	Corr. RSD CF 6.3% RSD	Uncorr. Mean RF 480.28	Eff Factor 0.8046			
Blanks:							
LabNumber	n	Mean	Std Dev	Mean (ng/L)	Std Dev (ng/L)		
SEQ-IBL	1	0.00 units		0.00 ng/L	#VALUE!		

Preparation Blanks

Sample Type	Batch ID	n	Меал	Std Dev
BLK	1	3	0.015 ng/L	±0.005
BLK	2	0	0.000 ng/L	
BLK	3	0	0.000 ng/L	
BLK	4	0	0.000 ng/L	
BLK	5	0	0.000 ng/L	

QUALITY ASSURANCE PEER - REVIEWED INITIALS: Drw 11.17.16

Page 75 of 290

MDN Only

NA

NA

NA

ΝA

SEQ-CAL1 SEQ-CAL2 SEQ-CAL3 SEQ-CAL4 SEQ-CAL5 SEQ-CAL6

SEQ-CAL7

SEQ-CAL8

SEQ-CAL9

SEQ-ICV/CCV Acetate Buffer Ethylating Agent

1999		Sample	1			500		Uncorrected		No PB	4161014	N THEN YES A DAMAGE AN	18 8 10 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	Na sa	
Instrument	Analyst	Туре	LabNumber	Dilution	Analyzed	FileID	Run End	Response	Batch ID	Correction?	RESP	InitialDocult	EinsiDocult	Testition II for the	6
Hg2700-1	RN	CAL	SEQ-IBL1 -	1	11/16/16 7:08	17940-1.RAW	7:08	0.00	0		0.0 -	B 000	C 000	Initiationits	Comments
Hg2700-1	RN	CAL	SEQ-CAL1	1	11/16/16 7:18	17941-1.RAW	7:18	25.03	3		25.0*	0.000	0.000	ng/L	
Hg2700-1	RN	CAL	SEQ-CAL2	1	11/16/16 7:29	17942-1.RAW	7:29	96.58	8		05.6	0.032	0.052	ng/L	
Hg2700-1	RN	CAL	SEQ-CAL3	1	11/16/16 7:39	17943-1.RAW	7:39	468 92			469.0*	0.201	0.201	ng/L	
Hg2700-1	RN	CAL	SEQ-CAL4 -	1	11/16/16 7:50	17944-1.RAW	7:50	870 94	1		900.9	0.976	0.976	ng/L	
Hg2700-1	RN	CAL	SEQ-CAL5 +	1	11/16/16 8:00	17945-1.RAW	8.00	2053 77			070.9 -	1.815	1.813	ng/L	
Hg2700-1	RN	CAL	SEQ-ICV1 -	1	11/16/16 8:11	17946-1.RAW	8.11	20557.72	<u> </u>		2053.7 -	4.2/6	4.276	ng/L	
Hg2700-1	RN	CAL	SEQ-ICB1 -	1	11/16/16 8:21	17947-1 PAW	8.71	2.54.05			254.7*	0.530	0.530	ng/L	
Hg2700-1	RN	BLK	-F611346-BLK1_	1 25	11/16/16 8:37	17048-1 DAW	9,21		2		5.0 •	0.010	0.010	ng/L	······
Ha2700-1	RN	BLK	-F611346-BLK2-	1 25	11/16/16 8:47	17040.1 DAW	0.32	0.19	1		6.2	0.016	0.020	ng/L	
Hq2700-1	RN	BLK	F611346-BI K3	1.25	11/16/16 9:57	17050-1 DAW	0:42	4.49	1		4.4 -	0.011	0.014	ng/L	
Ho2700-1	RN	SAM	-F611346-BS1 -	1.2.5	11/16/16 0:55	17930-1.KAW	8:53		1		3.3 -	0.009	0.011	ng/L	
Hg2700-1	RN	SAM	1F611346-BSD1=	1.45	11/10/10 9:03	17951-1, KAW	9:03	427.86	1		427.9 -	1.095	1.369	ng/L	
Ho2700-1	PN	SAM	- F611346-DUD1=	1.25	11/10/10 9:14	17952-1.RAW	9:14	443.69	1		443.7 -	1.136	1.420	ng/L	
Ho2700-1	DAI	CAM	5611246 ME1 -	1.25	11/16/16 9:24	17953 I.RAW	9:24	46.99	1		47.0 -	0.110	0.137	na/L	
Hg2700-1	DN	CAM	#F011340-M51	1.25	11/16/16 9:35	17954-1.RAW	9:35	502.54	1		502.5 -	1.288	1.611	ng/L	
Ho2700-1		CAM		1.25	11/16/16 9:45	17955-1.RAW	9:45	482.91	1		482.9.	1.238	1.547	na/1	
H=1700-1	- RN	SAM	-F011340-M52 .	1.25	11/16/16 9:56	17956-1.RAW	9:56	467.59	1		467.6 -	1.198	1.497	na/l	
H92700-1	<u>RN</u>	SAM	+F611346-MSD2 -	1,25	11/16/16 10:06	17957-1.RAW	10:06	532.55	1		532.6-	1.366	1 708	ng/l	
Hg2700-1	RN		SEQ-CCV1_	1	11/16/16 10:17	17958-1.RAW	10:17	274.14			274.1 -	0.571	0.571	no/l	
Hg2/00-1	RN	CAL	SEQ-CCB1 -	1	11/16/16 10:27	17959-1.RAW	10:27	5.71			5.7 -	0.012	0.012	ng/c	
Hg2700-1	RN	SAM	+1610567-08 -	1.25	11/16/16 10:38	17960-1.RAW	10:38	4.86	1		4.9 •	0.001	0.011	ng/L	
Hg2/00-1	RN	SAM	- 1610609-04 -	1.25	11/16/16 10:48	17961-1.RAW	10:48	57.34	1		57.3-	0.136	0.001		
Hg2700-1	RN	SAM	1610609-05 -	1.25	11/16/16 10:59	17962-1.RAW	10:59	23.19	1		23.2 -	0.130	0.170	ng/L	
Hg2700-1	RN	SAM	1610609-06 -	1.25	11/16/16 11:10	17963-1.RAW	11:10	25.55	1		25.6 -	0.010	0.000		
Hg2700-1	RN	SAM	1610609-07	1.25	11/16/16 11:20	17964-1.RAW	11:20	27.46	1		27.5	0.059	0.000	<u>ng/L</u>	
Hg2700-1	RN	SAM	1610609-08	1.25	11/16/16 11:31	17965-1.RAW	11:31	4.18	1		47.5	-0.001	0.0/4	ng/L	
Hg2700-1	RN	SAM .	1610610-05 -	1.25	11/16/16 11:41	17966-1.RAW	11:41	30.96			71 0 .	0.001	-0.002	ng/L	
Hg2700-1	RN	SAM	+1610617-05-	1.25	11/16/16 11:52	17967-1.RAW	11:52	3 95	~îi~		30	0.000	0.085	ng/L	
Hg2700-1	RN	SAM	1610618-11	1.25	11/16/16 12:02	17968-1.RAW	12:02	72 15	·····	*	3.9 *	-0.002	-0.002	ng/L	
Hg2700-1	RN	SAM	1610860-01 -	1.25	11/16/16 12:13	17969-1.RAW	12.13	46.25			/2.1-	0.175	0.218	ng/L	
Hg2700-1	RN	CAL	SEQ-CCV2 .	1	11/16/16 12:23	17970-1 RAW	12:23	200.00			40.2	0.108	0.135	ng/L	
Hg2700-1	RN	CAL	SEQ-CCB2 -	1	11/16/16 12:34	17971-1 RAW	12:23	300.05			300.1	0.625	0.625	ng/L	
Hg2700-1	RN	SAM •	1610860-02 -	1.25	11/16/16 12:44	17977-1 PAW	17:44	41.65			4.6 ~	0.009	0.009	ng/l.	
Hg2700-1	RN	SAM -	1610860-03 .	1.25	11/16/16 12:55	17073-1 DAW	12.77	41.00			41.7 -	0.096	0.120	ng/L	- 14
Hq2700-1	RN	SAM -	1610860-04	1 25	11/16/16 13:05	17074_1 DAW	12:55	39.42			59.4 •	0.142	0.177	ng/L	
Ha2700-1	RN	SAM •	1610860-05	1 25	11/16/16 12:05	17075 1 DAW	12:02:	38.58	<u>1</u>		38.6	0.088	0.110	ng/L	
Ha2700-1	RN	SAM ~	1610860-06	1.25	11/16/16 13:10	17975 1 DAW	13:16	20.24	1		20.2 -	0.040	0.050	ng/L	
Hg2700-1	RN	SAM .	1610860-07	1.25	11/10/10 13.20	17077 1.RAW	13:26	11.40	1		11.4	0.017	0.022	ng/L	
Ho2700-1	RN	SAM -	1610860-08 -	1.25	11/10/10 13:37	17977-1.RAW	13:3/	10.16	1		10.2 -	0.014	0.018	ng/L	
Ho2700-1	PN	CAM N	1610860-00 -	1.25	11/10/10 13:4/	17978-1.KAW	13:4/	10.46			10.5	0.015	0.019	ng/L	
Hg2700-1	DN	SAM N	1610860-03 -	1.25	11/16/16 13:58	17979-1.RAW	13:58	52.05	1	l	52.1-	0.123	0.153	ng/L	
Ho2700-1		CAM	1610960-11 /	1.25	11/16/16 14:08	17980-1.RAW	14:08	21.49	1		21.5 -	0.044	0.054	ng/L	
Ho2700-1	DN	SAPI 4	101000-11	1.25	11/16/16 14:19	1/981-1.RAW	14:19	43.87	1		43.9-	0.101	0.127	ne/L	
Ha2700-1				-+	11/16/16 14:29	17982-1.RAW	14:29	277.41			277.4-	0.578	0.578	ng/L	
1192700-1	KN		JEQ-CLB3		11/16/16 14:40	17983-1.RAW	14:40	1,74	i .		1.7 ~	0.004	0.004	00/3	

MethylMercury EPA1630	Operati RN Workst MMHo2	BlankSub: CalibFactor:	Calib Eqn: Status:	Caliblank error: Zaro Par	Run Date: :	######## 6:41:40	Blank SD:						
	Methoc 2010-01	7001-161116-1	R ² :	Calculate Circl. 200 PE2	CalibAnalyt	0:41:40	CF SD:						
Sample/ID	Location Rinse	Diute Blank	ConcHg0(pt	ConcHeHg[ConcHg2(pr	ConcPringe #	ec%	OF RSD%; QA Raw	Data Ru	mend Peakingo (R	iv PeakMelig (R. Peakiki2/Raw)	PeakPrillo/Ray Control (etf)	Race	RunCount
Cléan							1793	8-1,RAW	0.0	0 0.00 3.19	0.00 cleandry	OK	1
SEO-1811 -	A2						1793	9-1.RAW	35.1060606	1 0.879924242 2.323792614	0 psample10	OK .	1
SEQ-CALL -	A3	1					1/94	KI-1.RAW	59.3635653	4 0-15.30797822	0 psample10	0K	1
SEQ-CAL2 -	A4	1					1794	2-1.RAW	74.0433001	9 25.03923295+ 18.231/2398	0 psample10	OK OK	1
SEQ-CAL3	A5	1					1794	3-1.RAW	162.826754	5 468.9246212 78.46870265	0 psample10	ĆT.	1
SEQ-CAL4 -	A6	1					1794	4-1.RAW	316.660753	4 870.9390152 412.3764205	0 psample10	cr	1
SEQ-CALS	A/ AS	1					1794	5-1.RAW	555.963347	8 2053.721378-305.7969697	0 psample10	CT	1
SEO-JCB1	A9	1					1794	6-1.RAW	363.035913	8 254.6946733 170.8057055	0 psample10	СТ	1
F611346-8LK1 -	A10	1.25					1794	7-1.RAW	59.955.525 67.4739636	4.961363635 -23.08214962	0 psample10	CT .	1
F611346-BLK2 •	A11	1.25					1794	9-1.RAW	50.5858776	4.443039773#21.16581439	0 psample10	OK	1
F611346-BLK3.	A12	1.25					1795	0-1.RAW	43.4407670	3.329782197 - 21.77589962	0 psample10	OK	1
P611346-851	A1.3	1.25					1795	1-1.RAW	65.2828288	427.8597538-28.26879735	0 psample10	OK	1
F611346-DUP1=	A14 A15	1.25					1795	2-1.RAW	54.1537878	443.694768* 26.55085004	0 psample10	a	1
F611346-MS1 =	A16	1.25					1795.	3-1.KAW	41.7865056	46.99157197*170.1601799	0 psample10	OK	1
F611346-MSD1*	A17	1.25					1795	5-1.RAW	54 61 226 326	497 91/327 - 209 7421949	0 psample10	G	1
F611346-MS2 🖊	A18	1.25					17956	5-1.RAW	56.02308239	467,5923769 - 262,8880539	0 psample10	ä	1
F611346-MSD2*	A19	1.25					1795	7-1.RAW	48.51278409	532.5524148-153.0207386	0 psample10	ci ci	1
SEQ-CCV1 =	AZD	1					17958	3-1.RAW	429.3654356	274.1370739-208.1608428	0 psample10	ст	1
1610567-08	R1	1 25					17959	-1.RAW	28.66538826	5.708236536 27.11299716	0 psample10	OK	1
1610509-04 -	82	1.25					1796	J-1.KAW	32.71666667	4.855871212 27.26770833	0 psample10	OK	1
1610609-05 🖝	63	1.25					17962	-1.RAW	22.82788825	23.18787879-43.03080019	U psampietu 0. psampietu	OK	1
1610609-06 -	B4	1.25					17963	-1,RAW	30.68451705	25.55407197=100.4599432	0 psample10	OK OK	1
1610609-07 +	B5	1.25					17964	-1.RAW	23.35350379	27.46126894+99.01747159	0 psample10	OK	1
1010009-08	85	1.25					17965	-1.RAW	23.3859375	4.161486742 96.59517045	0 psampie10	OK	1
1610617-05 +	68	1.25					17966	-1.RAW	29.44037446	30.959375-42.84450227	0 psample10	OK	1
1510518-11	89	1.25					17967	-LINAVY	18.72457386	3.947964015 + 25.04734848	0 psample10	OK	1
1610860-01	810	1.25					17969	-1.RAW	27.56463068	46 2451 7045 113 9151515	0 psample10	OK CT	1
SEQ-CCV2 -	B11	1					17970	-1.RAW	182.7763021	300.0922348+ 232.1684185	0 psample10	CT CT	1
SEQ-CCB2 *	B12 B12	1					17971	-1.RAW	21.55189394	4.550260417 27.166666667	0 psample10	OK	1
1510860-03 #	813 Ata	1.25					17972	-1.RAW	25.39281025	41.66455966-123.1595518	0 psample10	a	1
1610850-04 -	815	1.25					17973	-1.KAW	34.05877841	59.41515152 -251.1223179	0 psample10	ст	1
1610860-05 +	816	1.25					17975	-1.RAW	19 89526515	30.30203903=118.0827052 20.24176135=34.06822012	0 psamplet0	OK	1
1610860-06 -	B17	1.25					17976	1.RAW	19.10598958	11.40492424-56.11988636	0 psample10	CT CT	1
1610850-07	B18	1.25					17977	1.RAW	16.60004735	10.16425189-28.86988636	0 psampie10	a	i
1010800-08-	B19 B20	1.25					17978-	1.RAW	13.21027462	10.45731534-28.03705019	0 psample10	OK	1
1610960-10-	B21	1.25					179/9-	1 PAN	17.75698934	52.0532197+48.66950758	0 psample10	OK	1
1610860-11 **	C1	1.25					17981-	1.RAW	19.48314394	43 86922349_110 2772055	0 psample10	OK	1
SEQ-CCV3 + G	C2	1					17982-	1.RAW	359,979072	277.40625 = 220.8383759	0 psample10 0 psample10	ίπ.	1
SEQ-CCB3 (C3	1					17983-	1.RAW	17.83551136	1.743513258-19.61624053	0 psample10	ÖK	ĩ
F611293-BEK4 (14 ne	1					17984-	1.RAW	50.39211648	26.61273674-1110.351276	0 psample10	CT	1
F611293-BLK5 + (26	1					17985-	1.RAW	38,70875947	29.71846591+564.7794015	0 psample10	¢1	1
1610785-01RE1- (.7	ī					17987-	1.RAW	43 03607955	30.90/2916/ 378.893/5	0 psample10	OK	1
1610785-02RE1 - 0	38	1					17988-	1.RAW	38.82282197	444.3370739+514.4182348	0 psample10 0 osample10	ci m	1
1610785-03RE1 - 0	9	1					17989-	1.RAW	34.04500559	366.2233537 271.7853693	0 psample10	ÖK	1
1610/85-04RE1= (.10	1					17990-	1.RAW	47.02627841	358.84375 + 537.5889201	0 psample10	cr	1
1610786-02RF1 + C	12	+					17991-	1.RAW	84.66055293	551.8766572=1128.740272	0 psampie10	CT	1
1610786-03RE1 - C	13	1					1/592*	LKAW	51.36837121	320.8015152 382.3781872	0 psample10	CT	1
SEQ-CCV4 - C	14	1					17994	1.RAW	315.8549242	288 8528883= 235 6364923	0 psample10	CT	1
SEQ-CCB4- C	15	1					17995-1	L.RAW	26.87693982	5.000804924+24.88409091	D psample10	OK	1
1610828-02RE1 - A	1	1					17996-1	LRAW	163.6482008	456.7735322=1934.339985	0 psample10	cr	1
1610828-049F1# A	3	1					17997-1	RAW	265.5237636	112.7669981 • 3563.24794	0 psample10	ст	1
1610828-05RE1 + A	4	1					17998-1	L.RAW	366.1650765	756.5885417+3474.860496	0 psample10	СT	1
1610786-01RE1 - A	5	10					18000-1	RAW	227.2193151 .	02.5937737#1409.840017	0 psample10	CT .	1
1610786-04RE1 *A	5	10					18001-1	RAW	76.66776006	346.5073864*58.35033144	0 psample10 0 psample10	OK	1
1610786-05RE1 + A	7	10					18002-1	RAW	75.75014205	44.7893466* 94.7087358	0 psample10	cī.	1
1010/86-06RE1 # A	8 4	10					18003-1	RAW	53.86505682	250.4061316- 35.15625	0 psample10	ок	1
1610786-08RE1 #4	- 10	10					18004-1	RAW	84.40487689	1307.25539 298.3414145	0 psample10	ст	1
SEQ-CCV5 A	11	1					18005-1	RAM RAM	73.05850795 1	003.335606+315.5305398	0 psample10	ок	1
SEQ-CCB5 - A	12	1					18007-1	RAW	40.43412170 #	23.3373190#255.2302232 195430871# 29 78304074	U psample10	CT OY	1
1610786-09RE1 = A	13	1					18008-1	RAW	56.3710575	78.5386837*378,4912372	0 psample10	â	1
1610786-10RE1 = A	14	10					18009-1	.RAW	33.85842803	225.777178 75.39996146	0 psample10	cī	1
SEC-CCV6- A	15	10					16010-1	.RAW	36.51420455	180.73125 -58.13948864	0 psample10	OK	ī
SEQ-CCB6- AI	17	1					18011-1	.KAW	326.0609196 2	95.4031723 * 252.354072	0 psample10	ст	1
							10012-1		×2-73.00 23.28//8/93 3	.034/2330 21.304/2338	v psample10	UK	1

MethylMercury EPA1630	 Operati RN Workst MMHg. Method 2010-0 Descrip MMHg. 	BlankSub: 27 CalibFactor: 28 R: 27001.161116.1	Calib Eqn: Status: R²:	Calblank error: Zero Po	Run Date: E: Run Time: CalibAnalyi	###### 6:41:4 te:	 Blank SD: Blank RSD%: CF SD: 							
Sample/ID	Location Rinse	Dilute Blank	ConcHabler	ConcMeHol ConcHo2/a		Doell	CF RSD%:							
Clean		22.5 24.9 10 10 10 10 10 10 10 10 10 10 10 10 10 			433.04.1131.113	NCL 70	17039-1 DAW	KUNENO 6.47.12	Peakingu (Ra	v PeakMeHg (R	: PeakHg2(Raw)	PeakPrHg(Ray Control (etf)	Flags	RunCount
WS	A1						17930-1 DAW	0:47:12	22 0020500		3.19	0.00 cleandry	OK	1
SEQ-IBL1	A2	1					17940-1 PAW	7-08-13	54 3970366	0.0/992424	2.323/9201	U psample10	OK	1
SEQ-CAL1	A3	1					17941-1 RAW	7.08.13	57 8407177	25 0269466	10.30/9/82	0 psample10	CT	1
SEQ-CAL2	A4	1					17947-1.RAW	7:29:14	64 8657107	25.0200400	27 7290202	0 psample10		1
SEQ-CAL3	A5	1					17943-1.RAW	7:39:45	134 459105	468 974671	78 4687027	0 psample10	CT 777	1
SEQ-CAL4	A6	1					17944-1.RAW	7:50:16	267.388377	870 939015	112 37642	6 psample10	ČT ČT	1
SEQ-CAL5	A7	1					17945-1.RAW	8:00:47	464.408558	2053.72138	305,79697	0 psample10	CT	1
SEQ-ICV1	A8	1					17946-1.RAW	8:11:18	301.252225	254.694673	170.805705	0 psample10	m	1
SEQ-ICB1	A9	1					17947-1.RAW	8:21:49	50.3351799	4.96136364	23.0821496		CT CT	1
F611346-BLK1	A10	1.25					17948-1.RAW	8:32:20	52.3853057	6.28645833	30.122964	0 psample10	CT CT	1
F611346-BLK2	A11	1.25					17949-1.RAW	8:42:50	40.5861977	4.44303977	21.1658144	0 psample10	CT	1
F611346-BLK3	A12	1.25					17950-1.RAW	8:53:21	35.0243134	3.3297822	21.7758996	0 psample10	ĊT.	1
F611346-B51	A13	1.25					17951-1.RAW	9:03:52	48.0301904	427.859754	28.2687973	0 psample10	Ċ	î
F611346-85D1	A14	1.25					17952-1.RAW	9:14:22	43.7939601	443.694768	26.55085	0 psample10	a	1
F611346-DUP1	A15	1.25					17953-1.RAW	9:24:53	37.9080241	46.8710701	170.16018	0 psample10	ст	1
F611346-MSI	A10	1.25					17954-1.RAW	9:35:24	47.1523135	502.537547	197.932217	0 psample10	ά	1
F611346-MSD1	A17	1.25					17955-1.RAW	9:45:54	43.190425	482.45857	208.742192	0 psample10	ст	1
F011340-MSZ	A18	1.25					17956-1.RAW	9:56:25	44.2211846	467.598722	262.888054	0 psample10	ст	1
F011340-M5U2	A19 A20	1.25					17957-1.RAW	10:06:56	33.6202765	532.552415	153.020739	0 psample10	ст	1
5EQ-CCV1	A20	1					17958-1.RAW	10:17:27	370.224572	274.120715	208.160843	0 psample10	CT	1
1610567-00	AZI B1	1					17959-1.RAW	10:27:57	25.0674479	5.70823864	27.1129972	0 psample10	a	1
1010507-08	ום	1.25					17960-1.RAW	10:38:28	26.9077178	4.90026042	27.2677083	0 psample10	cr	1
1610609-04	DZ D2	1.25					17961-1.RAW	10:48:59	26.3120265	57.3382576	73.9058239	0 psampie10	cr	1
1610609-05	DJ BA	1.25					17962-1.RAW	10:59:29	20.9416667	23.1579072	43.0308002	0 psample10	CT	1
1610609-00	BS BS	1.25					17963-1.RAW	11:10:00	24.9046165	25.554072	100.459943	0 psample10	cr	1
1610609-07	86	1.25					17964-1.RAW	11:20:31	19.5321023	27.4069839	99.0174716	0 psample10	OK	1
1610610-05	87	1.25					17965-1.RAW	11:31:01	19.7947053	4.18148674	96.5951705	0 psample10	OK	1
1610617-05	88	1 25					17966-1.RAW	11:41:32	25.6743883	30.959375	42.5000473	0 psampie10	ст	1
1610618-11	89	1 25					17967-1.KAW	11:52:03	15.8205019	3.94796402	25.0473485	0 psample10	ст	1
1610860-01	B10	1 25					17968-1.KAW	12:02:33	14.2010182	72.1484848	27.0556581	0 psample10	ст	1
SEO-CCV2	B11	1.25					1/909-1.KAW	12:13:04	20.7551847	46.246946	113.915152	0 psample10	OK	1
SEO-CCB2	B12	1					17970-1.KAW	12:23:35	159.424433	300.092235	232.168419	0 psample10	CT	1
1610860-02	B13	1.25					17072-1 DAM	12:34:05	14.6623899	4.55026042	27.1666667	0 psampie10	OK	1
1610860-03	B14	1.25					17072 1 DAM	12:44:30	18.1/48241	41.6645597	123.159552	0 psample10	CT	1
1610860-04	815	1.25					17974-1 DAW	12:55:07	27.7036826	59.4151515	251.122318	0 psample10	CT	1
1610860-05	B16	1.25					17075-1 0414	12:15:00	21.00/0549	38.5828598	118.10393	0 psample10	OK	1
1610860-06	B17	1.25					17976-1 PAW	13-76-20	13.0932292	20.2417014	34.0682292	0 psample10	OK	1
1610860-07	B18	1.25					17977-1 RAW	13:37:00	13 9135653	11.4049242	20.1198804	U psample10	OK	1
1610860-08	B19	1.25					17978-1 RAW	13-47-40	11 067661	10.1042319	20.000101	0 psample10	UK.	1
1610860-09	B20	1.25					17979-1.RAW	13-58-11	15 9176197	57 1366004	49 6605076	0 psampie10	OK	1
1610860-10	B21	1.25					17980-1.RAW	14:08:41	12.7492392	21 4893466	33 6032802	0 psample10		1
1610860-11	C1	1.25					17981-1.RAW	14:19:12	15.979214	43,8692235	110 273295	0 psample10	CT	1
SEQ-CCV3	C2	1					17982-1.RAW	14:29:43	327.931393	277.40625	220 838376	0 psample10	m	1
SEQ-CCB3	C3	1					17983-1.RAW	14:40:14	16.7536932	1.74436553	19 6162405	0 psample10	CT CT	1
F611293-BLK4	C4	1					17984-1.RAW	14:50:44	45.4457512	26.6127367	1110 35128	0 ocample10	сı ст	1
F611293-BLK5	C5	1					17985-1.RAW	15:01:15	34,747017	29.7184659	564.779401	0 psample10	ст (т	1
F611293-BLK6	C6	1					17986-1.RAW	15:11:46	20.6232481	30.2632576	178.89375	0 psample10	OK .	1
1610785-01RE1	C7	1					17987-1.RAW	15:22:16	39.7789773	389.192093	582.86777	0 psample10	ίπ.	1
1610785-02RE1	C8	1					17988-1.RAW	15:32:47	35.8000473	444.337074	514.418235	0 psample10	cr	1
1610785-03RE1	C9	1					17989-1.RAW	15:43:18	33.2765755	366.223354	271.785369	0 psample10	OK	1
1610785-04RE1	C10	1					17990-1.RAW	15:53:48	2.3122159	358.84375	537.58892	0 psample10	CT CT	- 1
1610828-01RE1	C11	1					17991-1.RAW	16:04:19	7.0689275	551.85 D	128.74027	0 psample10	cī	1
												,		

C12	1	17992-1.RAW	16:14:50	47.1529119	320.801515	382 378187	0 peample10	CT.	
C13	1	17993-t RAW	16-25-20	53 2754072	664 441146	407 212250			1
C14	1	17004.1 DAW	16.25.20	33127373727	200 052000	427.515552	U psampletu	UK	1
C15	1	1700F 1 DAW	10.35:51	2/5./9//01	288.852888	235.64/17	0 psample10	СТ	1
A1	1	1/395-1.KAW	10:40:22	22.0567398	5.00080492	24.8840909	0 psample10	OK	1
42		17996-1.RAW	16:56:52	146.617903	456.773532	1934.33999	0 psample10	CT	1
A2	1	17997-1.RAW	17:07:24	243.373914	412.726989	3663.24794	0 psample10	СТ	1
AS	1	17998-1.RAW	17:17:55	332.545562	756.588542	3474.99444	0 psample10	CT	1
A4	1	17999-1.RAW	17:28:26	208.026041	302.668963	1409,84002	0 nsample10	ČT.	1
A5	10	18000-1.RAW	17:38:56	81,9538352	133,166809	44 7790009	0 psample10	~	1
A6	10	18001-1 RAW	17.49.27	68 1176136	346 507386	59 2502214	0 psample10	Ci cr	1
A7	10	18002-1 DAW	17:50:50	67.0220460	544 200247	10.3303314	0 psampiero	CI	1
A8	10	10002-1.044	17.37.30	07.9336469	044./8934/	94.7087358	0 psample10	OK	1
49	10	100U3*1.XAW	18:10:29	47.2454072	250.406132	35.5773201	0 psample10	OK	1
A10	10	18004-1.KAW	18:20:59	74.9915567	1307.25535	298.341414	0 psample10	ςī	1
411	10	18005-1.RAW	18:31:30	65.3492898	1003.33561	315.53054	0 psample10	0K	1
AII	1	18006-1.RAW	18:42:01	310.796166	323.939915	253.230223	0 psample10	σ	1
A12	1	18007-1.RAW	18:52:32	37.0564394	6.09543087	29.7830492	0 osample10	ΩK	1
A13	1	18008-1.RAW	19:03:02	49,1975119	578,538684	378 491237	0 peamplet0	<u>ст</u>	1
A14	10	18009-1.RAW	19:13:33	30 6720644	225 777178	75 4054000	0 psamplet0	ст Ст	1
A15	10	19010-1 244	10-24-04	21 1221104	100 73130	70.4004099	0 psampieto	CI	1
A16	1	10010 1.000	19.27.04	32.2331204	160./3125	58.1394886	0 psample10	CT .	1
A17	1	10011-1.KAW	19:39:35	201.918915	295.403172	252.354072	0 psampie10	α	1
	•	18012-1.RAW	19:45:05	26.65741	3.69277936	21.3647254	0 psample10	0K	1
	C12 C13 C14 C15 A1 A2 A3 A4 A5 A6 A7 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17	C12 1 C13 1 C14 1 C15 1 A1 1 A2 1 A3 1 A4 1 A5 10 A6 10 A7 10 A8 10 A10 10 A11 1 A12 1 A13 1 A14 10 A15 10 A16 1 A17 1	C12 1 17992-1.RAW C13 1 17993-1.RAW C14 1 17993-1.RAW C15 1 17995-1.RAW A1 1 17995-1.RAW A2 1 17997-1.RAW A3 1 17997-1.RAW A4 1 17997-1.RAW A5 10 17997-1.RAW A6 10 18001-1.RAW A7 10 18001-1.RAW A8 10 18001-1.RAW A11 1 18005-1.RAW A12 1 18005-1.RAW A13 1 18005-1.RAW A14 10 18007-1.RAW A15 10 18001-1.RAW A14 10 18001-1.RAW A15 10 18011-1.RAW A16 1 18011-1.RAW	C12 1 17992-1.RAW 16:14:50 C13 1 17993-1.RAW 16:25:20 C14 1 17993-1.RAW 16:35:51 C15 1 17995-1.RAW 16:35:51 A1 1 17995-1.RAW 16:35:52 A2 1 17995-1.RAW 16:35:52 A3 1 17995-1.RAW 16:35:52 A4 1 17995-1.RAW 17:07:24 A3 1 17999-1.RAW 17:17:55 A4 1 17999-1.RAW 17:28:26 A5 10 18000-1.RAW 17:28:26 A6 10 18000-1.RAW 17:28:26 A6 10 18001-1.RAW 17:28:26 A6 10 18002-1.RAW 18:10:29 A9 10 18003-1.RAW 18:20:59 A11 1 18004-1.RAW 18:20:59 A12 1 18006-1.RAW 18:20:59 A13 1 18006-1.RAW 18:20:32 A13 1 18006-1.RAW 18:52:32 A13 <td>C12117992-1.RAW16:14:5047.1529119C13117993-1.RAW16:25:2053.2754972C14117994-1.RAW16:35:51275.797701C15117995-1.RAW16:35:52126.57938A1117996-1.RAW16:56:52146.617903A2117997-1.RAW17:07:24243.373914A3117999-1.RAW17:28:26208.026041A4117999-1.RAW17:28:26208.026041A51018000-1.RAW17:38:5681.9538352A61018002-1.RAW17:59:5867.9338469A71018002-1.RAW17:59:5867.9338469A81018003-1.RAW18:20:5974.9915567A11118006-1.RAW18:20:5974.9915567A13118006-1.RAW18:20:3230.0520644A13118006-1.RAW19:30:2049.1975119A141018009-1.RAW19:30:2049.1975119A13118009-1.RAW19:30:2049.1975119A141018009-1.RAW19:30:3022.331284A151018010-1.RAW19:34:3328.1918915A17118012-1.RAW19:34:3528.1918915A17118012-1.RAW19:34:3526.65741</td> <td>C12117992-1.RAW16:14:5047.1529119320.801515C13117993-1.RAW16:25:2053.2754972664.441146C14117994-1.RAW16:35:51275.797701288.852888C15117995-1.RAW16:46:2222.05673985.00080492A1117995-1.RAW16:55:52146.617903456.773532A2117995-1.RAW17:07:24243.37314412.726889A3117999-1.RAW17:25332.56562756.588542A4117999-1.RAW17:28:26208.026041302.668963A51018000-1.RAW17:38:5681.9538352133.166809A61018001-1.RAW17:49:2768.1176136346.507386A71018002-1.RAW17:29:5867.93846964.783347A81018003-1.RAW18:10:2947.2454072250.406132A91018005-1.RAW18:20:5974.99155671307.25535A11118006-1.RAW18:20:2337.0564394609543087A12118007-1.RAW18:31:3065.34928981003.33561A13118006-1.RAW19:33:3330.672064422.5777178A141018009-1.RAW19:33:3330.672064422.577718A151018011-1.RAW19:34:5526.6574136.927936A151018012-1.RAW19:24:0432.2331284180.73125A16118012-1.</td> <td>C12117992-1.RAW16:14:5047.1529119320.801515382.378187C13117993-1.RAW16:25:2053.2754972664.441146427.313352C14117994-1.RAW16:35:51275.797701288.85288235.64717C15117995-1.RAW16:35:52220.5673985.008049224.8840909A2117995-1.RAW16:56:52146.61703456.77352194.33994A3117995-1.RAW17:07:24243.373914412.7269893663.24794A3117999-1.RAW17:07:24243.373914412.7269893663.24794A4117999-1.RAW17:17:55332.545562756.5885423474.99444A51018000-1.RAW17:28:26109.8400244.779002A61018000-1.RAW17:49:2768.1176136346.50738658.3503314A71018003-1.RAW17:59:5867.9338469644.78934794.707335A81018003-1.RAW17:59:5867.9338469644.78934795.5773201A91018003-1.RAW18:10:2974.2454072250.40613235.5773201A111118005-1.RAW18:12:0574.9915567130.35680323.93915253.230223A12118006-1.RAW18:12:01310.796166323.93915253.230223A13118008-1.RAW19:333330.6720644225.77717875.4054099A13118008-1.RAW<td>C12117992-1.RAW16:14:5047.1529119320.801515382.3781870psample10C13117993-1.RAW16:25:2053.2754972664.441146427.313520psample10C14117994-1.RAW16:35:51275.79770128.85288235.647170psample10A1117995-1.RAW16:62220567395.0008049224.88409990psample10A2117995-1.RAW16:6522146.617933450.773521934.339990psample10A3117997-1.RAW17:07:24243.373914412.7269893663.247940psample10A4117999-1.RAW17:17:5532.545562756.5885423474.994440psample10A4117999-1.RAW17:28:56280.026041302.6689631409.840020psample10A51018000-1.RAW17:38:5681.9538352133.16680944.77900090psample10A71018000-1.RAW17:99:5761.73618365.073680psample10A81018001-1.RAW17:99:5767.9378494.7087380psample10A101018005-1.RAW18:10:2972.545072250.40613235.57732010psample10A11118005-1.RAW18:30:3165.3492846104.733470psample10A101018005-1.RAW18:30:3130.654308729.78304920psample10</td><td>C12117992-1.RAW16:14:5047.1529119320.801515382.3781870 psample10CTC13117993-1.RAW16:25:2053.275497664.441146427.3133520 psample10CKC14117994-1.RAW16:35:51275.97701286.85288235.64170 psample10CTA1117995-1.RAW16:35:52246.617903456.773532194.33990 psample10CTA2117996-1.RAW16:56:52146.617903456.773532194.33990 psample10CTA3117996-1.RAW17:07:24243.37914412.726989366.247940 psample10CTA4117999-1.RAW17:17:55332.645562756.5865423474.994440 psample10CTA411999-1.RAW17:28:26208.026041302.669631409.840020 psample10CTA51018000-1.RAW17:38:5681.953852133.16680944.77900090 psample10CTA71018001-1.RAW17:49:2766.17/1616346.5733520 psample10CTA71018002-1.RAW17:59:5867.933846964.79334747.0973580 psample10CTA81018002-1.RAW17:49:2766.17/1616345.57732010 psample10CTA101018002-1.RAW18:10:2974.9915671307.253529.341140 psample10CTA11118005-1.RAW18:20:21130.</td></td>	C12117992-1.RAW16:14:5047.1529119C13117993-1.RAW16:25:2053.2754972C14117994-1.RAW16:35:51275.797701C15117995-1.RAW16:35:52126.57938A1117996-1.RAW16:56:52146.617903A2117997-1.RAW17:07:24243.373914A3117999-1.RAW17:28:26208.026041A4117999-1.RAW17:28:26208.026041A51018000-1.RAW17:38:5681.9538352A61018002-1.RAW17:59:5867.9338469A71018002-1.RAW17:59:5867.9338469A81018003-1.RAW18:20:5974.9915567A11118006-1.RAW18:20:5974.9915567A13118006-1.RAW18:20:3230.0520644A13118006-1.RAW19:30:2049.1975119A141018009-1.RAW19:30:2049.1975119A13118009-1.RAW19:30:2049.1975119A141018009-1.RAW19:30:3022.331284A151018010-1.RAW19:34:3328.1918915A17118012-1.RAW19:34:3528.1918915A17118012-1.RAW19:34:3526.65741	C12117992-1.RAW16:14:5047.1529119320.801515C13117993-1.RAW16:25:2053.2754972664.441146C14117994-1.RAW16:35:51275.797701288.852888C15117995-1.RAW16:46:2222.05673985.00080492A1117995-1.RAW16:55:52146.617903456.773532A2117995-1.RAW17:07:24243.37314412.726889A3117999-1.RAW17:25332.56562756.588542A4117999-1.RAW17:28:26208.026041302.668963A51018000-1.RAW17:38:5681.9538352133.166809A61018001-1.RAW17:49:2768.1176136346.507386A71018002-1.RAW17:29:5867.93846964.783347A81018003-1.RAW18:10:2947.2454072250.406132A91018005-1.RAW18:20:5974.99155671307.25535A11118006-1.RAW18:20:2337.0564394609543087A12118007-1.RAW18:31:3065.34928981003.33561A13118006-1.RAW19:33:3330.672064422.5777178A141018009-1.RAW19:33:3330.672064422.577718A151018011-1.RAW19:34:5526.6574136.927936A151018012-1.RAW19:24:0432.2331284180.73125A16118012-1.	C12117992-1.RAW16:14:5047.1529119320.801515382.378187C13117993-1.RAW16:25:2053.2754972664.441146427.313352C14117994-1.RAW16:35:51275.797701288.85288235.64717C15117995-1.RAW16:35:52220.5673985.008049224.8840909A2117995-1.RAW16:56:52146.61703456.77352194.33994A3117995-1.RAW17:07:24243.373914412.7269893663.24794A3117999-1.RAW17:07:24243.373914412.7269893663.24794A4117999-1.RAW17:17:55332.545562756.5885423474.99444A51018000-1.RAW17:28:26109.8400244.779002A61018000-1.RAW17:49:2768.1176136346.50738658.3503314A71018003-1.RAW17:59:5867.9338469644.78934794.707335A81018003-1.RAW17:59:5867.9338469644.78934795.5773201A91018003-1.RAW18:10:2974.2454072250.40613235.5773201A111118005-1.RAW18:12:0574.9915567130.35680323.93915253.230223A12118006-1.RAW18:12:01310.796166323.93915253.230223A13118008-1.RAW19:333330.6720644225.77717875.4054099A13118008-1.RAW <td>C12117992-1.RAW16:14:5047.1529119320.801515382.3781870psample10C13117993-1.RAW16:25:2053.2754972664.441146427.313520psample10C14117994-1.RAW16:35:51275.79770128.85288235.647170psample10A1117995-1.RAW16:62220567395.0008049224.88409990psample10A2117995-1.RAW16:6522146.617933450.773521934.339990psample10A3117997-1.RAW17:07:24243.373914412.7269893663.247940psample10A4117999-1.RAW17:17:5532.545562756.5885423474.994440psample10A4117999-1.RAW17:28:56280.026041302.6689631409.840020psample10A51018000-1.RAW17:38:5681.9538352133.16680944.77900090psample10A71018000-1.RAW17:99:5761.73618365.073680psample10A81018001-1.RAW17:99:5767.9378494.7087380psample10A101018005-1.RAW18:10:2972.545072250.40613235.57732010psample10A11118005-1.RAW18:30:3165.3492846104.733470psample10A101018005-1.RAW18:30:3130.654308729.78304920psample10</td> <td>C12117992-1.RAW16:14:5047.1529119320.801515382.3781870 psample10CTC13117993-1.RAW16:25:2053.275497664.441146427.3133520 psample10CKC14117994-1.RAW16:35:51275.97701286.85288235.64170 psample10CTA1117995-1.RAW16:35:52246.617903456.773532194.33990 psample10CTA2117996-1.RAW16:56:52146.617903456.773532194.33990 psample10CTA3117996-1.RAW17:07:24243.37914412.726989366.247940 psample10CTA4117999-1.RAW17:17:55332.645562756.5865423474.994440 psample10CTA411999-1.RAW17:28:26208.026041302.669631409.840020 psample10CTA51018000-1.RAW17:38:5681.953852133.16680944.77900090 psample10CTA71018001-1.RAW17:49:2766.17/1616346.5733520 psample10CTA71018002-1.RAW17:59:5867.933846964.79334747.0973580 psample10CTA81018002-1.RAW17:49:2766.17/1616345.57732010 psample10CTA101018002-1.RAW18:10:2974.9915671307.253529.341140 psample10CTA11118005-1.RAW18:20:21130.</td>	C12117992-1.RAW16:14:5047.1529119320.801515382.3781870psample10C13117993-1.RAW16:25:2053.2754972664.441146427.313520psample10C14117994-1.RAW16:35:51275.79770128.85288235.647170psample10A1117995-1.RAW16:62220567395.0008049224.88409990psample10A2117995-1.RAW16:6522146.617933450.773521934.339990psample10A3117997-1.RAW17:07:24243.373914412.7269893663.247940psample10A4117999-1.RAW17:17:5532.545562756.5885423474.994440psample10A4117999-1.RAW17:28:56280.026041302.6689631409.840020psample10A51018000-1.RAW17:38:5681.9538352133.16680944.77900090psample10A71018000-1.RAW17:99:5761.73618365.073680psample10A81018001-1.RAW17:99:5767.9378494.7087380psample10A101018005-1.RAW18:10:2972.545072250.40613235.57732010psample10A11118005-1.RAW18:30:3165.3492846104.733470psample10A101018005-1.RAW18:30:3130.654308729.78304920psample10	C12117992-1.RAW16:14:5047.1529119320.801515382.3781870 psample10CTC13117993-1.RAW16:25:2053.275497664.441146427.3133520 psample10CKC14117994-1.RAW16:35:51275.97701286.85288235.64170 psample10CTA1117995-1.RAW16:35:52246.617903456.773532194.33990 psample10CTA2117996-1.RAW16:56:52146.617903456.773532194.33990 psample10CTA3117996-1.RAW17:07:24243.37914412.726989366.247940 psample10CTA4117999-1.RAW17:17:55332.645562756.5865423474.994440 psample10CTA411999-1.RAW17:28:26208.026041302.669631409.840020 psample10CTA51018000-1.RAW17:38:5681.953852133.16680944.77900090 psample10CTA71018001-1.RAW17:49:2766.17/1616346.5733520 psample10CTA71018002-1.RAW17:59:5867.933846964.79334747.0973580 psample10CTA81018002-1.RAW17:49:2766.17/1616345.57732010 psample10CTA101018002-1.RAW18:10:2974.9915671307.253529.341140 psample10CTA11118005-1.RAW18:20:21130.

utertantiqui (international)

Failing Data Report - 6K17015

Sample ID	Analysis	Result	MRL	Dup Result	Source Result	True Value	Units	% Rec.	Rec. LCL	Rec. UCL	RPD	RPD Limit	Over Cal	Failure	Qualifier
F611346-MS1	MHg-CVAFS-W-Dist	1.432	0.050		0.120	1.0010	ng/L	131	65.00	130.00		*	PASS-OVER	FAIL-MS	QM-07
F611346-MSD2	MHg-CVAFS-W-Dist	1.518	0.050	1.331	0.106	1.0010	ng/L	141	65.00	130.00	13.1	35.00	PASS-OVER	FAIL-MSD (Rec.)	QM-07

Analyst Reviewed By u/17/16 Date

4 11/17/16 Date Peer Reviewed By

6K17015

Instrument: Hg2700-1

Calibration ID: UNASSIGNED

Analyzed: 11/	/16/	20	1	6
---------------	------	----	---	---

r		1]	
Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
GK17015-IBL1	QC	1			
WITOIS CALL	QC	2	1606090		
GK1/UIS-CALZ	QC	3	1606091		
6K1/015-CAL3	QC	4	1606092		
6K17015-CAL4	QC	5	1606093		
6K17015-CAL5	QC	6	1606094		
6K17015-ICV1	QC	7	1605079		
6K17015-ICB1	QC .	8			
F611346-BLK1	QC	9			
F611346-BLK2	QC	10			
F611346-BLK3	QC	11			
F611346-BS1	QC	12			
F611346-BSD1	QC	13			
F611346-DUP1	QC	14			
F611346-MS1	QC	15			
F611346-MSD1	QC	16			
F611346-MS2	QC	17			
F611346-MSD2	QC	18			
6K17015-CCV1	OC	19	1605079		
6K17015-CCB1	QC	20			
1610567-08	MHg-CVAFS-W-Dist	21			Same all day of the tank
1610609-04	MHg-CVAFS-W-Dist	22			Scan an data for level IV report
1610609-05	MHg-CVAFS-W-Dist	23			
1610609-06	MHg-CVAFS-W-Dist	24			
1610609-07	MHg-CVAFS-W-Dist	25			
1610609-08	MHg-CVAFS-W-Dist	26			
1610610-05	MHg-CVAFS-W-Dist	27	———		
1610617-05	MHg-CVAFS-W-Dist	28			
1610618-11	MHg-CVAFS-W-Dist	29			
1610860-01	MHg-CVAFS-W-Dist	30			
6K17015-CCV2	QC	31	1605079		Scan all data - Level JV
6K17015-CCB2	QC	32			
1610860-02	MHg-CVAFS-W-Dist	33			
1610860-03	MHg-CVAFS-W-Dist	34			Scan all data - Level IV
1610860-04	MHg-CVAFS-W-Dist	35			Scan all data - Level JV
			1	1	Scan all data - Level IV

Due Date: 11/16/2016

6K17015

Instrument: Hg2700-1

Calibration ID: UNASSIGNED

Analyzed: 11/16/2016

Lab Number	Analysis	Order		
1610860-05	MHg-CVAFS-W-Dist	36		Comments
1610860-06	MHg CVAES W Dist	37		Scan all data - Level IV
1610860-07	Milg-CVAFS-W-Dist	37		Scan all data - Level IV
1610860 09	MHg-CVAFS-W-Dist	38		Scan all data - Level IV
1610860-08	MHg-CVAFS-W-Dist	39		Scan all data - Level IV
1610860-09	MHg-CVAFS-W-Dist	40		Scan all data - Level IV
1610860-10	MHg-CVAFS-W-Dist	41		Scan all data - Level IV
1610860-11	MHg-CVAFS-W-Dist	42		Scan all data - Level IV
6K17015-CCV3	QC	43	1605079	
6K17015-CCB3	QC	44		

Nh

Samples Leaded By

Due Date: 11/16/2016

nillingelenninkun heisenin heinen heinen heinen konten heinen heinen einen einen heinen h

.

F611346

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: Hg Aquatic/Solids - EFGS-013 Methyl Hg Distillation for Water

Prepared: 11/14/2016

Lab Number	Sample ID and Source Sample	Initial (mL)	Final (mL)	Spikel ID	µl Spikel	Spike2 ID	µl Spike2	Extraction Comments
F611346-BLK1	Blank	45	40					
F611346-BLK2	Blank	45	40					
F611346-BLK3	Blank	45	40					
F611346-BS1	LCS	45	40	1605979	45			
F611346-BSD1	LCS Dup	45	40	1605979	45			
F611346-DUP1	Duplicate [1610860-03]	45	40					
F611346-MS1	Matrix Spike [1610860-01]	45	40	1605979	45			
F611346-MS2	Matrix Spike [1610860-02]	45	40	1605979	45			
F611346-MSD1	Matrix Spike Dup [1610860-01]	45	40	1605979	45			
F611346-MSD2	Matrix Spike Dup [1610860-02]	45	40	1605979	45			

Standard ID(s): 1605979

Description:

MHg New Primary 1.0 ng/mL CAL

Expiration: 15-Jan-17 00:00

Reagent ID(s):	Description:	Expiration:
1605961	Acetate Buffer	11-Apr-17 00:00
1606301	Ethylating Agent (For Methyl Mercury Analysis)	26-Apr-17 00:00
1606667	APDC	18-Nov-16 00:00
1606669	0.5% HCl Distillation Dilute (Made Daily)	15-Nov-16 00:00
1606762	2.5% Ascorbic Acid	24-Nov-16 00:00

F611346

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: Hg Aquatic/Solids - EFGS-013 Methyl Hg Distillation for Water

Prepared: 11/14/2016

Lab Number	Sample ID	Initial (mL)	Final (mL)	QC Sample	Sample Specs.	Raw Data	Sample Comments	Analysis Comments
1610567-08	GBPE-0023-08	45	40	<u> </u>	-	-	Scan all data for level IV report	
1610609-04	P85262-4	45	40	-	-	-		
1610609-05	P85262-5	45	40	-	-	-		
1610609-06	P85262-6	45	40		-	-	· · · · · · · · · · · · · · · · · · ·	
1610609-07	P85262-7	45	40	-	-	-		
1610609-08	P85262-8	45	40	-	-			
1610610-05	Lab Blank 8644932	45	40	-	-	-		
1610617-05	Lab Blank 8644939	45	40	-		_		
1610618-11	Lab Blank 8644951	45	40		-	-		
1610860-01	WQ1b-c_102516_SW_10	45	40	QC		-	MS/MSD Scan all data - Level IV	
1610860-02	WQ1b-c_102516_SW_10 Dissolved	45	40	QC		~	MS/MSD Scan all data - Level IV	
1610860-03	WQ1b-c_102516_SW_10_DUP	45	40				Scan all data - Level IV	
1610860-04	WQ1b-c_102516_SW_10_DUP Dissolved	45	40	-			Scan all data - Level IV	
1610860-05	ES15_102616_SW_10	45	40				Scan all data Level IV	
1610860-06	ES15_102616_SW_10 Dissolved	45	40			<u> </u>	Scan all data - Level IV	
610860-07	WQ-FPT_102616_SW_10	45	40					
6 <u>1086</u> 0-08	WQ-FPT_102616_SW_10 Dissolved	45	40				Scan all data - Level IV	
6 B D-09	WO ECH 102616 SW 10	45	40			·	Scan all data - Level IV	
	WO ECH 102616 SW 10 Disselant	+	40	<u> </u>	-	- 	Scan all data - Level IV	
-9	"Q_CCA_102010_SW_10 Dissolved	45	40	-	-	-	Scan all data - Level IV	
of								· · · · · · · · · · · · · · · · · · ·

Di[®]Date: 11/16/2016

and a second second second

F611346

Eurofins Frontier Global Sciences, Inc.

Southenest and

pr 2700) 11/10/11

F611346

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: Hg Aquatic/Solids - EFGS-013 Methyl Hg Distillation for Water

Prepared: 11/14/2016

Lab Number	Sample ID and Source Sample	Initial (mL)	Final (mL)	Spikel ID	µl Spikel	Spike2 ID	μl Spike2	Extraction Comments
F611346-BLK1	Blank	45	40					1.25
F611346-BLK2	Blank	45	40					1.25
F611346-BLK3	Blank	45	40		n 111 - 1			1.25
F611346-BS1	LCS	45	40	1605979	45			1.25
F611346-BSD1	LCS Dup	45	40	1605979	45		<u></u>	1.25
F611346-DUP1	Duplicate [1610860-03]	45	40					1.25
F611346-MS1	Matrix Spike [1610860-01]	45	40	1605979	45			1.25
F611346-MS2	Matrix Spike [1610860-02]	45	40	1605979	45			1.25
F611346-MSD1	Matrix Spike Dup [1610860-01]	45	40	1605979	45			1.25
F611346-MSD2	Matrix Spike Dup [1610860-02]	45	40	1605979	45			1,25

Standard ID(s): 1605979

Page 86 of

MHg New Primary 1.0 ng/mL CAL

Expiration: 15-Jan-17 00:00 Reagent ID(s): 1606667 1606669

Description: APDC 0.5% HCl Distillation Dilute (Made Daily) Expiration: 18-Nov-16 00:00 15-Nov-16 00:00

1605961 1606301 1606762

Date: 11/16/2016

Description:

F611346

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: Hg Aquatic/Solids - EFGS-013 Methyl Hg Distillation for Water

Prepared: 11/14/2016

Lab Number	Sample ID	Initial (mL)	Final (mL)	QC Sample	Sample Specs.	Raw Data	Sample Comments	Analysis Comments
1610567-08	GBPE-0023-08	45	40	-	-		Scan all data for level IV report	1.25
1610609-04	P85262-4	45	40	-	-	-	•	1.25
1610609-05	P85262-5	45	40	-	-	-	· · · · · · · · · · · · · · · · · · ·	1,725
1610609-06	P85262-6	45	40	-	-	-		1.25
1610609-07	P85262-7	45	40	-	-	-		1.25
1610609-08	P85262-8	45	40	-	-	-	a a da	1.25
1610610-05	Lab Blank 8644932	45	40	-	-	-		1.25
1610617-05	Lab Blank 8644939	45	40	-	-	•	, , , , , , , , , , , , , , , , , , ,	1.25
1610618-11	Lab Blank 8644951	45	40	-	-	-		1.25
1610860-01	WQ1b-c_102516_SW_10	45	40	QC	-	-	MS/MSD Scan all data - Level IV	1,25
1610860-02	WQ1b-c_102516_SW_10 Dissolved	45	40	QC	-	-	MS/MSD Scan all data - Level IV	1.25
1610860-03	WQ1b-c_102516_SW_10_DUP	45	40	-	-	-	Scan all data - Level IV	1.25
1610860-04	WQ1b-c_102516_SW_10_DUP Dissolved	45	40	-	-	÷	Scan all data - Level IV	1.25
1610860-05	ES15_102616_SW_10	45	40	-	-	-	Scan all data - Level IV	1.25
1610860-06	ES15_102616_SW_10 Dissolved	45	40	-	-	-	Scan all data - Level IV	1.25
1610860-07	WQ-FPT_102616_SW_10	45	40	-	-		Scan all data - Level IV	1.25
1610860-08	WQ-FPT_102616_SW_10 Dissolved	45	40	-	-		Scan all data - Level IV	1.25
10 gg 60-09	WQ_ECH_102616_SW_10	45	40	-	-	-	Scan all data - Level IV	1.25
16 7 60-10	WQ_ECH_102616_SW_10 Dissolved	45	40	-	-	-	Scan all data - Level IV	1.25
	······································				1			

D[®] Date: 11/16/2016

F611346

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: Hg Aquatic/Solids - EFGS-013 Methyl Hg Distillation for Water

Prepared: 11/14/2016

1610860-11	WQ3-L_102616_SW_10	45	40	-	-	-	Scan all data - Level IV	1.25	

Methyl Mercury Distillations (EPA 1630)										
Name: _	<u>AMB</u> Date: 11/14	<u>//6</u> в	atch #: <u>F6</u>	11346	Sample Matrix: Water					
WO#: 1610567,1610609,1610610,1610617,1610618,1610860										
The pH of the preserved sample must be documented before an aliquot is removed for preparation.										
Digest #	Sample ID Number	Preserved	Sample Size	Final pH						
		pH	(mL)	(≥3)						
BLKI	F6/1346-BLKI	111	15	3.0	160507 DAM					
BLK2	F611346-BLK2	1.0	45	3.0	Spike ID: 100 3-17 0					
BLK3	F611346-BLK3	1.0	45	3.0	Spike Witness: DM (11416					
BSI	F611346 - BSI	1.0	45	4.0						
BSDI	F611346 - BSD1	1.0	45	3.0	Balance #:					
Dupi	F61346 DUPI	1.0	45	4.0	Calibrated? Ves No					
MSI	F611346 - MSI	1:0	45	4.0	Dinatta # N/4D9652					
MSDI	F6/1346-MSDI	1.0	45	4.0	Cal. Date: 11-14-14					
M52	F611346 - MS2	1.0	45	4.0						
MSD2	F611346 - MSD2	1.0	45	4.0	Pipette #: <u>CJ17087</u>					
_1	1610567-08A	1.0	45	4.0	Cal. Date:					
2	1610609-04A	1.0	45	3.0	Dipatta # 1//A					
3	1610609-05A	1.0	45	30	Cal Date: NA					
4	1610609-06A	1.0	45	30						
5	1610609-07A	1.0	45	3.0	APDC ID: 1606667					
6	1610609-08 A	1.0	45	3.0	HCI ID: 1606669					
7	1610610-05A	1.0	45	3.0						
- K	1610617-05A	1.0	45	164.0	Temperature: No set range as					
q	1610618-11 A	1.0	45 11	AM2 30	keep flow rate of ≥10 mL per					
10	1610860-01 B	1.0	46	4.0	hour. Temperature is recorded					
11	16/08/0-02 8	10	45	40	for informational purposes only.					
12	1610860-023	1.0	45	4.0	Unit 1: 120.1					
12	1610860-04 B	1.0	44	1.0	Unit 2: 122.0					
14	1610860-DE B	10	45	40	120.5					
15	1610860-06 B		45	20						
16	1610860-078		4<	1.0	Unit 4:					
17	1610810-08 13	1.0	T	4.0	Unit 5: 122.0					
18	1610860-00 B	10	-73 AC	20	Unit 6: <u>122.0</u>					
10	VODEN TO B	1.0	40	2.0	-					
	1610960 -11 8		45	2.0	Comments:					
20	1010800 11 12	1.0		210	DUPI source:					
			<u> </u>		1610860-03B					
		b 11-14-11			MSI, MSDI SOUPE:					
	AM	p			1610800-01 MS2 MCD2 CAULES					
·······			 		1/100/D ma					
•••• - <u>·</u>		+	<u> </u>		1610860-02					
					rivst vian came					
-					uttal: 19.30 AD					
					A CALLER I AND					

A R A H

ġ.

AD readings, mV

#1: Clean

🗃 CVAFS Detector (mV) 🕆 Extra Peaks 🧾 MainPeak baseline 👘

(HROMATOGRAMI VERIFIED 11/17/16 DAW

AD readings. InV

285.3 Hg0 Hg0 O(43 O(43 O(27 O(21) O(21) O(25) CVAFS Detector (mV) ' Extra Peaks | MainPeak baseline

AD readings, mV

#3: SEQ-IBL1

CVAFS Detector (mV) Extra Peaks MainPeak baseline

Page 92	Name SEQ-IBL1 Hg0 SEQ-IBL1 EHg	Area 59.364 16.308	Start Time 27.0 160.7	EndTime 64.0 197.5	StartValue 234.24 234.23	EndValue 234.25 234.24	Feak Max 34.7 172.9	PeakHeight 0.453 0.104	Flags OK OK	Baseline 234.2402 234.2402	BlDev 0.00 0.00	BlShift -0.02 -0.02	Comment	016
of 290														

AD readings. mV

CVAFS Detector (mV) [©] Extra Peaks	MainPeak baseline
--	-------------------

Page 90	Name SEQ-CAL1 Hg0 SEQ-CAL1 MeHg SEQ-CAL1 EHg	Area 64.599 25.034 18.232	Start Time 24.9 80.6 160.6	EndTime 67.5 112.2 199.6	StartValue 234.11 234.11 234.10	EndValue 234.13 234.13 234.11	Peak Max 34.8 90.4 173.9	PeakHeight 0.482 0.203 6.114	Flags OK OK OK	Baseline 234.1165 234.1165 234.1165	BlDev 0.00 0.00 0.00	BlShift -0.03 -0.03 -0.03	Comment	016
3 of 290														
Ver and angle with

CVAFS Detector (mV) * E	tra Peaks 🧾 MainPeak baseline
-------------------------	-------------------------------

Name SEQ-CAL2 Hg0 SEQ-CAL2 MeHg SEQ-CAL2 EHg	Area 74.043 96.578 27.728	Start Time 26.1 81.2 162.4	EndTime 69.7 119.5 200.8	StartValue 233.97 233.98 233.96	EndValue 233.99 233.99 233.99	Peak Max 35.4 90.8 174.9	PeakHeight 0.503 0.733 0.165	Flags OK OK OK	Baseline 233.9843 233.9843 233.9843 233.9843	BlDev 0.00 0.00 0.00	BlShift -0.04 -0.04 -0.04 -0.04	Comment	016
---	------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---	---------	-----

Name SEQ-CAL3 Hg0 SEQ-CAL3 MeHg SEQ-CAL3 EHg	Area 162.827 468.925 78.469	Start Tim 16.4 80.1 162.5	e EndTime 69.9 131.9 213.4	StartValı 233.83 233.85 233.85 233.83	De EndValue 233.88 233.87 233.83	Peak Max 38.5 91.2 176.2	PeakHeig 1.045 3.369 0.412	ht Flags CT OK OK	Baseline 233.8264 233.8264 233.8264	B1Dev 0.00 0.00 0.00	BlShift -0.01 -0.01 -0.01	Comment	016
---	--------------------------------------	------------------------------------	-------------------------------------	---	---	-----------------------------------	-------------------------------------	----------------------------	--	-------------------------------	------------------------------------	---------	-----

#7: SEQ-CAL4 240.5 MeHg 239.5 238,5 237.5 AD readings. my 236.5 Hg0 235.5 EHg 234.5 233.4 00:43 01:27 02:11 02:55

🎆 CVAFS Detector (mV) 🖞 Extra Peaks 🔝 MainPeak baseline

Name SEQ-CAL4 Hg0 SEQ-CAL4 MeHg SEQ-CAL4 EHg	Area 316.661 870.939 112.376	Start Ti 27.2 81.3 162.5	me EndTime 69.9 133.8 211.8	StartVal 233.71 233.76 233.72	ue EndValue 233.80 233.77 233.72	Peak Max 39.8 91.8 176.8	PeakHeig 2.082 6.273 0.619	ght Flags CT OK OK	Baseline 233.7097 233.7097 233.7097	BlDev 0.00 0.00 0.00	BlShift -0.01 -0.01 -0.01	Comment	016
---	---------------------------------------	-----------------------------------	--------------------------------------	--	---	-----------------------------------	-------------------------------------	-----------------------------	--	-------------------------------	------------------------------------	---------	-----

#8: SEQ-CAL5

Name SEQ-CAL5 Hq0	Area 555.963	Start Time 25.5	EndTime 69.9	StartValue 233.57	EndValue 233.73	Peak Max 39.5	PeakHeight 3.639	Flags CT	Baseline 233.5754	BlDev 0.00	BlShift 0.05	Comment	
SEQ-CAL5 MeHg SEQ-CAL5 EHg	2053.721 305.797	80.5 160.7	139.7 213.7	233.66 233.64	233.69 233.64	91.4 176.6	14.702 1.642	OK OK	233.5754 233.5754	0.00	0.05 0.05		016

	CVAFS Detector (mV)	Extra Peaks	MainPeak baseline	
0.0445				

Name SEQ-ICV1 Hg0 SEQ-ICV1 MeHg SEQ-ICV1 EHg	Area 363.036 254.695 170.806	Start Tim 26.9 81.2 163.0	e EndTime 69.9 127.2 212.4	StartValı 233.47 233.52 233.49	ue EndValue 233.58 233.52 233.49	Peak Max 40.0 91.9 177.3	PeakHeigh 2.365 1.856 0.918	ot Flags CT OK OK	Baseline 233.4759 233.4759 233.4759	BlDev 0.00 0.00 0.00	BlShift 0.00 0.00 0.00	Comment	016
---	---------------------------------------	------------------------------------	-------------------------------------	---	---	-----------------------------------	--------------------------------------	----------------------------	--	-------------------------------	---------------------------------	---------	-----

AD readings. mV

おお CV/AEC Data star (sa)	V Este Darla (StateDarl bracker
Ball CVAPS Detector (mv) Extra Peaks 🚟 MainPeak Daseline –

Name	Area	Start Ti	me EndTime	StartVal	ue EndValue	Peak Max	PeakHeigh	t Flags	Baseline	BiDev	BlShift	Comment	
SEQ-ICB1 Hg0	59.455	27.3	69.9	233.37	233.39	35.2	0.422	CT	233.3842	0.00	-0.01		31.0
SEQ-ICB1 MeHg	4.961	83.2	102.2	233.40	233.39	92.1	0.051	OK	233.3842	0.00	-0.01		110
SEQ-ICB1 EHg	23.082	157.6	217.5	233.37	233.37	178.0	0.114	OK	233.3842	0.00	-0.01		

#11: F611346-BLK1

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment	
F611346-BLK1 Hg	62.424	25.9	68.5	233.31	233.34	36.9	0.398	СK	233.3119	0.00	-0.01		22.2
F611346-BLK1 Me	6.193	82.6	102.9	233.33	233.34	90.2	0.062	CK	233.3119	0.00	-0.01		916
F611346-BLK1 EH	1 30.123	160.8	209.7	233.31	233.31	177.5	0.166	ОК	233.3119	0.00	-0.01		

#12: F611346-BLK2

Name F611346-BLK2 H F611346-BLK2 M F611346-BLK2 EI	Area g 50.586 e 4.443 H 21.166	Start Time 21.8 84.2 163.9	EndTime 67.5 103.3 204.3	StartValue 233.26 233.28 233.27	EndValue 233.28 233.29 233.27	Peak Max 37.0 91.0 178.4	PeakBeight 0.313 0.050 0.117	Flags OK OK OK	Baseline 233.2565 233.2565 233.2565 233.2565	BlDev 0.00 0.00 0.00	BlShift 0.01 0.01 0.01 0.01	Comment	016
---	---	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---	---------	-----

Page 102 of 290

#13: F611346-BLK3

Name F611346-BLK3 Hg F611346-BLK3 Me F611346-BLK3 EH	Area 43.441 3.330 21.776	Start Time 27.1 83.5 165.5	EndTime 67.9 102.1 204.4	StartValue 233.20 233.22 233.21	EndValue 233.22 233.23 233.21	Peak Max 37.7 91.1 177.2	PeakHeight 0.266 0.039 0.132	Flags OK OK OK	Baseline 233.1981 233.1981 233.1981	BlDev 0.00 0.00 0.00	BlShift 0.00 0.00 0.00	Comment	316
---	-----------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

#14: F611346-BS1

Name 7	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Easeline	BlDev	BlShift	Comment	
F611346-BS1 Hg0 6	65.283	2.6	69.2	233.14	233.18	38.9	0.423	0K	233.1373	0.00	0.03		210
F611346-BS1 MeH 4	427.860	81.9	147.0	233.17	233.18	92.1	3.071	OK	233.1373	0.00	0.03		110
F611346-BS1 EHg 2	28.269	162.6	209.3	233.19	233.18	177.9	0.161	OK	233.1373	0.00	0.03		

Page 104 of 290

#15: F611346-BSD1

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment	
F611346-BSD1 Hg	54.154	22.2	69.9	233.14	233.18	37.5	0.342	СT	233.1363	0.00	0.03		316
F611346-BSD1 Me	443.695	81.3	135.3	233.16	233.18	92.0	3.220	CK	233.1363	0.00	0.03		116
F611346-BSD1 EH	26.551	166.9	209.5	233.18	233.16	178.6	0.138	ОK	233.1363	0.00	0.03		

AD readings. mV

#16: F611346-DUP1

Page 105	Name F611346-DUP1 Hg F611346-DUP1 Me F611346-DUP1 EH	Area 41.787 46.992 170.160	Start Tim e 25.6 82.0 163.0	EndTime 64.0 119.1 219.2	StartValue 233.12 233.15 233.14	EndValue 233.15 233.16 233.15	Peak Max 36.1 91.5 177.8	PeakHeight 0.301 0.370 0.893	Flags OK OK OK	Easeline 233.1190 233.1190 233.1190 233.1190	BlDev 6.00 6.00 6.00 6.00	BlShift 0.03 0.03 0.03	Comment	016
of 290														

#17: F611346-MS1

CVAFS Detector	(mV)	Extra Peaks	MainPeak baseline
----------------	------	-------------	-------------------

Page 106 of	Name F611346-MS1 Hg0 F611346-MS1 MeH F611346-MS1 EHg	Area 59.572 502.538 197.932	Start Time 22.7 80.6 161.1	EndTime 69.9 140.3 219.8	StartValue 233.11 233.13 233.14	EndValue 233.14 233.15 233.15	Peak Max 36.3 91.8 177.6	PeakHeight 0.392 3.626 1.029	Flags CT OK CT	Baseline 233.1060 233.1060 233.1060	BlDev 0.00 0.00 0.00	BlShift 0.04 0.04 0.04 0.04	Comment	016
290														

#18: F611346-MSD1

CVAFS Detector (mV) * Extra Peaks 🔯 MainPeak baseline

H96 F611346-MS2

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment	
F611346-MS2 Hg0	56.023	28.1	69.9	233.09	233.12	36.7	0.391	CT	233.0889	0.00	0.05		210
F611346-MS2 MeH	467.592	81.7	138.0	233,12	233.13	92.2	3.381	CK	233.0889	0.00	0.05		51.0
F611346-MS2 EHg	262.888	162.2	219.8	233.13	233.14	178.4	1.380	СT	233.0889	0.00	0.05		

#20: F611346-MSD2

Page 109 of 2	Name F611346-MSD2 Hg F611346-MSD2 Me F611346-MSD2 EH	Area 48.513 532.552 153.021	Start Time 21.6 80.9 162.2	EndTime 69.9 145.9 215.9	StartValue 233.08 233.09 233.11	EndValue 233.10 233.11 233.11	Peak Max 36.3 91.7 177.5	PeakHeight 0.313 3.833 0.808	Flags CT OK OK	Baseline 233.0754 233.0754 233.0754 233.0754	BlDev 0.00 0.00 0.00	BlShift 0.04 0.04 0.04	Comment	016
290														

CVAFS Detector (mV) * Extra Peaks 🔟 MainPeak baseline

	Name	Area	Start Time	e EndTime	StartValu	e EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment	
	SEQ-CCV1 Hg0	429.365	25.9	69.9	233.07	233.18	39.4	3.308	CT	233.0763	0.00	0.04		210
L	SEQ-CCV1 MeHg	274.137	80.2	127,2	233.13	233.14	91.9	2.010	OK	233.0763	0.00	0.04		016
L	SEQ-CCV1 EHg	208.161	162.5	218.8	233.11	233.12	177.8	1.100	OK	233.0763	0.00	0.04		

P22-SEO-CCB1

233.0 00:43 01:27 02:11 02:55

CVAFS Detector (mV)	Extra Peaks	MainPeak baseline
---------------------	-------------	-------------------

Name SEQ-CCB1 Hg0 SEQ-CCB1 MeHg SEQ-CCB1 EHg	Area 28.665 5.708 27.113	Start Ti 22.7 83.3 164.0	me EndTime 66.8 112.6 217.6	StartVal 233.06 233.08 233.08	ue EndValue 233.08 233.08 233.08 233.08	Peak Max 36.5 92.9 177.4	PeakHeight 0.197 0.043 0.141	T Flags OK OK OK	Baseline 233.0598 233.0598 233.0598 233.0598	BlDev 0.00 0.00 0.00	BlShift 0.02 0.02 0.02	Comment	016
---	-----------------------------------	-----------------------------------	--------------------------------------	--	---	-----------------------------------	---------------------------------------	---------------------------	--	-------------------------------	---------------------------------	---------	-----

AD readings. mV

#23: 1610567-08

📓 CVAFS Detector (mV) 🕆 Extra Peaks 🔝 MainPeak baseline

Name Area Start Time En 1610567-08 Hg0 32.717 28.6 67 1610567-08 MeHg 4.856 84.4 10 1610567-08 EHg 27.268 164.7 20	ndTime StartValue 7.9 233.06 03.6 233.07 04.2 233.07	EndValue Peak Max 233.07 36.5 233.07 91.4 233.07 178.0	PeakHeight Flags 0.214 OK 0.048 OK 0.154 OK	Baseline 233.0586 233.0586 233.0586	BlDev 0.00 0.00 0.00	BlShift Comment 0.01 0.01 0.01	016
--	---	---	--	--	-------------------------------	---	-----

AD readings, mV

#24: 1610609-04

CVAFS Detector (mV) ⁺ E	Extra Peaks	MainPeak baseline

Name 1610609-04 Hg0 1610609-04 MeH 1610609-04 EHg	Area 33.496 g 57.338 73.906	Start Time 27.2 82.2 165.0	EndTime 69.4 123.3 212.9	StartValu 233.04 233.06 233.06	e EndValue 233.06 233.07 233.07	Peak Max 36.9 91.8 178.3	PeakHeigh 0.214 0.417 0.400	t Flags OK OK OK	Baseline 233.0431 233.0431 233.0431	BlDev 0.00 0.00 0.00	BlShift 0.03 0.03 0.03 0.03	Comment)16
--	--------------------------------------	-------------------------------------	-----------------------------------	---	--	-----------------------------------	--------------------------------------	---------------------------	--	-------------------------------	---	---------	-----

AD readings, mV

CVAFS Detector (mV) Extra Peaks	MainPeak baseline
---------------------------------	-------------------

1610609-05 Ekg 43.031 163.3 210.5 233.07 233.07 177.9 0.234	.56 OK 233.0438 0.00 0.01 234 OK 233.0438 0.00 0.01	у.	зтр
---	--	----	-----

VD1:eadings, mV

284.0 Hg0 Hg0 00.43 0127 02.11 02.55

💹 CVAFS Detector (mV) 🕆 Extra Peaks 🔛 MainPeak baseline

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev 0 00	BlShift 0 03	Comment	
1610609-06 MeHg 1610609-06 EHg	25.554 100.460	83.5 163.9	115.0 215.2	233.05 233.05 233.05	233.06 233.06 233.06	92.1 178.5	0.206 0.533	OK OK	233.0337 233.0337 233.0337	0.00	0.03 0.03		016

AD readings, mV

🛛 📷 CVAFS Detector (mV) 🛛 Extra Peaks 🛛 🖓 MainPeak baselin	CVAFS Detector (mV)	🛾 Extra Peaks] 🖲	MainPeak baseline
--	---------------------	-------------------	-------------------

Page 116	Name 1610609-07 Hg0 1610609-07 MeHg 1610609-07 EHg	Area 23.354 27.461 99.017	Start Time 27.9 83.3 159.0	EndTime 68.8 123.6 210.8	StartValue 233.04 233.04 233.05	EndValue 233.05 233.06 233.07	Peak Max 37.2 91.8 178.2	PeakHeight 0.157 0.205 0.536	Flags OK OK OK	Baseline 233.0389 233.0389 233.0389 233.0389	BlDev 0.00 0.00 0.00	BlShift 0.03 0.03 0.03	Comment)16
of 290														

AD readings, mV

#28: 1610609-08

CVAFS Detector (mV) Extra Peaks MainPeak baseline

	Page 117 of 29	Name 1610609-08 HgC 1610609-08 MeHg 1610609-08 EHg	Area 23.386 4.181 96.595	Start Time 27.3 83.8 163.0	EndTime 68.4 107.5 216.5	StartValue 233.03 233.04 233.05	EndValue 233.05 233.06 233.06 233.06	Peak Max 36.7 91.4 178.1	PeakHeight 0.154 0.040 0.512	Flags OK OK OK	Baseline 233.0305 233.0305 233.0305	BlDev 0.00 0.00 0.00	Blshift 0.03 0.03 0.03 0.03	Comment	016
--	----------------	---	-----------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---	---------	-----

N28: 1510610-05

📴 CVAFS Detector (mV) 🛛 Extra Peaks 🔄 MainPeak baseline

Name 1610610-05 Hg0 1610610-05 MeHg 1610610-05 EHg	Area 29.440 30.959 42.845	Start Time 27.7 81.7 164.0	EndTime 68.7 114.6 210.3	StartValue 233.02 233.04 233.05	EndValue 233.05 233.06 233.05	Peak Max 38.7 92.0 178.6	PeakHeight 0.202 0.243 0.233	Flags OK OK OX	Baseline 233.0293 233.0293 233.0293	BlDev 0.00 0.00 0.00	BlShift (0.03 0.03 0.03	Comment	J16
---	------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	-----------------------------------	---------	-----

AD readings, mV

#30: 1610617-05

🗱 CVAFS Detector (mV) 🗄 Extra Peaks 🧾 MainPeak baseline

	Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment	
	1610617-05 Hg0	18.725	23.3	65.1	233.02	233.04	37.7	0.122	OK	233.0174	0.00	0.04		216
L	1610617-05 MeHg	3.948	83.0	104.5	233.04	233.04	91.3	0.039	OK	233.0174	0.00	0.04		110
	1610617-05 EHg	25.047	164.9	214.6	233.04	233.05	177.7	0.140	OK	233.0174	0.00	0.04		

AO readings, mV

#31: 1610618-11

CVAFS Detector (mV) Extra Peaks MainPeak baseline

Page 120 of	Name 1610618-11 Hg0 1610618-11 MeHg 1610618-11 EHg	Area 18.754 72.148 27.056	Start Time 20.2 81.9 164.1	EndTime 67.8 124.6 213.9	StartValue 233.03 233.04 233.03	EndValue 233.04 233.05 233.03	Peak Max 36.5 92.0 177.9	PeakHeight 0.115 0.534 0.135	Flags OK OK OK	Baseline 233.0220 233.0220 233.0220	BlDev 0.00 0.00 0.00	BlShift 0.02 0.02 0.02 0.02	Comment	016
290														

#32: 1610860-01

Name 1610860-01 Hg0 1610860-01 MeH 1610860-01 EHg	Area 27.565 g 46.245 113.915	Start Time 27.0 83.] 160.6	e EndTime 69.9 126.2 219.2	StartValue 233.02 233.04 233.05	EndValue 233.04 233.05 233.05	Peak Max 37.1 92.1 178.1	PeakHeigh 0.170 0.343 0.595	t Flags CT OK OK	Baseline 233.0242 233.0242 233.0242	BlDev 0.00 0.00 0.00	BlShift 0.02 0.02 0.02 0.02	Comment	016
--	---------------------------------------	-------------------------------------	-------------------------------------	--	--	-----------------------------------	--------------------------------------	---------------------------	--	-------------------------------	---	---------	-----

👹 CVAFS Detector (mV) É Extra Peaks 🧾 MainPeak baseline

Page 122 of	Name SEQ-CCV2 Hg0 SEQ-CCV2 MeHg SEQ-CCV2 EHg	Area 182.776 300.092 232.168	Start Time 27.1 81.4 162.1	EndTime 69.9 128.7 217.9	StartValue 233.03 233.06 233.05	EndValue 233.07 233.07 233.07 233.07	Peak Max 38.8 91.6 177.5	PeakHeight 1.429 2.185 1.229	Flags CT OK OK	Baseline 233.0252 233.0252 233.0252 233.0252	BlDev 0.00 0.60 0.00	BlShift 0.04 0.04 0.04 0.04	Comment	016
290														

and the second second second

#34: SEQ-CCB2

Name SEQ-CCB2 Hg0 SEQ-CCB2 MeHg SEQ-CCB2 EHg	Area 21.552 4.550 27.167	Start Time 8.3 83.7 164.7	e EndTime 69.7 112.7 211.4	StartValu 233.02 233.03 233.04	e EndValue 233.03 233.04 233.05	Peak Max 37.0 90.8 177.9	PeakHeig) 0.134 0.031 0.149	nt Flags OK OK OK	Baseline 233.0179 233.0179 233.0179 233.0179	BlDev 0.00 0.00 0.00	BlShift 0.03 0.03 0.03	Comment	216
---	-----------------------------------	------------------------------------	-------------------------------------	---	--	-----------------------------------	--------------------------------------	----------------------------	--	-------------------------------	---------------------------------	---------	-----

AD readings. mV

CVAFS Detector (mV) * Extra Peaks 🔄 MainPeak baseline

Name Area Start Time EndTime StartValue EndValue Peak Max PeakHeight Flags Baseline BlDev BlShift Comme 1610860-02 Hg0 25.393 16.7 69.9 233.01 233.04 36.3 0.167 CT 233.017 0.00 0.04 1610860-02 Hg0 25.393 16.7 69.9 233.04 233.04 36.3 0.167 CT 233.0117 0.00 0.04 1610860-02 Hg0 126.5 82.4 124.8 233.04 233.04 92.1 0.306 OK 233.0117 0.00 0.04 1610860-02 EHg 123.160 164.1 219.6 233.04 233.05 177.9 0.646 OK 233.0117 0.00 0.04	nt 016
--	-----------

EPA1630

Name 1610860-03 Hg0 1610860-03 MeHg 1610860-03 EHg	Area 34.089 59.415 251.122	Start Time 28.4 82.1 160.0	EndTime 68.9 125.5 219.8	StartValue 233.02 233.03 233.04	EndValue 233.04 233.05 233.06	Peak Max 37.6 92.6 178.6	PeakHeight 0.234 0.442 1.326	Flags OK OK CT	Baseline 233.0222 233.0222 233.0222	BlDev 0.00 0.00 0.00	BlShift 0.04 0.04 0.04	Comment	316
---	-------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

AD readings, mV

#37: 1610860-04

CVAFS Detector (mV) Extra Peaks 🔤 MainPeak baseline

Name 1610860-04 Hg0 1610860-04 MeHg 1610860-04 EHg	Area 25.484 38.583 118.083	Start Time 25.1 82.8 161.5	EndTime 67.0 115.3 216.2	StartValue 233.02 233.04 233.04	e EndValue 233.04 233.05 233.06	Peak Max 36.8 92.2 178.4	PeakHeight 0.175 0.310 0.631	- Flags OK OK OK	Baseline 233.0253 233.0253 233.0253	BlDev 0.00 0.00 0.00	BlShift C.D4 C.O4 O.O4 O.O4	Comment	216
---	-------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	---------------------------	--	-------------------------------	---	---------	-----

Page 126 of 290

SULVERSA NEW YORK NEW YORK

#38: 1610860-05

Page 12	Name 1610860-05 Hg0 1610860-05 MeHg 1610860-05 EHg	Area 19.895 20.242 34.068	Start Time 27.3 82.5 155.4	EndTime 66.8 122.9 216.2	StartValue 233.01 233.04 233.03	EndValue 233.03 233.04 233.04	Peak Max 37.9 91.8 178.7	PeakHeight C.125 O.141 O.169	Flags OK OX OK	Baseline 233.0145 233.0145 233.0145	BlDev 0.00 0.00 0.00	BlShift 0.03 0.03 0.03 0.03	Comment	216
27 of 290														

CVAFS Detector (mV) Extra Peaks MainPeak baseline

Name 1610860-06 Hg0 1610860-06 MeHg	Area 19.106 11.405 56.120	Start Tím 26.3 80.3 163 0	e EndTime 69.9 112.4 219.4	StartValı 233.01 233.03 233.04	ue EndValue 233.03 233.03 233.04	Peak Max 36.4 92.1 177.7	PeakHeigh 0.116 0.088 0.305	nt Flags CT OK OK	Baseline 233.0181 233.0181 233.0181	BlDev 0.00 0.00 0.00	BlShift 0.02 0.02 0.02 0.02	Comment	
1610860-06 EHg	56.120	163.0	219.4	233.04	233.04	177.7	0.305	ОK	233.0181	0.00	0.02		

AD readings. mV

CVAFS Detector (mV) Éxtra Peaks []]] MainPeak baseline

Name 1610860-07 Hg0 1610860-07 MeHg 1610860-07 EHg	Area 16.600 10.164 28.870	Start Time 28.7 84.3 165.3	EndTime 69.9 113.6 212.6	StartValue 233.01 233.03 233.03	EndValue 233.02 233.03 233.03	Peak Max 37.3 91.7 180.0	PeakHeight 0.113 0.088 0.152	Flags CT OK OK	Baseline 233.0143 233.0143 233.0143	BlDev 0.00 0.00 0.00	BlShift 0.01 0.01 0.01 0.01	Comment) 16
---	------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---	---------	-------------
#41: 1610860-08

CVAFS Detector (mV) * Extra Peaks MainPeak baseline

1610860-08 EHg 28.037 160.7 212.7 233.02 233.02 178.5 0.142 OK 233.0104 C.OC 0.02 OF 20 20 20 20 20 20 20 20 20 20
--

CVAFS Detector (mV) Extra Peaks MainPeak baseline

Page 131 of 2:	Name 1610860-09 Hg0 1610860-09 MeHg 1610860-09 EHg	Area 17.767 52.053 48.670	Start Time 14.3 82.7 165.4	EndTime 61.1 121.0 216.7	StartValue 233.00 233.01 233.02	EndValue 233.02 233.03 233.02	Peak Max 37.1 92.0 178.8	PeakHeight 0.121 0.391 0.265	Flags OK OK OK	Baseline 232.9969 232.9969 232.9969 232.9969	B1Dev 0.00 0.00 0.00	BlShift 0.03 0.03 0.03 0.03	Comment	216
290														

#43: 1610860-10

Name 1610860-10 Hg0 1610860-10 MeHç 1610860-10 EHg	Area 14.436 21.485 35.359	Start Time 14.1 83.4 161.1	EndTime 62.5 118.5 208.1	StartValue 233.00 233.01 233.01	EndValue 233.01 233.02 233.02	Peak Max 36.0 92.3 178.7	PeakHeight 0.101 0.167 0.190	Flags OK OK OK	Baseline 232.9938 232.9938 232.9938	BiDev 0.00 0.00 0.00	BlShift 0.03 0.03 0.03	Comment	016
---	------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

CVAFS Detector (mV) Extra Peaks 🔯 MainPeak baseline

Page 133 of 2	Name 1610860-11 Hg0 1610860-11 MeHg 1610860-11 EHg	Area 19.483 43.869 110.273	Start Time 23.4 83.2 161.8	EndTime 68.2 125.6 218.9	StartValue 232.99 233.01 233.01	EndValue 233.00 233.00 233.03	Peak Max 35.9 91.9 178.1	PeakHeight 0.134 0.311 0.599	Flags OK OK OK	Baseline 232.9805 232.9805 232.9805 232.9805	B1Dev 0.00 0.00 0.00	BlShift 0.05 0.05 0.05 0.05	Comment)16
290														

👹 CVAFS Detector (mV) 🕆 Extra Peaks 🔝 MainPeak baseline

Name SEQ-CCV3 Hg0 SEQ-CCV3 MeHg SEO-CCV3 EHg	Area 369.979 277.406 220.838	Start Time 26.2 81.7 161.8	EndTime 69.9 125.2 217.0	StartValu 232.98 233.04 233.02	e EndValue 233.07 233.05 233.04	Peak Max 38.6 92.0 178.1	PeakHeight 3.011 2.058 1.185	Flags CT OK OK	Baseline 232.9800 232.9800 232.9800	B1Dev 0.00 0.00 0.00	BlShift 0.07 0.07 0.07	Comment	016
---	---------------------------------------	-------------------------------------	-----------------------------------	---	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

#46: SEQ-CCB3

CVAFS Detector (mV) Extra Peaks MainPeak baseline

Page 135	Name SEQ-CCB3 Hg0 SEQ-CCB3 MeHg SEQ-CCB3 EHg	Area 17.836 1.744 19.616	Start Time 9.0 86.8 166.9	EndTime 62.3 101.8 202.8	StartValue 232.98 233.00 233.01	EndValue 233.00 233.00 233.01	Peak Max 37.3 94.3 177.8	PeakHeight 0.133 0.020 0.117	Flags OK OK OK	Baseline 232.9728 232.9728 232.9728 232.9728	BlDev 6.00 0.00 0.00	BlShift 0.03 0.03 0.03 0.03	Comment)16
of 290														

#47: F611293-BLK4

CVAFS Detector (mV) Extra Peaks MainPeak baseline

Name F611293-BLK4 Hg F611293-BLK4 Me ¤611293-BLK4 EH	Area 50.392 26.613 1110.351	Start Time 18.8 82.7 160.7	EndTime 67.8 112.3 219.8	StartValue 232.98 233.01 233.01	EndValue 233.00 233.00 233.10	Peak Max 35.7 91.5 177.8	PeakHeight 0.485 0.214 5.922	Flags OK OK CT	Baseline 232.9753 232.9753 232.9753	BlDev 0.00 0.00 0.00	BlShift 0.13 0.13 0.13 0.13	Comment	316
---	--------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---	---------	-----

#48: F611293-BLK5

Name F611293-BLK5 F611293-BLK5 F611293-BLK5	Area Ig 38.709 Me 29.718 MH 564.779	Start Time 27.4 82.8 161.3	EndTime 68.3 126.3 219.8	StartValue 232.97 233.00 233.00	EndValue 233.00 233.00 233.05	Peak Max 36.0 91.9 177.9	PeakHeight 0.343 0.222 2.996	Flags OK OK CT	Baseline 232.9784 232.9784 232.9784	BlDev 0.00 0.00 0.00	BlShift 0.07 0.07 0.07	Comment	016
--	--	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

#49: F611293-BLK6

🗱 CVAFS Detector (mV) 🗄 Extra Peaks [🔄 MainPeak baseline

Page 138 of 2	Name F611293-BLK6 Hg F611293-BLK6 Me F611293-BLK6 EH	Area 20.623 30.907 178.894	Start Time 17.7 81.8 161.2	EndTime 54.4 138.5 218.3	StartValue 232.98 233.00 233.00	EndValue 233.00 233.00 233.02	Peak Max 35.8 92.0 177.9	PeakHeight 0.196 0.214 0.956	Flags OK OK OK	Baseline 232.9846 232.9846 232.9846 232.9846	BlDev 0.00 0.00 0.00	BlShift 0.04 0.04 0.04 0.04	Comment	016
290														

CVAFS Detector (mV) Extra Peaks MainPeak baseline

Name 1610785-01RE1 1610785-01RE1 1610785-01RE1	Area H 43.036 M 389.192 E 582.868	Start Tim 24.4 81.4 160.2	e EndTime 69.9 148.7 219.8	StartValu 232.99 233.01 233.02	e EndValue 233.01 233.02 233.07	Peak Max 35.8 91.9 177.7	PeakHeight 0.405 2.782 3.122	Flags CT OK CT	Baseline 232.9864 232.9864 232.9864	BlDev 0.00 0.00 0.00	BlShift 0.09 0.09 0.09	Comment	016
---	--	------------------------------------	-------------------------------------	---	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

#51: 1610785-02RE1

Name 1610785-02RE1 1610785-02RE1 1610785-02RE1	Area H 38.823 M 444.337 E 514.418	Start Tim 23.4 81.5 153.7	e EndTime 68.4 147.8 219.8	StartValu 232.99 233.02 233.03	e EndValue 233.01 233.02 233.07	Peak Max 35.6 91.8 177.7	PeakHeight 0.400 3.225 2.745	Flags OK OK CT	Baseline 232.9896 232.9896 232.9896 232.9896	BlDev C.OC O.OO O.OO	BlShift 0.08 0.08 0.08 0.08	Comment	016
---	--	------------------------------------	-------------------------------------	---	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---	---------	-----

#52: 1610785-03RE1

CVAFS Detector (mV) Extra Peaks MainPeak baseline

1 1610785-03RE1 E 271,785 156.9 219.3 233.04 233.07 177.6 1.450 OK 233.0010 0.00 0.06 91 12 12 12 12 12 12 12 12 12 1	Page 141 of 29	Name 1610785-03RE1 1610785-03RE1 1610785-03RE1	Area H 34.045 M 366.223 E 271.785	Start Time 23.1 79.9 156.9	EndTime 59.1 143.7 219.3	StartValue 233.00 233.03 233.04	EndValue 233.03 233.03 233.07	Peak Max 35.8 91.7 177.6	PeakHeight 0.328 2.623 1.450	Flags OK OK OK	Baseline 233.0010 233.0010 233.0010	BlDev 0.00 0.00 0.00	Blshift 0.06 0.06 0.06	Comment	216
--	----------------	---	--	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

Page 142 of 2	Name 1610785-04RE1 1 1610785-04RE1 1 1610785-04RE1 1	Area H 47.026 M 358.844 E 537.589	Start Time 23.3 79.9 161.3	EndTime 68.8 144.5 219.8	StartValue 233.03 233.05 233.05 233.05	EndValue 233.04 233.05 233.10	Peak Max 35.9 91.8 177.7	PeakHeight 0.421 2.561 2.835	Flags OK OK CT	Baseline 233.0234 233.0234 233.0234	BlDev 0.00 6.00 0.00	BlShift 0.08 0.08 0.08 0.08	Comment	016
290														

#54: 1610828-01RE1

CVAFS Detector (mV) Extra Peaks MainPeak baseline

	Page 143 of 2	Name 1610828-01RE1 1610828-01RE1 1610828-01RE1	Area H 84.661 M 551.877 E 1128.740	Start Time 23.5 80.4 150.7	EndTime 69.9 145.7 219.8	StartValue 233.04 233.06 233.07	EndValue 233.07 233.07 233.17	Peak Max 35.7 91.7 177.5	PeakHeight C.764 3.928 5.978	Flags CT OK CT	Baseline 233.0314 233.0314 233.0314 233.0314	BlDev 6.00 0.00 0.00	BlShift 0.14 0.14 0.14	Comment	016
--	---------------	---	---	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

📓 CVAFS Detector (mV) 🗄 Extra Peaks 💹 MainPeak baseline

Name 1610786-02RE1 1610786-02RE1 1610786-02RE1	Area H 51.368 M 320.802 E 382.378	Start Time 23.3 81.5 161.3	EndTime 66.4 134.6 219.8	StartValu 233.04 233.07 233.07	e EndValue 233.07 233.08 233.11	Peak Max 35.4 91.8 177.7	PeakHeight 0.444 2.310 2.028	Flags OK OK CT	Baseline 233.0374 233.0374 233.0374	BlDev 0.00 0.00 0.00	BlShift 0.08 0.08 0.08 0.08	Comment)16
---	--	-------------------------------------	-----------------------------------	---	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---	---------	-----

10000

#56: 1610786-03RE1

Page 12	Name 1610786-03RE1 H 1610786-03RE1 M 1610786-03RE1 E	Area 1 58.418 1 665.786 1 427.313	Start Time 28.1 79.5 160.9	EndTime 65.8 148.1 218.6	StartValue 233.05 233.08 233.09	EndValue 233.08 233.09 233.12	Peak Max 35.9 92.0 177.9	PeakHeight 0.542 4.775 2.260	Flags OK OK OK	Baseline 233.0556 233.0556 233.0556	B1Dev 0.00 0.00 0.00	BlShift 0.07 0.07 0.07	Comment	216
l5 of 290														

CVAFS Detect	tor (mV) ³	Extra Peaks	<u></u>	MainPeak baseline
--------------	-----------------------	-------------	---------	-------------------

Name SEQ-CCV4 Hg0 SEQ-CCV4 MeHg SEQ-CCV4 EHg	Area 315.855 288.853 235.636	Start Time 25.4 81.1 161.8	e EndTime 69.9 126.9 219.8	StartValu 233.06 233.13 233.11	e EndValue 233.15 233.13 233.11	Peak Max 38.8 91.9 177.9	PeakHeight 2.486 2.101 1.235	Flags CT OK CT	Baseline 233.0678 233.0678 233.0678	BlDev 0.00 0.00 0.00	BlShift 0.04 0.04 0.04 0.04	Comment	016
---	---------------------------------------	-------------------------------------	-------------------------------------	---	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---	---------	-----

Page 146 of 290

Page 1	Name SEQ-CCB4 Hg0 SEQ-CCB4 MeHg SEQ-CCB4 EHg	Area 26.877 5.001 24.884	Start Time 17.0 84.4 165.8	EndTime 68.8 106.3 216.1	StartValue 233.07 233.09 233.09	EndValue 233.09 233.09 233.09 233.09	Peak Max 36.1 90.8 177.7	PeakHeight 0.187 0.045 0.132	Flags OK OK OK	Baseline 233.0617 233.0617 233.0617	BlDev 0.00 0.00 0.00	BlShift 0.03 0.03 0.03	Comment	016
47 of 290														

	CVAFS	Detector	(mV)	Extra Peaks	MainPeak baseline
--	-------	----------	------	-------------	-------------------

Name 1610828-02RE 1610828-02RE 1610828-02RE	Area 1 H 163.648 1 M 456.774 1 E 1934.340	Start Time 25.4 79.7 158.4	EndTime 69.9 134.0 219.8	StartValue 233.06 233.11 233.11	e EndValue 233.12 233.12 233.27	Peak Max 35.9 91.6 177.3	PeakHeight 1.380 3.318 10.186	Flags CT OK CT	Baseline 233.0675 233.0675 233.0675	B1Dev 0.00 0.00 0.00	BlShift 0.20 0.20 0.20 0.20	Comment	J16
--	--	-------------------------------------	-----------------------------------	--	--	-----------------------------------	--	-------------------------	--	-------------------------------	---	---------	-----

Peak Chart for MMHg27001-161116-1

#60: 1610828-03RE1

Name 1610828-03RE 1610828-03RE 1610828-03RE	Area 1 H 266.524 1 M 412.767 1 E 3663.248	Start Tim 24.5 81.2 159.1	e EndTime 69.9 130.0 219.8	StartVal 233.07 233.13 233.11	ue EndValue 233.13 233.14 233.43	Peak Max 35.4 91.6 177.5	PeakHeigh 2.391 3.006 19.378	t Flags CT OK CT	Baseline 233.0659 233.0659 233.0659	BlDev 0.00 0.00 0.00	BlShift 0.37 0.37 0.37	Comment	016
--	--	------------------------------------	-------------------------------------	--	---	-----------------------------------	---------------------------------------	---------------------------	--	-------------------------------	---------------------------------	---------	-----

#61: 1610828-04RE1

CVAFS Detector (mV) Extra Peaks 🔄 MainPeak baseline

50 of 22	Page 150 of 29	Name Area 1610828-04RE1 H 366.165 1610828-04RE1 M 756.589 1610828-04RE1 E 3474.860	Start Time 15.7 74.4 159.8	EndTime 69.9 140.7 219.8	StartValue 233.06 233.13 233.13	EndValue 233.14 233.13 233.40	Peak Max 35.4 91.5 177.3	PeakHeight 3.278 5.448 18.503	Flags CT OK CT	Baseline 233.0576 233.0576 233.0576	B1Dev 0.00 0.00 0.00	BlShift 0.35 0.35 0.35 0.35	Comment)16
----------	----------------	---	-------------------------------------	-----------------------------------	--	--	-----------------------------------	--	-------------------------	--	-------------------------------	---	---------	-----

AND A REPORT OF A REPORT OF

#62: 1610828-05RE1

Page 1	Name 1610828-05RE1 H 1610828-05RE1 M 1610828-05RE1 E	Area 1 227.214 4 302.594 2 1409.840	Start Time 25.9 73.0 150.1	EndTime 69.8 129.4 219.8	StartValue 233.06 233.12 233.15	EndValue 233.12 233.12 233.22	Peak Max 35.3 91.8 177.7	PeakHeight 2.116 2.163 7.560	Flags CK CK CT	Baseline 233.0601 233.0601 233.0601	BlDev 0.00 0.00 0.00	BlShift 0.16 0.16 0.16 0.16	Comment	016
51 of 290														

#63: 1610786-01RE1

CVAFS Detector (mV) © Extra Peaks 🔄 MainPeak baseline

of 20	Page 152 of 29	Name 1610786-01RE1 H 1610786-01RE1 M 1610786-01RE1 E	Area 90.623 133.167 44.779	Start Time 25.4 81.9 164.2	EndTime 67.9 126.6 216.8	StartValue 233.06 233.08 233.09 233.09	EndValue 233.09 233.10 233.09	Peak Max 35.0 91.5 177.6	PeakHeight 0.747 0.976 0.234	Flags OK OK OX	Baseline 233.0595 233.0595 233.0595 233.0595	BlDev 0.00 0.00 0.00	BlShift 0.04 0.04 0.04 0.04	Comment	016
-------	----------------	---	-------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---	---------	-----

#64: 1610786-04RE1

CVAFS Detector (mV) * Extra Peaks 🔝 MainPeak baseline

s of 22	Page 153 of 29	Name 1610786-04RE1 1610786-04RE1 1610786-04RE1	Area H 76.668 M 346.507 E 58.350	Start Time 20.4 81.1 162.6	EndTime 68.1 136.5 218.2	StartValue 233.06 233.09 233.09	EndValue 233.08 233.09 233.09	Peak Max 35.2 91.5 177.4	PeakHeight C.623 2.434 C.311	Flags OK OK OK	Baseline 233.0509 233.0509 233.0509	B1Dev 0.00 0.00 0.00 0.00	BlShift 0.04 0.04 0.04	Comment	016
---------	----------------	---	---	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	---------------------------------------	---------------------------------	---------	-----

#65: 1610786-05RE1

CVAFS Detector (mV) [©] Extra Peaks MainPeak baseline

of 22

#66: 1610786-06RE1

CVAFS Detector (mV)	🔋 Extra Peaks 🗍	MainPeak baseline
---------------------	-----------------	-------------------

55 of 22	Page 155 of 29	Name 1610786-06RE1 H 1610786-06RE1 M 1610786-06RE1 E	Area 53.865 250.406 35.156	Start Time 24.6 79.9 164.0	EndTime 69.2 133.3 209.6	StartValue 233.06 233.08 233.09	EndValue 233.08 233.09 233.09 233.09	Peak Max 35.7 91.7 176.8	PeakHeight 0.422 1.777 0.186	Flags OK OK OK	Baseline 233.0589 233.0589 233.0589	BlDev 6.00 0.00 0.00	BlShift C.04 C.04 O.04 O.04	Comment	316
----------	----------------	---	-------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---	---------	-----

#67: 1610786-07RE1

CVAFS Detector (mV)	🗄 Extra Peaks 🔡 MainPeak baselin	۱Ġ
---------------------	----------------------------------	----

	Page 156 of 2:	Name Are 1610786-07RE1 H 84. 1610786-07RE1 M 130 1610786-07RE1 E 298	ea Start T .405 26.4)7.255 80.5 3.341 161.4	ime EndTime 69.9 146.7 219.8	StartValue 233.07 233.10 233.13	EndValue 233.10 233.14 233.13	Peak Max 36.4 91.8 177.5	PeakHeight 0.666 9.312 1.553	Flags CT OK CT	Baseline 233.0700 233.0700 233.0700	B1Dev 0.00 0.00 0.00	BlShift 0.06 0.06 0.06 0.06	Comment	216
--	----------------	---	---	---------------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---	---------	-----

#68: 1610786-08RE1

🗱 CVAFS Detector (mV) 🗄 Extra Peaks [🔄 MainPeak baseline

of 2	:		0.06 0.06 0.06 0.06	0.00 0.00 0.00	233.0669 233.0669 233.0669	OK OK OK	0.565 7.143 1.664	91.7 177.6	233.10 233.12 233.13	Startvalue 233.07 233.10 233.12	e EndTime 68.4 148.4 218.8	Start 71# 26.3 80.8 160.6	Area H 73.069 M 1003.336 E 315.531	Name 1610786-08RE1 1610786-08RE1 1610786-08RE1	Page 157 of 2
------	---	--	------------------------------	----------------------	----------------------------------	----------------	-------------------------	---------------	----------------------------	--	-------------------------------------	------------------------------------	---	---	---------------

CVAFS Detector (mV) * Extra Peaks 🔄 MainPeak baseline

Name SEQ-CCV5 Hg0 SEQ-CCV5 MeHg SEQ-CCV5 EHg	Area 355.949 323.940 253.230	Start Tim 26.8 81.7 162.3	e EndTime 69.9 128.4 219.8	StartValı 233.08 233.14 233.12	ue EndValue 233.18 233.15 233.14	Peak Max 38.4 91.8 177.7	PeakHeig) 2.638 2.361 1.352	nt Flags CT OK CT	Baseline 233.0766 233.0766 233.0766	BlDev 0.00 0.00 0.00	BlShift 0.07 0.07 0.07	Comment	016
---	---------------------------------------	------------------------------------	-------------------------------------	---	---	-----------------------------------	--------------------------------------	----------------------------	--	-------------------------------	---------------------------------	---------	-----

Vin .sganpeer Ok

#70: SEQ-CCB5

🞯 CVAES Detector	(mV) [†]	Extra Peaks	MainPeak baseline
			and the set of the set

Name SEQ-CCB5 Hg0 SEQ-CCB5 MeHg SEQ-CCB5 EHg	Area 40.424 6.095 29.783	Start Time 23.9 84.4 165.0	EndTime 66.2 106.4 212.9	StartValı 233.08 233.11 233.11	ue EndValue 233.11 233.11 233.11 233.11	Peak Max 35.5 91.4 176.4	PeakHeig 0.323 0.053 0.164	ht Flags OK OK OK	Baseline 233.0864 233.0864 233.0864	BlDev 0.00 0.00 0.00	BlShift 0.03 0.03 0.03	Comment	016
---	-----------------------------------	-------------------------------------	-----------------------------------	---	---	-----------------------------------	-------------------------------------	----------------------------	--	-------------------------------	---------------------------------	---------	-----

#71: 1610786-09RE1

CVAFS Detector (mV)	Extra Peaks	MainPeak baseline
---------------------	-------------	-------------------

160 of 22	Page 160 of 29	Name 1610786-09RE1 : 1610786-09RE1 : 1610786-09RE1 :	Area H 56.371 M 578.539 E 378.491	Start Time 5.8 79.5 160.5	EndTime 66.5 148.8 219.8	StartValue 233.09 233.11 233.12	EndValue 233.11 233.13 233.15	Peak Max 35.4 91.5 177.2	PeakHeight 0.505 4.162 1.998	Flags OK OK CT	Baseline 233.0847 233.0847 233.0847	BlDev 0.00 0.00 0.00	BlShift 0.07 0.07 0.07	Comment	016
-----------	----------------	---	--	------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

#72: 1610786-10RE1

CVAFS Detector (mV) Extra Peaks MainPeak baseline

Page 161 of 290	Name 1610786-10RE1 H 1610786-10RE1 M 1610786-10RE1 E	Area 33.858 225.777 75.400	Start Time 24.8 81.7 163.0	EndTime 63.8 139.1 219.8	StartValue 233.09 233.12 233.13	EndValue 233.12 233.12 233.12 233.14	Peak Max 35.7 91.5 177.4	PeakHeight 0.314 1.617 0.397	Flags OK OK CT	Baseline 233.0888 233.0888 233.0888 233.0888	BlDev 0.00 0.00 0.00	BlShift 0.65 6.05 0.05	Comment	216
-----------------	---	-------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

#73: 1610786-11RE1

CVAFS Detector (mV) Extra Peaks 🔛 MainPeak baseline

Page 162	Name 1610786-11RE1 1610786-11RE1 1610786-11RE1	Area H 36.514 M 180.731 E 58.139	Start Time 19.7 81.8 163.5	EndTime 69.2 146.1 211.0	StartValue 233.10 233.11 233.12	EndValue 233.12 233.12 233.13	Peak Max 35.6 91.4 177.5	PeakHeight C.281 1.271 C.303	Flags OK OK OK	Baseline 233.0938 233.0938 233.0938	B1Dev 0.00 0.00 0.00	BlShift 0.04 0.04 0.04	Comment)16
of 290														

I CVAES Detector ((mV) Extra Peaks	MainPeak baseline
		i in an in can baseline

Page 16	Name SEQ-CCV6 Hg0 SEQ-CCV6 MeHg SEQ-CCV6 EHg	Area 326.061 295.403 252.354	Start Time 24.8 80.0 162.6	EndTime 69.9 126.5 218.3	StartValue 233.10 233.16 233.14	EndValue 233.19 233.17 233.15	Peak Max 38.3 91.6 177.2	PeakHeight 2.418 2.190 1.341	Flags CT OK OK	Baseline 233.1012 233.1012 233.1012	BlDev 0.00 0.00 0.00	BlShift 0.06 0.06 0.06	Comment	016
3 of 290														

Page 16	Name SEQ-CCB6 Hg0 SEQ-CCB6 MeHg SEQ-CCB6 EHg	Area 29.288 3.693 21.365	Start Time 26.5 84.5 165.0	EndTime 62.4 104.9 206.4	StartValue 233.08 233.10 233.11	EndValue 233.10 233.10 233.11	Peak Max 35.2 92.0 177.2	PeakHeight 0.233 0.034 0.126	Flags OK OK OK	Baseline 233.0826 233.0826 233.0826	BlDev 0.00 0.00 0.00	BlShift 0.02 0.62 0.02	Comment)16
34 of 290														

Peer Review Check List for MHg for CV-GC-AFS (FGS-070) 2015 Rev 5 (08/06/2015)

Analyst:	Ryan Nelson	Sequence #:	6K17015	*****
Deter		Dataset ID #:	MHg27001-161116-1	
Date: Batch #(c)	V	WO #:	NA	
battin #(s);	F011340	Client(s):	NA	

• Select the correct preparation method.

Analyte	Prep Method		Matrix
🔲 MHg	SOP2797	MHg Distillation	Water
MHg	SOP2986	KOH/MeOH Digest	Tissue
MHg	SOP5134	MeCI Extraction	Sed/Soil

Additional Comments:

	Analyst I	initials:	Reviewer	Initials:			
1. Compare Sample ID with Bench sheet/Sequence/Raw Data (Have all samples been imported?)	VES	NO NO		I			
Check for transcription errors from Excel spreadsheet (or Prep Bench sheet)/Raw data	V YES	D NO	•	3			
(a) Reviewer: 100% of peak heights checked	YES	DNO		2			
(b) Are there peak height errors?	YES	NO NO		Ľ			
(c) Error on a sample: Do peak heights, responses, & initial results match corrected data?	YES	NO	✓ N/A	5			
(d) Error on a Cal Pt, ICB/CCB, or PB: Has the data been reimported?	YES	D NO	✓ N/A	9			
(e) Check standards & reagents in sequence & bench sheet for correct usage (i.e. expiries).	YES	NO	🗌 N/A	2			
(f) Check and compare masses (review prep bench sheet)	YES	NO NO	✓ N/A	2			
(g) Check and compare initial and final volumes	🗹 YES	NO	□ N/A				
(h) Do aliquots and dilutions written on benchsheet match those in Excel?	YES	NO NO	🗌 N/A	2			
(i) Is the pH>3.0 for all distilled samples?	🔽 YES	NO NO	N/A	2			
(j) Is the sequence #, analyst, date, and instrument # on the QC page?	YES	NO					
(k) Is the analysis status correct? (analyzed/initial review/reviewed)	YES	🗌 NO		- F			
(I) Original prep bench sheet added to data package?	YES	NO		ন			
(m) Benchsheet prep date MUST match actual prep date (check if re-shot vs re-extract)	VES	D NO		শ			
3. High QA? WO#(s)/Client(s):	YES	V NO		Ā			
4. Client specific QC? (if Yes, refer to Project Notes/LIMS)	_ ✓ YES	NO		শ			
(a) Have the QC requirements been met for all WO#s?	YES	NO		নি			
5. 20 or fewer samples in batch?	YES	[□ NO		- גו			
(a) 3 PBs, 1 LCS/LCSD (or BS/BSD), 2 MS/MSD/MD per batch?	YES			ন			
(b) 1 CCV and 1 CCB every 10 analytical runs?	✓ YES	— ∏ NO		لاما			
QA/QC Data Checked				<u>ل</u>			
6. The calibration curve included a minimum of 5 Standards	🔽 PASS	🔲 FAIL	N/A	P			
Comments:							
7. 1st Calibration Standard % Recoveries (65-135%)	PASS	FAIL					
Comments:			·····				
8. RSD CF (≤ 15%)	PASS		<u></u>				
Comments:							
Analyst:	Ryan Nelson	Sequence #:	6K17015				
-----------------	--	------------------------------	--	---------------	----------	--	-------------
Reviewer:	0	Dataset ID #;	MHg27001-161116-1				
Date:	11/17/2016	WO #:	NA				
Batch #(s):	F611346	Client(s):	NA				
				Analyst I	nitials:	Reviewer	Initials:
9. ICV % Reco	overies 67-133%			✓ PASS	FAIL	E	ľ
Comments:						• •	
10. CCV % Re	coveries 67-133%			🗹 PASS	FAIL		2
Comments:	<u></u>						
11. Are the ab	solute value of the ICB and CCBs	s < PQL?		✓ PASS	FAIL		<u>প</u>
Comments:							
12. LCS/LCSD,	/CRM/BS/BSD % Recoveries (70-	130%)		PASS	FAIL		
Comments:	·						
13. LCS/LCSD	or BS/BSD RPD (< 25%)			PASS	FAIL		1
Comments:							السبيها
14. Water: Ave	erage of Preparation Blanks < 0.0)45 ng/L and standard dev	aition of 0.015 pc/1.2	DASS			
Comments:	- ,						
15. Sediment/	Tissue: Individually, are the Prep	aration Blanks < POL for th	ne matriv?				
Comments:	// ···· = ···· • •				EATE	<u>(</u> • • • / A	
16. Have Tota	Solids been applied? (If NO, ple	ase ensure that they are d					
17. Is the corr	ect 'Source' designated for MD/M	S/MSD?	the of meany durie)	[] /ES		(<u>v</u>) N/A	
18. For digeste	ed preps: was there a spike with	ess signature & date on the	non hanch chast?	VES			er er
19. MD RPD/M	T RSD(< 35%)		prep bench sneet?			LJ N/A	 (
Comments:				C 1855			
20. Is there or	e set of MS/MSD per every 10 sa	moles?		D PASS	EAU	······································	1 11
Comments:		mpicat		C FA35			
21. MS/MSD R	PD(< 35%)						
Comments:	()			C 7A33			4
22. MS (AS) %	Recoveries (65-130%)			D PASS	EAU		
Comments:	OM-07			<u>e</u> 7735	C PAL		
23. MSD (ASD)	% Recoveries (65-130%)		······································				
Comments:	OM-07			M PASS	[√] FAIL		
24. Spiked 1-5	X ambient or 1-5X POL (whichow		~				
25. Are all sam	indes within instrument calibration	er is nigher) (from EPA 163	U)		[⊻] NO		Ľ
Comments:		i range (or at maximum ali	quot size)?	V YES	L] NO		2
26 For instrum							
Is the com	nental dilucions, is the allucion rac	tor in excel correct?		∐ PASS	<u> </u>	✓ N/A	
27 Dissolved	 Tetal metals (if an ill of the loss) 	lume of the dilution noted o	on benchsheet?	∐ PASS	∐ NO	✓ N/A	2
Commonte				∐ PASS	L NO	✓ N/A	9
20 Effluent	Toflyonk metals ()						
20. Enluent <	influent metals (visually confirm	if needed)		PASS	NO	✓ N/A	
Comments:							

Analyst:	Ryan Nelson	Sequence #:	6K17015							
Reviewer:	0	Dataset ID #:	MHg27001-161116-1							
Date:	11/17/2016	WO #:	NA							
Batch #(s):	F611346	Client(s):	NA							
				Analyst I	initials:	Reviewer	Initials:			
29. Are re-run	s noted with reason?			YES			<u> </u>			
Comments:										
30. For failing	QC (CCV, CCB, PB, BS/BSD, CAL):		YES	NO	✓ N/A	N			
Was a bubl	pler and trap test run before the	analytical run continued?								
Comments:										
31. Do re-run	results compare to initial analysis	s (< 35% RPD)?		YES			<u></u>			
Comments:	•	- ·					<u> </u>			
32. Are qualifi	ers consistent with the data revie	w flowcharts?		✓ YES	[] NO	□ N/A				
Comments:	QM-07				_	<u> </u>				
33. Have non-	reportable samples been importe	ed into LIMS and clicked to	non-reportable?	YES			7			
Comments				_						
34. Have re-ex	tracts been created for non-repo	ortable samples?		YES	NO					
35. Narrations	in MMO box in LIMS?				_	_				
Comments	·									
36. Are there	any HIGH QA projects within the	data?		YES	√ NO		~			
If so, place	e dataset to the QA office.			_						
37. Does the c	lata set need scanning?			YES						
Files located	at: \\Cuprum\gen_admin\Quali	ty Assurance\Training Ma	aster\DOCs							
38. Date of an	alyst IDOC/CDOC: 2/22	/2016 IDOC/CDOC with	hin last 12 months?	নি YES			ন			
39. Date of an	alyst's SOP reading:	6/8/2016 Current SOP rev	ision?	নি YES			নি			
40. Date of LC	D: 7/7/2016 LOD wit	hin last 3 months (within 12	months for MDN)2	✓ YES			 ۲			
41. Date of LC	Q: LOQ wit	hin last 3 months (within 12	months for MDN)?	VES			শ			
42. If MDN sar	nples, date of last MDL study:	,				termad "Y"				
43. MDL study	within last 12 months?	·····	- <u></u>	 YES	ΠNO	VA	াব			
Data can not	be reported without a current I	DOC/CDOC, LOD or LOO.			<u> </u>					
Additional C		· · , - • • • • • • • • • • • • • • • • • •								
nuoruoriar Con	ments:			YES	🔽 NO		1			

งสมกุรแกกสายสายสายคายสายการสายคายสายคายการสายคายการสายคายการสา

MMHg27001-161118-1 solids

eurofins

Frontier Global Sciences

Analysis Datasheet for Methyl Mercury in Soil/Tissue

Date of Analysis: November 18, 2016 Instrument #: Hg2700-1 LIMS Sequence #: 6K21025, 6K21026

Analyst: **RN** Units **ng/L**

Calibration Statistics:

LabNumber	n	True Val	Area	Uncorrected Response Factor	Corrected Peak	Corrected	
SEO CALL	1				neight	Response Factor	% Recovery
SEQ-CALL	1	0.05 ng/L	21.73 units	434.52	18.83 units	376.58	82.3 %Rec
SEQ-CAL2	1	0.20 ng/L	90.22 units	451.10	87.32 units	436.61	95.5 %Rec
SEQ-CAL3	1	1.00 ng/L	472.07 units	472.07	469.18 units	469 18	107.6 % Pec
SEQ-CAL4	1	2.00 ng/L	920.42 units	460.21	917 53 units	458 76	102.0 %Rec
SEQ-CAL5	1	4.00 ng/L	2184.34 units	546.08	2181 44 units	545 36	110 2 % Doc
SEQ-CAL6	0	φ.		0.0000	£101.11 (IIII)	J-J.JU	119.3 %Ket
SEQ-CAL7	0						
SEQ-CAL8	0						
SEQ-CAL9	0						

Corr. Mean RF	Corr. St Dev RF	Corr. RSD CF	Uncorr. Mean RF
457.30	+/- 60.91	13.3% RSD	472.80

Bianks:

LabNumber	Ŋ	Mean	Std Dev	Mean (ng/L)	Std Dev (ng/L)
SEQ-IBL	1	2.90 units		0.01 ng/L	#VALUE!

Preparation Blanks

Sample Type	Batch ID	n	Mean	Std Dev
BLK	1	6	1.078 ng/L	±3.729
BLK	2	3	0.011 ng/L	±0.002
BLK	3	3	0.008 ng/L	±0.009
BLK	4	0	0.000 ng/L	
BLK	5	0	0.000 ng/L	

QUALITY ASSUFIANCE PEER-REVIEWED INITIALS: DAM 121-16

.

	100000000	Sample	1.		Alexandrased	19	1	lincorrected	N- 01					
Instrument	Analyst	Туре	LabNumber	Dilution	Anaivzed	FileID	Run Fod	Recores Ratel	h ID Comonti			a de la constante de la constan La constante de la constante de	ele en en	
Hg2700-1	RN	CAL	SEO-IBL1 -	1	11/19/16 8-55	19105_1 DAW	9,55,30	Response batch	all correction	on? RESP	InitialResult	FinalResult	InitialUnits	Comments
Hg2700-1	RN	CAL	SEO-CAL1		11/18/16 0:06	19105-1 DAW	8:55:30	2.90	····	0.0	0.000	0.000	ng/L	
Hg2700-1	RN	CAL	SEO-CAL2 -	1	11/18/16 9:16	18107-1 PAW	9.00.00	21.73	\	18.8	0.041	0.041	ng/L	·
Hg2700-1	RN	CAL	SEO-CAL3 -	1	11/18/16 0:27	18109-1 DAW	9,10,31	90.22		87.3	0.191	0.191	ng/t.	
Hg2700-1	RN	CAL	SEO-CAL4	1	11/18/16 0.37	18109-1 PAW	9.27.02	472.07*		469.2	1.026	1.026	ng/L	
Hg2700-1	RN	CAL	SEO-CAL5 +	1	11/19/16 0:49	19110-1 DAW	9:37:32	920.42		917.5	2.006	2.006	ng/L	
Hg2700-1	RN	CAL	SEO-ICV1 -	····	11/18/16 0-59	18111.1 DAW	9:48:03	2189.39		2181.4	4.770	4.770	ng/L	
Hg2700-1	RN	CAL	SEO-ICB1 -	îi-	11/18/16 10:00	19117-1 DAW	9:56:34	13.91		11.0	0.024	0.024	ng/L	
Hq2700-1	RN	SAM	**F611352-BLK7 *	500	11/19/16 10:10	10112 1.04W	10.09.04	5.76		2.9	0.006	0.006	ng/L	
Hg2700-1	RN	SAM	**F611352-BLK8 -	500	11/18/16 10:20	10113-1.KAW	10:19:35	4.70+	×X	1.9	0.004	2.042	ng/L	
Hq2700-1	ŔŇ	SAM	**F611352-BLK9 -	500	11/18/16 0:00	CADTIDIANC	10:30:06	3.//-	X	0.9	0.002	0.953	ng/L	
Ho2700-1	RN	CAL	SEO-ICV2	1	11/10/10 0.00	10116 1 0414	11.00.25	0.04	X	-2.9	-0.006	-3.125	ng/L	
Ha2700-1	RN	CAL	SEO-ICB2 -		11/10/16 11:00	10110-1.KAW	11:00:35	235.77-		232.9	0.509	0.509	ng/L	
Hq2700-1	RN	BLK	-F611352-BIK7	500	11/18/16 11:11	10117-1.RAW	11:11:06	1.29-		-1.6	-0.004	-0.004	ng/L	
Hq2700-1	RN	BLK	TF611352-BLK8 -	500	11/18/16 11:22	10110-1.RAW	11.21:37	1.97	1	-0.9	-0.002	~1.012	ng/L	
Ha2700-1	RN	BLK	F611352-81K9 -	500	11/10/10 11:32	10119-1.RAW	11:32:07	1.54		-1.4	-0.003	-1.479	ng/L	
Ho2700-1	RN	SAM	1610618-028F1	500-	11/19/16 11:42	10120-1.KAW	11:42:38	0.00	1	~2.9	-0.006	-3.167	ng/L	
Hg2700-1	RN	SAM	T1610618-03RE1 -	500-	11/10/10 11.33	10121-1.RAW	11:53:09	390.96	1	388.1	0.846	423.225	ng/L	
Hq2700-1	RN	SAM	- 1610618-04RF1	2500	11/19/16 12:03	10122-1.KAW	12:03:39	285.64+	I	282.7	0.616	308.069	ng/L	
Ha2700-1	RN	SAM	+1610618-058F1~	2500	11/10/10 12.14	10123-1.KAW	12:14:10	310.73-	1	307.8	0.673	1681.805	ng/L	
Ha2700-1	RN	SAM	- 1610618-06RE1-	500	11/10/10 12.24	10124-1.KAW	12:24:41	217.15		214.3	0.468	1170.230	ng/L	
Ho2700-1	RN	SAM	1610618-07RE1 =	2500-	11/10/10 12:35	10120-1.KAW	12:35:11	4/6.52	1	473.6	1.034	516.767	ng/L	
Ha2700-1	RN	SAM	-1610618-08RF1 -	2500	11/10/10 12:45	10120-1.RAW	12:45:42	13/4.82	1	1371.9	3.000	7499.077	лg/L	
Hq2700-1	RN	CAL	SEO-CCV1 -	1	11/18/16 12:00	1012/-1.RAW	12:50:13	832.81		829.9	1.814	4535.953	ng/L	
Hg2700-1	RN	CAL	SEO-CCB1 -	1	11/10/16 13:00	10120-1.RAW	13:00:43	231.20-		228.3	0.499	0.499	ng/L	
Hg2700-1	RN	BLK	-F611388-BLK1 -	1 25	11/10/16 13:17	10129-1.RAW	13:17:14	5.10		2.2	0.005	0.005	ng/L	
Hg2700-1	RN	BLK '	F611388-BLK2 -	1 25	11/18/16 13:39	19121-1 DAW	13:27:45	7,15*		4.3	0.009	0.012	ng/L	
Ha2700-1	RN	BLK	F611388-BLK3 -	1.25	11/10/10 13:30	10131-1.KAW	13:38:15		2!	3.0	0.007	0.008	ng/L	
Hq2700-1	RN	SAM	+F611388-BS1 -	1 25	11/18/16 13:40	19122-1.RAW	13:48:40	/.38-	Z	4.5	0.010	0.012	ng/L	
Hq2700-1	RN	SAM	F611388-BSD1 -	1.25	11/19/16 14:00	19174-1 DAW	13:59:17	405.30	2	402.4	0.871	1.089	ng/L	
Hq2700-1	RN	SAM	F611388-DUP1 -	1 25	11/10/10 14:09	10134-1.RAW	14:09:47	393.09*	2	390.2	0.845	1.056	ng/L	
Hq2700-1	RN	SAM ·	+F611388-MS1 -	1 25	11/18/16 14:20	18176-1 Dater	14:20:18	4//.//+		474.9	1.030	1.287	ng/L	
Hg2700-1	RN	SAM	F611388-MSD1+	1 25	11/18/16 14:41	18137-1 DAW	14:30:49	927.494	2	924.6	2.013	2.517	ng/L	
Hg2700-1	RN	SAM	F611388-MS2 -	1.25	11/18/16 14:51	18138-1 PAW	14:41:20	937,41	- 2	934.5	2.035	2.544	ng/L	
Hg2700-1	RN	SAM *	F611388-MSD2 -	1.25	11/18/16 15:07	18170-1 PAW	15:03:32	420.834	2	417.9	0.905	1.132	ng/L	
Hg2700-1	RN	CAL	SEO-CCV2 -	1	11/18/16 15:12	18140-1 PAW	15-13-52	433.98	2	431.1	0.934	1.168	ng/L	
Hq2700-1	RN	CAL	SEO-CCB2 ~		11/18/16 15:33	18141-1 DAW	15:12:53	203.14		260.2	0.569	0.569	ng/L	
Hg2700-1	RN	SAM	1610654-01 -	1 25	11/18/16 15:23	18142-1 DAW	15:23:24	5.70-		3.9	0.008	0.008	ng/L	
Hg2700-1	RN	SAM -	1610654-03 -	1.25	11/18/16 15:44	18143-1 DAW	15:33:34	518.99		516.1	1.120	1.400	ng/L	
Hg2700-1	RN	SAM -	1610654-05 *	1.25	11/18/16 15:54	18144-1 RAW	15:54:56	D14.04	2	511.6	1.110	1.388	ng/L	
Hg2700-1	RN	SAM	1610654-07 -	1.25	11/18/16 16:05	18145-1 PAW	16:05:26	204.70	2	442.6	0.959	1.199	ng/L	
Hg2700-1	RN	SAM	+610654-09 -	1.25	11/18/16 16:15	18146-1 PAW	16.15.57	374./01	4	391.9	0.848	1.060	ng/L	
Hg2700-1	RN	SAM -	1610654-11	1.25	11/18/16 16:26	18147-1 PAW	10:13:57	439.04#	2	436.1	0.945	1.181	ng/L	
Hg2700-1	RN	SAM	1610654-13 -	1.25	11/18/16 16:26	18148-1 RAW	16-26-59	9 70	2	415.7	0.901	1.126	ng/L	
Hg2700-1	RN	SAM	1610740-01 -	1.25	11/18/16 16:47	18140-1 DAW	16:47:30	0./Y*	2	5.9	0.004	0.005	ng/L	
Hg2700-1	RN	SAM	1610740-02-	1.25	11/18/16 16:58	18150-1 DAW	10:17:29	3.61	2	0.9	-0.007	-0.008	ng/L	
					10,10(10,10:30	10130-1.RAW	10:20:00	4./1	4	1.8	-0.005	-0.006	ng/L	

υ.

unununanus

0000		Sample	1		- Minister Anna Anna			Uncorrected		No DB					
Instrument	Analyst	Туре	LabNumber	Dilution	Analyzed	FileID	Run End	Response	Ratch ID	Correction?	DECO		ing ang databat ng papan Tanan kuna ang papan	AND	_
Hg2700-1	RN	SAM	+1610785-05 -	1.25	11/18/16 17:08	18151-1 DAW	17:08-20	3.24	Dutan 10	Correction	RESP	InitialKesult	FinalResult	InitialUnits	Comments
Hg2700-1	RN	CAL	SEQ-CCV3 -	1	11/18/16 17:19	18152-1 RAW	17:10:01	3.31	·2		0.4	-0.008	-0.010	ng/L	
Hg2700-1	RN	CAL	SEQ-CCB3 *	1	11/18/16 17:29	18153-1 RAW	17.19.01	207.44			264.5	0.578	0.578	ng/L	
Hg2700-1	RN	SAM	- 1610786-12-	1.25	11/18/16 17:40	18154-1 PAW	17:29.32	3.31			0.4	0.001	0.001	ng/L	
Hg2700-1	RN	SAM	*1610828-10 -	1.25	11/18/16 17:50	18155-1 RAW	17:50:32	5.70			0.8	-0.007	-0.008	ng/L	
Hg2700-1	RN	SAM	+1610860-12-	1.25	11/18/16 18:01	18156-1 RAW	19-01-04	0.10			3.3	-0.001	-0.002	ng/L	
Hg2700-1	RN	SAM	*1610860-13 -	1.25	11/18/16 18-11	18157-1 RAW	19:11:24	17./14	<u>2</u>		11.8	0.017	0.022	ng/L	
Hg2700-1	RN	SAM	1610860-14-	1.25	11/18/16 18:22	18158-1 RAW	19.72-05	17.75	2		44.8	0.090	0.112	ng/L	
Hg2700-1	RN	SAM	- 1610860-15-	1.25	11/18/16 18:32	18159-1 PAW	18 27 26	17.9/1			15.1	0.024	0.030	ng/L	
Hg2700-1	RN	SAM	+1610860-16-	1.25	11/18/16 18:43	18160-1 RAW	18:43:06	32.72			29.8	0.057	0.071	ng/L	
Hg2700-1	RN	SAM	+1610860-17 -	1.25	11/18/16 18:53	18161-1 RAW	18:53:37	1.05	2!		25.6	0.048	0.059	ng/L	
Hg2700~1	RN	SAM	1610860-18 -	1.25	11/18/16 19:04	18162-1 PAW	10.04.09	1.05			-1.9	-0.013	-0.016	ng/L	
Hg2700-1	RN	SAM	1611168-01-	1.25	11/18/16 19:14	18163-1 PAW	10-14-20	5.00			-1.2	-0.011	-0.014	ng/L	
Hg2700-1	RN	CAL	SEQ-CCV4 *	1	11/18/16 19:25	18164-1 PAW	19.25.00	5.70+	4		2.8	-0.002	~0.003	ng/L	
Hg2700-1	RN	CAL	SEQ-CCB4 -	1	11/18/16 19:35	18165-1 RAW	19:25:40	1.05			263.3	0.576	0.576	ng/L	
Hg2700-1	RN	BLK	+F611323-BLK4 -	1	11/18/16 19:46	18166-1 PAW	10:46:11	1.05			-1.8	-0.004	-0.004	ng/L	
Hg2700-1	RN	BLK	+F611323-BLK5 -	- I	11/18/16 19:56	18167-1 PAW	19.40.11	11.20	3		8.3	0.018	0.018	ng/L	
Hg2700-1	RN	BLK	+F611323-BLK6-	14	11/18/16 20:07	18168-1 RAW	20-07-12	1.03			2.0	0.004	0.004	ng/L	
Hg2700-1	RN	SAM	+1610865-03RE1~	125+	11/18/16 20:07	18160-1 DAW	20.07.12	3.22			0.3	0.001	0.001	ng/L	
Hg2700-1	RN	SAM	- 1611082-01RE1 -		11/18/15 20:28	18170-1 PAW	20.17.43	174.44			441.8	0.966	120.761	ng/L	
Hg2700-1	RN	SAM	+1610618-09RE1 -	500	11/18/16 20:38	18171-1 DAW	20.28.13	743.44			1/1.5	0.367	0.367	ng/L	
Hg2700-1	RN	SAM	-1610618-10RE1 -	500	11/18/16 20:30	18172-1 PAW	20.30.44	142.44		····	/39.5	1.615	807.516	ng/L	
Hg2700-1	RN	SAM	-1611293-02RE1 -	500	11/18/16 20:59	18173-1 DAW	20.45.15	107.11	<u>+</u>		464.5	1.014	506.811	ng/L	
Hg2700-1	RN	SAM -	1611293-03RE1 >	2500	11/18/16 21:10	18174-1 PAW	20.39.45	1402 52	·		119.2	0.259	129.258	ng/L	
Hg2700-1	RN	SAM	1611293-04RE1 -	2500	11/18/16 21:20	18175-1 RAW	21.10.10	1025 564	<u>+</u>		1490.6	3.259	8148.042	ng/L	
Hg2700-1	RN	CAL	SEO-CCV5 -	1	11/18/16 21:31	18176-1 RAW	21.20.77	206.00-			1032.7	2.258	5644.464	ng/L	
Hg2700-1	RN	CAL	SEO-CCB5 ~		11/18/16 21:41	18177-1 PAW	21.51.17	300.094			303.2	0.663	0.663	ng/L	
Hg2700-1	RN	SAM	+1611293-05RE1 -	2500	11/18/16 21:57	18178-1 PAW	21.71.70	1002.05			4.3	0.009	0.009	ng/L	
Hg2700-1	RN	SAM	1611293-06RE1 -	2500	11/18/16 22:02	18179-1 RAW	21.52.19	1003.034			1801.0	3.938	9844.506	ng/L	· · · · · · · · · · · · · · · · · · ·
Ha2700-1	RN	SAM	1611293-07RE1 -	2500	11/18/16 22:02	18180-1 DAW	13,12,30	1093.20	<u>+</u>		1042.4	2.279	5697.392	ng/L	
Hg2700-1	RN	SAM	F611352-DUP2 -	500-	11/18/16 22:13	18181-1 PAW	22.13.20	1400.00			1485.9	3.249	8122.145	ng/L	
Hg2700-1	RN	SAM	F611352-MS3 -	500	11/18/16 22:23	10101-1.RAW	22:23:51	2/8.3/	1		275.5	0.600	300.115	ng/L	·····
Hq2700-1	RN	SAM	F611352-MSD3 -	500	11/18/16 77:44	19192-1 DAW	22.34.21	013.24	1		610.3	1.333	666.254	ng/L	
Ha2700-1	RN	BLK	F611352-BIKA *	500	11/10/16 22.11	10103-1.NAW	22:44:32	010,44	1	····	613.5	1.340	669.759	ng/L	
Hq2700-1	RN	BLK	F611352-BLKB	500	11/18/16 22:05	18195-1 DAW	22:35:23	8.89-	1		6.0	0.013	6.558	ng/L	
Hq2700-1	RN	BLK -	F611352-BLKC -	500-	11/18/16 23:05	18186-1 DAW	23:03:33	0.85	1		4.0	0.009	4.323	ng/L	
Hq2700-1	RN	CAL	SEO-CCV6 -	1	11/18/16 23:24	18187-1 DAW	23:10:24	4.044	1	~~~ <u>+</u> +	1.1	0.002	1.247	ng/L	
Ho2700-1	RN	CAL	SEO-CCB6		11/18/15 22:20	19199-1 DAM	23:20:55	317.06-			314.2	0.687	0.687	ng/L	
					11/10/10 23:37	10100-1 KAW	23;3/:Zb	3.96+			1.1	0.002	0.002	na/t	

ţ

. . . .

1

NUR.

AMANANANA S

-

MMHg27001-161118-1

🔆 eurofins

Frontier Global Sciences

Analysis Datasheet for Methyl Mercury in Waters

Date of Analysis: November 18, 2016 Instrument #: Hg2700-1 LIMS Sequence #: 6×21029 11 121/16

Analyst: RN Units ng/L

Calibration Statistics:

)	1	Uncorrected	1		
				Response	Corrected Peak	Corrected	1
LabNumber	n	True Val	Area	Factor	Height	Response Factor	% Recovery
SEQ-CAL1	1	0.05 ng/L	21.73 units	434.52	18.83 units	376 58	87.3.96 Per
SEQ-CAL2	1	0.20 ng/L	90.22 units	451.10	87.32 units	436.61	02.5 %Rec
SEQ-CAL3	1	1.00 ng/L	472.07 units	472.07	469.18 units	469.18	107.6 0/.0oc
SEQ-CAL4	1	2.00 ng/L	920.42 units	460.21	917.53 units	458 76	102.0 %Rec
SEQ-CAL5	1	4.00 ng/L	2184.34 units	546.08	2181.44 units	545 36	110.3 %Rec
SEQ-CAL6	0					5-5,50	113.J 70Ket
SEQ-CAL7	0						
SEQ-CAL8	0						
SEQ-CAL9	0						
Corr. Mean RF 457.30	Corr. St Dev RF +/- 60.91	Corr. RSD CF 13.3% RSD	Uncorr. Mean RF 472.80	Eff Factor 0.8046			
Blanks:							
LabNumber	n	Mean	Std Dev	Mean (ng/L)	Std Dev (ng/L)		
SEQ-IBL	1	2.90 units		0.01 ng/L	#VALUE!		
				5,			

Preparation Blanks

Sample Type	Batch ID	п	Mean	Std Dev
BLK	1	6	1.340 ng/L	±4.634
BLK	2	3	0.013 ng/L	±0.003
BLK	3	3	0.010 ng/L	±0.011
BLK	4	0	0.000 na/l	_0.011
BLK	5	0	0.000 ng/L	

Page 171 of 290

M	DN Only		
SEQ-CAL1			
SEQ-CAL2			
SEQ-CAL3			
SEQ-CAL4			
SEQ-CAL5			
SEQ-CAL6	NA		
SEQ-CAL7	NA		
SEQ-CAL8	NA		
SEQ-CAL9	NA		
SEQ-ICV/CCV			
Acetate Buffer		5	
Ethylating Agent		с. С.	
1			
1 A			

Instrument Analyst Type LabNumber Dilution Analyzed FileID Run End Response Batch ID Correction? RESP InitialResult FinalResult InitialUnits Comments Hg2700-1 RN CAL SEQ-IAL1 1 11/18/16 9:65 18105-1.RAW 8:55 2:90 0.0 0.000 0.000 ng/L Hg2700-1 RN CAL SEQ-CAL2 1 11/18/16 9:16 18105-1.RAW 9:06 21.73 18.8 0.941 0.041 ng/L Hg2700-1 RN CAL SEQ-CAL2 1 11/18/16 9:27 18108-1.RAW 9:27 472.07 85.3 0.191 0.191 ng/L 11111 11/18/16 9:37 18109-1.RAW 9:27 472.07 85.2 1.066 1.026 ng/L 1.026 1.026 <td< th=""><th></th></td<>	
Hg2200-1 RN CAL SEQ-18L1 1 11/18/16 8:55 18105-1.RAW 8:55 Contention RCD Contention RCD D.0 0.00 0.00 ng/L Hg2700-1 RN CAL SEQ-CAL1 1 11/18/16 9:06 18106-1.RAW 9:06 21.73 18.8 0.00 0.000 ng/L Hg2700-1 RN CAL SEQ-CAL2 1 11/18/16 9:16 18107-1.RAW 9:16 90.22 87.3 0.191 0.041 ng/L Hg2700-1 RN CAL SEQ-CAL3 1 11/18/16 9:37 18109-1.RAW 9:27 472.07 469.2 1.026 ng/L ng/L 11/18/16 9:48 11/18/16 9:48 11/18/16 9:48 11/18/16 9:48 11/18/16 9:48 11/18/16 9:48 11/18/16 9:48 11/18/16 9:48 11/18/16 9:48 11/18/16 9:48 11/18/16 9:48 11/18/16 9:48 11/18/16 9:48	
Hg2700-1 RN CAL SEQ-CAL1 1 11/18/16 9:06 18106-1.RAW 9:06 21:70 0.00 0.000 ng/L Hg2700-1 RN CAL SEQ-CAL2 I 11/18/16 9:16 18107-1.RAW 9:16 90.22 87.3 0.191 0.041 ng/L Hg2700-1 RN CAL SEQ-CAL2 I 11/18/16 9:27 18108-1.RAW 9:16 90.22 87.3 0.191 0.191 ng/L Hg2700-1 RN CAL SEQ-CAL3 I 11/18/16 9:27 18108-1.RAW 9:27 472.07 469.2 1.026 1.026 ng/L Hg2700-1 RN CAL SEQ-CAL5 I 11/18/16 9:48 18110-1.RAW 9:37 920.42 91.7.5 2.006 2.006 ng/L Hg2700-1 RN CAL SEQ-CAL5 I 11/18/16 9:58 18111-1.RAW 9:58 13.91 11.0 0.024 0.024 ng/L Hg2700-1 RN CAL SEQ-ICV1 I 11/18/16 10:19 18113-1.RAW 10:30 3.77 x 0.9	
Hg2700-1 RN CAL SEQ-CAL2 1 11/18/16 9:16 18107-1.RAW 9:16 90.22 87.3 0.191 0.041 ng/L Hg2700-1 RN CAL SEQ-CAL3 1 11/18/16 9:27 18108-1.RAW 9:27 472.07 469.2 1.026 1.026 ng/L Hg2700-1 RN CAL SEQ-CAL4 1 11/18/16 9:37 18109-1.RAW 9:37 920.42 917.5 2.006 ng/L Hg2700-1 RN CAL SEQ-CAL5 1 11/18/16 9:48 18110-1.RAW 9:37 920.42 917.5 2.006 ng/L Hg2700-1 RN CAL SEQ-ICV1 1 11/18/16 9:48 18110-1.RAW 9:58 13.91 11.0 0.024 0.024 ng/L Hg2700-1 RN CAL SEQ-ICV1 1 11/18/16 9:19 18112-1.RAW 10:09 5.78 2.9 0.006 ng/L Hg2700-1 RN SAM **F611352-BLK7 500 11/18/16 10	
Hg2700-1 RN CAL SEQ-CAL3 1 11/18/16 9:27 18108-1.RAW 9:27 472.07 67.3 0.191 0.191 ng/L Hg2700-1 RN CAL SEQ-CAL4 1 11/18/16 9:27 18109-1.RAW 9:27 472.07 469.2 1.026 1.026 ng/L Hg2700-1 RN CAL SEQ-CAL4 1 11/18/16 9:37 18109-1.RAW 9:37 920.42 917.5 2.006 2.006 ng/L Hg2700-1 RN CAL SEQ-ICV1 1 11/18/16 9:88 18110-1.RAW 9:48 2184.34 2181.4 4.770 4.770 ng/L Hg2700-1 RN CAL SEQ-ICV1 1 11/18/16 9:58 18111-1.RAW 10:09 5.78 2.9 0.006 0.006 ng/L Hg2700-1 RN SAM **F611352-BLK7 500 11/18/16 9:03 18114-1.RAW 10:19 4.76 X 1.9 0.005 2.537 ng/L Denot upload Hg2	
Hq2700-1 RN CAL SEQ-CAL4 1 11/18/16 9:37 18109-1.RAW 9:37 920.42 917.5 2.006 2.006 ng/L Hq2700-1 RN CAL SEQ-CAL5 1 11/18/16 9:37 18109-1.RAW 9:37 920.42 917.5 2.006 2.006 ng/L Hq2700-1 RN CAL SEQ-CAL5 1 11/18/16 9:38 18110-1.RAW 9:48 2184.34 2181.4 4.770 4.770 ng/L Hq2700-1 RN CAL SEQ-ICB1 1 11/18/16 10:09 18112-1.RAW 10:09 5.78 2.99 0.006 0.024 ng/L Hq2700-1 RN SAM **F611352-BLK7 500 11/18/16 10:09 18113-1.RAW 10:19 4.76 x 1.9 0.005 2.537 ng/L Hq2700-1 RN SAM **F611352-BLK8 500 11/18/16 10:00 18114-1.RAW 10:30 3.77 x 0.9 0.002 1.184 0.9L 0.004	
Hq2700-1 RN CAL SEQ-CAL5 1 11/18/16 9:48 18110-1.RAW 9:03 210.12 917.5 2.006 2.006 ng/L Hq2700-1 RN CAL SEQ-ICVI 1 11/18/16 9:48 18110-1.RAW 9:48 2181.4 4.770 4.770 ng/L Hq2700-1 RN CAL SEQ-ICVI 1 11/18/16 9:58 18111-1.RAW 9:58 13.91 11.0 0.024 ng/L Hq2700-1 RN CAL SEQ-ICB1 1 11/18/16 10:09 18112-1.RAW 10:09 5.78 2.9 0.006 0.006 ng/L Hq2700-1 RN SAM **F611352-BLK8 500 11/18/16 10:19 18113-1.RAW 10:30 3.77 x 0.9 0.002 1.537 ng/L Do not upload Hq2700-1 RN SAM **F611352-BLK8 500 11/18/16 10:00 CAPTURING 0.04 x 2.9 0.008 3.884 ng/L Do not upload 14/14/20/16/11/20/16/11/20/16/11/20/1	
Hq2200-1 RN CAL SEQ-ICV1 1 11/18/16 9:58 18111-1.RAW 9:58 13.91 11.0 0.024 ng/L Hq2200-1 RN CAL SEQ-ICB1 1 11/18/16 9:58 18111-1.RAW 9:58 13.91 11.0 0.024 ng/L Hq2200-1 RN SAM **F611352-BLK7 500 11/18/16 10:09 18112-1.RAW 10:19 4.76 x 1.9 0.005 2.537 ng/L Hq2200-1 RN SAM **F611352-BLK7 500 11/18/16 10:30 18114-1.RAW 10:19 4.76 x 1.9 0.005 2.537 ng/L Do not upload Hq2200-1 RN SAM **F611352-BLK9 500 11/18/16 10:00 CATTURING 0.04 x 2.9 -0.008 -3.884 ng/L Do not upload Hq2700-1 RN SAM **F611352-BLK9 500 11/18/16 11:0 18116-1.RAW 11:00 235.77 232.9 0.509 0.509 ng/L	
Hq2200-1 RN CAL SEQ-ICB1 1 11/18/16 10:09 18112-1.RAW 10:09 5.78 11:0 0.024 0.024 ng/L Hq2700-1 RN SAM **F611352-BLK7 500 11/18/16 10:09 18112-1.RAW 10:09 5.78 2.9 0.006 0.006 ng/L Hq2700-1 RN SAM **F611352-BLK8 500 11/18/16 10:09 18114-1.RAW 10:19 4.76 x 1.9 0.005 2.537 ng/L Do not upload Hq2700-1 RN SAM **F611352-BLK8 500 11/18/16 10:00 18114-1.RAW 10:30 3.77 x 0.9 0.002 1.184 ng/L Do not upload Hq2700-1 RN SAM **F611352-BLK9 500 11/18/16 10:00 18116-1.RAW 11:00 235.77 232.9 0.008 -3.884 ng/L Do not upload Hq2700-1 RN CAL SEQ-ICB2 1 11/18/16 11:11 18117-1.RAW 11:00 235.77 232.	
Hq2700-1 RN SAM **F611352-BLK7 500 11/18/16 10:19 3.76 2.9 0.006 0.006 ng/L Hq2700-1 RN SAM **F611352-BLK8 500 11/18/16 10:19 4.76 x 1.9 0.005 2.537 ng/L Do not upload Hg2700-1 RN SAM **F611352-BLK8 500 11/18/16 10:30 3.77 x 0.9 0.005 2.537 ng/L Do not upload Hq2700-1 RN SAM **F611352-BLK9 500 11/18/16 10:00 CAPTURING 0.04 x -2.9 -0.008 -3.884 ng/L Do not upload Hq2700-1 RN CAL SEQ-ICV2 1 11/18/16 11:11 1600 235.77 232.9 0.509 0.509 ng/L Hg2700-1 RN CAL SEQ-ICV2 1 11/18/16 11:11 12.9 -1.6 -0.004 ng/L -1.6 -0.004 ng/L -1.6	
Hq2700-1 RN SAM **F611352-BLK8 500 11/18/16 10:30 3.77 x 1.9 0.005 2.537 ng/L Do not upload Hq2700-1 RN SAM **F611352-BLK8 500 11/18/16 10:30 3.77 x 0.9 0.002 1.184 ng/L Do not upload Hq2700-1 RN CAL SEQ-ICV2 1 11/18/16 10:00 CAPTURING 0.04 x -2.9 -0.008 -3.844 ng/L Do not upload Hg2700-1 RN CAL SEQ-ICV2 1 11/18/16 11:10 18116-1.RAW 11:00 235.77 232.9 0.509 0.509 ng/L Hg2700-1 RN GL F611352-BLK7 500 11/18/16 11:11 129 -1.6 -0.004 ng/L -1.257 Hg2700-1 RN BLK F611352-BLK8 500 11/18/16 11:21 1.97 1 -0.9 -0.004 ng/L -1.257	
Hg2700-1 RN SAM **F611352-BLK9 500 11/18/16 0:00 CAPTURING 0.04 x 0.9 0.002 1.184 ng/L Do not upload Hg2700-1 RN CAL SEQ-ICV2 1 11/18/16 11:00 18116-1.RAW 11:00 235.77 -2.9 -0.008 -3.884 ng/L Do not upload Hg2700-1 RN CAL SEQ-ICV2 1 11/18/16 11:11 18117-1.RAW 11:10 235.77 232.9 0.509 ng/L Do not upload Hg2700-1 RN CAL SEQ-ICV2 1 11/18/16 11:11 18117-1.RAW 11:11 1.29 -1.6 -0.004 -0.004 ng/L Hg2700-1 RN BLK F611352-BLK8 500 11/18/16 11:21 18118-1.RAW 11:21 1.97 1 -0.9 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004 -0.004	
Hg2700-1 RN CAL SEQ-ICV2 1 11/18/16 11:00 18:16-1.RAW 11:00 23:7 -2.9 -0.008 -3.884 ng/L Do not upload Hg2700-1 RN CAL SEQ-ICB2 1 11/18/16 11:11 18:16-1.RAW 11:00 23:77 232.9 0.509 ng/L 0 0 10 </td <td></td>	
Hg2700-1 RN CAL SEQ-ICB2 1 11/18/16 11:11 18117-1.RAW 11:11 1.29 0.509 0.509 ng/L Hg2700-1 RN BLK F611352-BLK7 500 11/18/16 11:21 18118-1.RAW 11:11 1.29 -1.6 -0.004 -0.004 ng/L Hg2700-1 RN BLK F611352-BLK8 500 11/18/16 11:22 18119-1.RAW 11:21 1.97 1 -0.9 -0.003 -1.257 ng/L Hg2700-1 RN BLK F611352-BLK8 500 11/18/16 11:32 18119-1.RAW 11:32 1.54 1 -0.9 -0.003 -1.257 ng/L	
Hg2700-1 RN BLK F611352-BLK7 500 11/18/16 11:21 18118-1.RAW 11:21 1.97 1 -0.09 -0.004 ng/L Hg2700-1 RN BLK F611352-BLK8 500 11/18/16 11:32 18119-1.RAW 11:21 1.97 1 -0.9 -0.003 -1.257 ng/L	
Hg2700-1 RN BLK F611352-BLK8 500 11/18/16 11:32 18119-1.RAW 11:32 1.54 10.90.0031.257 ng/L	
Hg2700-1 RN BLK F611352-BLK9 500 11/18/16 11:42 18120-1.RAW 11:42 0.00 1	
Hg2700-1 RN SAM 1610618-02RE1 500 11/18/16 11:53 18121-1.RAW 11:53 300.961 1	
Hg2700-1 RN SAM 1610618-03RE1 500 11/18/16 12:03 18122-1.RAW 12:03 285.64 1 303.7 10.52 526.007 ng/L	
Hg2700-1 RN SAM 1610618-04RE1 2500 11/18/16 12:14 18123-1.RAW 12:14 310 73 1 282.7 0.766 382.885 ng/L	
Hg2700-1 RN SAM 1610618-05RE1 2500 11/18/16 12:24 18124-1.RAW 12:24 21:15 1 30/18 0.836 2090.238 ng/L	
Hg2700-1 RN SAM 1610618-06RE1 500 11/18/16 12:35 18125-1.RAW 12:35 475 1 214-3 0.582 1454.424 ng/L	
Hq2700-1 RN SAM 1610618-07RE1 2500 11/18/16 12:45 18126-1.RAW 12:45 137.482 1 47.5.6 1.285 642.265 ng/L	
Hq2700-1 RN SAM 1610618-08RE1 2500 11/18/16 12:56 18127-1.RAW 12:56 832.81 1 930.0 2255 ng/	
Hg2700-1 RN CAL SEQ-CCV1 1 11/18/16 13:06 18128-1.RAW 13:06 231.20 22:03 2:05 5637.525 ng/L	
Hg2700-1 RN CAL SEQ-CCB1 1 11/18/16 13:17 18129-1.RAW 13:17 5:10 226.5 0.4999 ng/L	
Hg2700-1 RN BLK F611388-BLK1 1.25 11/18/16 13:27 18130-1.RAW 13:27 7 7 15 2 2.2 0.005 ng/L	
Hq2700-1 RN BLK F611388-BLK2 1.25 11/18/16 13:38 18131-1.RAW 13:38 500 2 0.012 0.014 ng/L	
Hg2700-1 RN BLK F611388-BLK3 1.25 11/18/16 13:48 18132-1.RAW 13:48 7.38 2 5.0 0.008 0.010 ng/L	
Hg2700-1 RN SAM F611388-BS1 1.25 11/18/16 13:59 18133-1.RAW 13:59 40:530 2 4.5 0.012 0.015 ng/L	
Hg2700-1 RN SAM F611388-BSD1 1.25 11/18/16 14:09 18134-1.RAW 14:09 393.00 2 402.4 1.083 1.354 ng/L	
Hg2700-1 RN SAM F611388-DUP1 1.25 11/18/16 14:20 18135-1.RAW 14:20 477.77 2 330.2 1.050 1.312 ng/L	i
Hg2700-1 RN SAM F611388-MS1 1.25 11/18/16 14:30 18136-1.RAW 14:30 927.46 2 0.04 100 ng/L	
Hg2700-1 RN SAM F611388-MSD1 1.25 11/18/16 14:41 18137-1.RAW 14:41 937.41 2 0.25 3.128 ng/L	
Hg2700-1 RN SAM F611388-MS2 1.25 11/18/16 14:51 18138-1.RAW 14:51 420 83 2 3161 ng/L	
Hg2700-1 RN SAM F611388-MSD2 1.25 11/18/16 15:02 18139-1.RAW 15:02 43139 2 417.3 1.125 1.407 ng/L	
Hg2700-1 RN CAL SEQ-CCV2 1 11/18/16 15:12 18140-1.RAW 15:12 263.14 2 431.1 1.161 1.451 ng/L	
Hg2700-1 RN CAL SEQ-CCB2 1 11/18/16 15:23 18141-1.RAW 15:23 6.77 200.2 0.569 rg/L	
Hg2700-1 RN SAM 1610654-01 1.25 11/18/16 15:33 18142-1.RAW 15:33 51:890 2 0.008 ng/L	
Hg2700-1 RN SAM 1610654-03 1.25 11/18/16 15:44 18143-1.RAW 15:44 514.52 2 516.1 1.392 1.740 ng/L	
Hg2700-1 RN SAM 1610654-05 1.25 11/18/16 15:54 18144-1 RAW 15:54 445.47 2 511.5 1.380 1.725 ng/L	
Hg2700-1 RN SAM 1610654-07 1.25 11/18/16 16:05 18145-1.RAW 16:05 394 78 2 2442.5 1.192 1.490 ng/L	
Hg2700-1 RN SAM 1610654-09 1.25 11/18/16.15 18146-1.RAW 16:15 430.04 2 391.9 1.054 1.318 ng/L	1
Hg2700-1 RN SAM 1610654-11 1.25 11/18/16 16:26 18147-1.RAW 16:26 418.64 2 435.1 1.175 1.468 ng/L	
Hg2700-1 RN SAM 1610654-13 1.25 11/18/1616:36 18148-1.RAW 16:36 8.79 2 5.0 000 ng/L]
Hg2700-1 RN SAM 1610740-01 1.25 11/18/16 16:47 18149-1.RAW 16:47 3.81 2 0.005 0.007 ng/L	
Hg2700-1 RN SAM 1610740-02 1.25 11/18/16 16:58 18150-1.RAW 16:58 4.71 2 1.9 0.006 -0.010 ng/L	

.

Shauthundhuns

- AMARA		Sample	3	-	Venteren		1	Uncorrected	1	No PB	45454443	a ing terretory to the		North States and	
Instrument	Analyst	Туре	LabNumber	Dilution	Analyzed	FileID	Run End	Response	Batch ID	Correction?	RESP	ToitiaiRecult	FinalDocutt	Initial Inite	6
Hg2700-1	RN	SAM	1610785-05	1.25	11/18/16 17:08	18151-1.RAW	17:08	3.31	2	ŝ	0.4	-0.009	0.013	Incaronics	comments
Hg2700-1	RN	CAL	SEQ-CCV3	1	11/18/16 17:19	18152-1.RAW	17:19	267.44	-		764 5	0.009	-0.012	ng/L	
Hg2700-1	RN	CAL	SEQ-CCB3	1	11/18/16 17:29	18153-1.RAW	17:29	3.31			0.4	0.001	0.001	<u>ng/L</u>	
Hg2700-1	RN	SAM	1610786-12	1.25	11/18/16 17:40	18154-1.RAW	17:40	3.70	2		0.4	0.001	0.001	ng/L	
Hg2700-1	RN	SAM	1610828-10	1.25	11/18/16 17:50	18155-1.RAW	17:50	6.18	2		3.2	0.000	-0.011		
Hg2700-1	RN	SAM	1610860-12	1.25	11/18/16 18:01	18156-1.RAW	18:01	14.71	2		11.9	-0.002	-0.002	ng/L	
Hg2700-1	RN	SAM	1610860-13	1.25	11/18/16 18:11	18157-1.RAW	18:11	47.75	2		44.9	0.021	0.027	ng/L	
Hg2700-1	RN	SAM	1610860-14	1.25	11/18/16 18:22	18158-1.RAW	18:22	17.97	2		15.1	0.111	0.139	ng/L	
Hg2700-1	RN	SAM	1610860-15	1.25	11/18/16 18:32	18159-1.RAW	18:32	32.72	2		23.1	0.030	0.038	ng/L	
Hg2700-1	RN	SAM	1610860-16	1.25	11/18/16 18:43	18160-1.RAW	18:43	28 55	2	~	25.0	0.070	0.088	ng/L	·
Hg2700-1	RN	SAM	1610860-17	1.25	11/18/16 18:53	18161-1.RAW	18:53	1.05	2		23.0	0.039	0.074	ng/L	
Hg2700-1	RN	SAM	1610860-18	1.25	11/18/16 19:04	18162-1.RAW	19:04	1.66		·····	-1.3	-0.016	-0.020	ng/L	
Hg2700-1	RN	SAM	1611168-01	1.25	11/18/16 19:14	18163-1.RAW	19:14	5 70	2	••••••	2.2	-0.014	-0.018	ng/L	
Hg2700-1	RN	CAL	SEQ-CCV4	1	11/18/16 19:25	18164-1.RAW	19:25	266.24			2.0	-0.003	-0.004	ng/L	
Hg2700-1	RN	CAL	SEQ-CCB4	1	11/18/16 19:35	18165-1.RAW	19:35	1.05			203.3	0.576	0.576	ng/L	
Hg2700-1	RN	BLK	F611323-BLK4	1	11/18/16 19:46	18166-1.RAW	19:46	11.20			*1.0	-0.004	-0.004	ng/L	
Hg2700-1	RN	BLK	F611323-BLK5	1	11/18/16 19:56	18167-1.RAW	19:56	4 89	3		2.0	0.023	0.023	ng/L	
Hg2700-1	RN	BLK	F611323-BLK6	1	11/18/16 20:07	18168-1.RAW	20:07	3.27			2.0	0.005	0.005	ng/L	
Hg2700-1	RN	SAM	1610865-03RE1	125	11/18/16 20:17	18169-1.RAW	20:17	444.72			0.3 441 P	0.001	0.001	ng/L	
Hg2700-1	RN	SAM	1611082-01RE1	1	11/18/16 20:28	18170-1.RAW	20:28	174.44	3		171 5	1.201	150.088	ng/L	
Hg2700-1	RN	5AM	1610618-09RE1	500	11/18/16 20:38	18171-1.RAW	20:38	747.44			720 5	0.457	0.457	ng/L	
Hg2700-1	RN	SAM	1610618-10RE1	500	11/18/16 20:49	18172-1.RAW	20:49	467.41			735.5 ACA E	2.007	1003.624	ng/L	
Hg2700-1	RN	SAM	1611293-02RE1	500	11/18/16 20:59	18173-1.RAW	20:59	122 10			110.2	1.200	629.892	ng/L	
Hg2700-1	RN	SAM	1611293-03RE1	2500	11/18/16 21:10	18174-1.RAW	21.10	1493 53	<u>4</u>		1400.6	0.321	160.649	ng/L	
Hg2700-1	RN	SAM	1611293-04RE1	2500	11/18/16 21:20	18175-1.RAW	21:20	1035 58	1		1022 7	4.051	10126.824	ng/L	
Hg2700-1	RN	CAL	SEQ-CCV5	1	11/18/16 21:31	18176-1.RAW	21:31	306.09			1032.7	2.506	/015.243	ng/L	
Hg2700-1	RN	CAL	SEQ-CCB5	1	11/18/16 21:41	18177-1.RAW	21:41	7 19				0.000	0.663	ng/L	
Hg2700-1	RN	SAM	1611293-05RE1	2500	11/18/16 21:52	18178-1.RAW	21.52	1803.85			1001.0	0.009	0.009	ng/L	
Hg2700-1	RN	SAM	1611293-06RE1	2500	11/18/16 22:02	18179-1.RAW	22.02	1005.05			1801.0	4.894	12235.279	ng/L	
Hq2700-1	RN	SAM	1611293-07RE1	2500	11/18/16 22:13	18180-1.RAW	22.02	1499.80			1042.4	2.832	/081.024	ng/L	
Hg2700-1	RN	SAM	F611352-DUP2	500	11/18/16 22:23	18181-1 RAW	22.13	100.00	i		1485.9	4.038	10094.637	ng/L	
Hg2700-1	RN	SAM	F611352-MS3	500	11/18/16 22:34	18187-1 RAW	22.25	617.34		·····-	2/5.5	0.746	373.000	ng/L	10
Hg2700-1	RN	SAM	F611352-MSD3	500	11/18/16 22:44	18183-1 RAW	22.54	515 44	······	·	610.3	1.656	828.057	ng/L	
Hg2700-1	RN	BLK	F611352-BLKA	500	11/18/16 22:55	18184-1 RAW	22.77	9 00	1	··	613.5	1.665	832.412	ng/L	
Hg2700-1	RN	BLK	F611352-BLKB	500	11/18/16 23:05	18185-1 RAW	22.05	6.05			6.0	0.016	8.150	ng/L	
Hq2700-1	RN	BLK	F611352-BLKC	500	11/18/16 23:16	18186-1 RAW	23.15	4 04			4.0	0.011	5.373	ng/L	
Hg2700-1	RN	CAL	SEQ-CCV6	1	11/18/16 23:26	18187-1 RAW	23.10	317.04			1.1	0.003	1.550	ng/L	
Hg2700-1	ŔŇ	CAL	SEO-CC86	1	11/18/16 23:37	18188-1 PAW	22.20	317.00			314.2	0.687	0.687	ng/L	
							43.3/	2.70		1	1.1	0.002	0.002	no/l	

Malalia

MethylMercury	Operat RN	BlankS	2.8966	Calib Eqn:	: Conc = (Area-2.897)	/ 457.300	Run Date: ######	Blank SD:	0								
EPA1630	Workst MM	lg27 CalibFa	457.3	Status:	OK,1 Warnings		Run Time: 10:50:02	2 Blank RSD	0								
	Methoc 2010	D-01 R:	0.9968	R²:	0.993666386		CalibAnaly MeHg	CF SD:	60.91132765								
Completith	Descrip MMI	1927001-161	118-1	-				CF RSD%:	13.31977835								
Close	LOCADON KINS	e - Mirre	BIARK	CONCHIGU(D)	ConcryeHg(ppt)	ConcHg2(p)	ConcPrHo(r Rec%	QA F	lawData	RunEnd	PeakHg0 (Ra	• PeakMeHg (F	L Peaking2(Raw F	reakPrHg(F	Ras Control (etf)	Flags	RunCount
	A 1		2 00/7	0.002763	0.0008908	0.008891		1	18103-1.RAW		1.26354167	0.40736269	4.06569588		0 cleandry	с	1
SEO_128 1	A1		2.0900	0.1/4944	-0.002278278	0.03088		1	8104-1.RAW		82.8986269	1.85473485	17.0181345		0 psample10	OK	1
SEQ-CALL	A2	1	2 0066	0.340136	0.000334117	0.0/11//		1	8105-1.RAW		158.288849	2.89659091	32.5493608		0 psample10	OK	1
SEQ-CALL SEQ-CALL	A3	1	2.6900	0.39/050	0.0411/4815	0.05797	82.35	1	8106-1.RAW		184.744437	21.7258286	29.40625		0 psample10	ст	1
SEQ-CAL2	A4 A5	1	2.0900	0.448034	0.190952471	0.083323	95.48	1	8107-1.RAW		207.810038	90.2191288	41.0003551		0 psample10	CT	1
SEQ-CALS	AG	1	2.0900	0.57700	1.0259/4682	0.177043	102.60	1	8108-1.RAW		267.060298	472.074669	84.1326941		0 psample10	CΤ	1
SEQ-CAUS	47	1	2.0300	0.719744	2.000401205	0.336002	100.32	1	8109-1.RAW		332.035559	920.42358	156.550284		0 psample10	CT	1
SEQ CALS	AR	,	7 2066	0.901370	4.770204140	0.009037	119.26	1	8110-1.RAW		442.533673	2184.33771	317.993182		0 psample10	СТ	1
SEO-ICB1	49	1	2.0300	0.340003	0.024007208	0.033400	4.82	1	8111-1.RAW		162.352178	13.9116951	28.2623106		0 psample10	СТ	1
*F611352-BLK7	A10	500	2.0300	165 6202	2 041629210	40 51254	0.00	1	8112-1.KAW		166.414717	5.77568655	71.4092803		0 psample10	CT	1
*F611352-BLK8	A11	500	2.8966	152 5437	0 052022406	70.010070		1	8113-1.RAW		154.373224	4.76387311	39.9502604		0 psample10	OK	1
*F611352-BLK9	A12	500	2.8966	140 2919	-7 1253117	33.32072		1	6114-1.KAW		142.413021	3.76813447	39.4080729		0 psample10	OK	1
SEO-ICV2	A20	1	2.8966	0.877551	0 500238133	0 427075	101.07	ن ب			131.207481	0.03818171	0		0 psample10	сī	
SEO-ICB2	A21	ť	2.8966	0.274386	-0.003517384	0.427073	101.97	1	0110-1.KAW		404.200687	235.771117	198.198049	1	0 psample10	СТ	1
F611352-BLK7	A10	500	2.8966	144,4906	-1.01168202	86 11023	0.00	14	0117-1.KAW		128.373295	1.28809186	31.5792377	I	0 psample10	CT	1
F611352-BLK8	A11	500	2.8966	130.036	1 479109069	37 47606		10	0110-1.KAW		135.04/633	1.9/130682	81.652983		0 psample10	СТ	1
F611352-BLK9	A12	500			2.17 5 20 5 50 5	52.12000		10	0119-1.KAW		121.82/509	1.543/9/35	32.5534564		0 psample10	ст	1
1610618-02RE1	A13	500	2.8966	363.4313	424.3037466	639 142		11	8121-1 DAW		121,745147	100.004670	34.2830729		0 psample10	OK	1
1610618-03RE1	A14	500	2.8966	356.9882	309,14734	579 118		10	2122-1 DAW		333.29072	390.904678	587.455729		U psample10	CT	1
1610618-04RE1	A15	2500	2.8966	1191.259	1682.883498	7744.47		16	2122-1-104W		323.337007	200.042001	532.557739	(0 psample10	CT	1
1610618-05RE1	A16	2500	2.8966	1371.884	1171.308225	2229.125		15	174-1 DAW		220.001003	310.729545	413.454924	L L	U psample10	CT _	1
1610618-06RE1	A17	500	2.8966	334.7544	517.8449894	825.9563		15	175-1 DAW		200.041440	476 517477	410.048007		u psampieiu		1
1610618-07RE1	A18	2500	2.8966	2223.182	7500.155289	5386.08		1.9	126-1 RAW		408 560002	1274 92457	750.310027		psample10	CI CT	1
1610618-08RE1	A19	2500	2.8966	1820.46	4537.031345	4512.898		18	127-1 RAW		225 905029	1377.02737	900.110014		v psampletu	u –	1
SEQ-CCV1	A8	1	2.8966	0.907915	0.499236241	0.389565	99.97	15	178-1 RAW		418 085843	221 107254	101 044744		D psampæru	CT CT	1
SEQ-CCB1	A9	1	2.8966	0.259804	0.004811365	0.055558	0.00	18	129-1 RAW		171 704074	5 00697765	28 2020777		psample10	01	1
F611388-BLK1	BI	1.25	2.8966	0.367046	0.011623963	0.087229		18	130-1.RAW		137 176636	7 14010039	20.3030777) psample10	OK CT	1
F611388-BLK2	82	1.25	2.8966	0.307255	0.008203933	0.08562		18	131-1.RAW		115 30258	5 89791667	74 7107443		psample10	C1 77	1
F611388-BLK3	B3	1.25	2.8966	0.255154	0.012249211	0.079184		18	132-1.RAW		96.2422585	7.37784091	31 8651042) psample10	сі ст	1
F611388-BS1	B4	1.25	2.8966	0.245578	1.099940884	0.090716		18	133-1.RAW		97 7389337	4/15 20884	36 0841856	· · · ·	psample10	ст (т	1
F611388-BSD1	B5	1.25	2.8966	0.234598	1.066576849	0.088513		18	134-1.RAW		88.721875	393 092945	35 2780777	r	psample10	CT CT	1
F611388-DUP1	86	1.25	2.8966	0.76572	1.298048486	1.416678		18	135-1.RAW		283.027413	477.774503	521 174032	r	psample10	сі ст	1
F611388-MS1	B7	1.25	2.8966	0.753896	2.527306141	1.285664	252.73	18	136-1.RAW		278,701922	927.485985	473,243899	r r	ncamplet0	ст /т	1
F611388-MSD1	B8	1.25	2.8966	0.78642	2.554419641	1.079171		18	137-1.RAW		290.600237	937.405185	397,700483	r r	nsample10	ά ά	± 1
F611388-MS2	89	1.25 2	2.8966	0.32105	1.142383111	0.282315	57.12	18	138-1.RAW		120.349479	420.8259	106.178835	° 0	nsamplet()	с, с	1
F611388-MSD2	B10	1.25 2	2.8966	0.322665	1.1783487	0.161523		18	139-1.RAW		120.94027	433.983546	61.9879735	n N	nsamnle10	cr	1
SEQ-CCV2	B11	12	.8966	0.612856	0.56909376	0.399081	113.96	18.	140-1.RAW		283.15554	263.143087	185,396237	0	osample 10	rr i	1
SEQ-CCB2	B12	1 2	.8966	0.173911	0.008455895	0.050971	0.00	18	141-1.RAW		82.4260417	6.76347064	26.2057292	õ	psample10	ŐK	1
1610654-01	B13	1.25 2	.8966	0.623225	1.410705857	1.302443		18	142-1.RAW		230.897112	518.989063	479.382283	n	osaronie10	ά.	1
1610654-03	B14	1.25 2	.8966	0.625253	1.398502332	1.467573		18	143-1.RAW		231.638989	514.524527	539.793484	0	osample 10	CT CT	1
1610654-05	B15	1.25 2	.8966	0.598947	1.209754549	0.869028		18:	144-1.RAW		222.015365	445.473059	320.821856	ō	psample10	a	1
1610654-07	B16	1.25 2	.8966	0.681828	1.071186675	0.981239		18:	145-1.RAW		252.336458	394.779403	361.873029	ő	psample 10	ά.	1
1610654-09	B17	1.25 2	.8966	0.652935	1.192164395	1.070238		181	146-1.RAW		241.766193	439.037879	394.432475	ō	osample10	ά	1
1610654-11	B18	1.25 2	.8966	0.654153	1.136397766	1.07498		181	147-1.RAW		242.211837	418.636222	396.167069	0	psample10	cr	1
1610654-13	819	1.25 2	.8966	0.307683	0.016112261	0.141091		181	148-1.RAW		115.459304	8.79109848	54.5132576	0	psample10	OK	1
1610740-01	B20	1.25 2	.8966	0.267249	0.002490378	3.080561		181	149-1.RAW		100.666809	3.80767045	32.3689867	Ó	osample10	ст С	1
1610740-02	B21	1.25 2	.8966	0.279813	0.004960824	0.091916		181	150-1.RAW		105.263258	4.71145833	36.5230328	0	psample10	a	1
1610785-05	C1	1.25 2	.8966	0.232122	0.001139255	0.076165		181	151-1.RAW		87.8159328	3.31337595	30.7607244	0	psample10	OK	1
SEQ-CCV3	C2	12	.8966	1.002118	0.578483113).463415	115.84	181	52-1.RAW	17:19:01	461.16482	267.436837	214.816335	õ	psample10	ά	1
SEQ-CCB3	a	12	.8966	0.153218	0.00089665	0.055066	0.00	181	153-1.RAW		72.9629972	3.30662879	28.0784328	Č	psampie10	a	- 1
1610786-12	C4	1.25 2	8966	0.199882	0.002201892	0.109297		181	54-1.RAW		76.0213297	3.70213068	42.8818419	0	psample10	ĊT	1
1610828-10	C5	1.25 2.	.8966	0.204823	0.008969217	0.0848		181	55-1.RAW		77.8288352	6.17788826	33.9199811	ō	psample10	0K	1
1610860-12	C6	1.25 2	8966	0.165263	0.032291498 ().114561		181	.56-1.RAW		63.3562973	14.7101089	44.8075758	ů.	psample10	ά	1
1610860-13	0	1.25 2.	8966	0.181792	0.122591573 ().645814		181	57~1.RAW		69.4033617	47.7454782	239.161138	Ő	psample10	a	1
1610860-14	C8	1.25 2.	8966	0.138069	0.041190438 (.118569		181	58-1.RAW		53.4078125	17.965696	46.273911	0	psample10	OK	1

1610860-15	C9	1.25	2.8966	0.141852	0.081514123	0.211688		18159-1 RAW		54 7015497	22 7177092	80 3403400	0 +++	-	
1610860-16	C10	1.25	2.8966	0.159215	0.070110439	0.144594		18160-1 RAW		61 1476563	20 545706	55 7047017	U psample10	OK	1
1610860-17	C11	1.25	2.8966	0.115359	~0.005060093	0.074575		18161-1 RAW		4E 0004001	20.343700	30.1302614	0 psample10	OK	1
1610860-18	C12	1.25	2.8966	0.129958	-0.003393758	0.071855		19167-1 DAW		43.0994001	1.0454072	30.1792614	0 psample10	ст	1
1611168-01	C13	1.25	2,8966	0.107893	0.007666807	0 105547		19163-1 DAW		50.9903909	1.65501894	29.1841856	0 psample10	ок	1
SEQ-CCV4	C14	1	2.8966	1.211799	0.575871853	0 464764	115 32	10103-1.NAW		42.36/9924	5./0141469	41.5098011	0 psample10	ок	1
SEQ-CCB4	C15	1	2.8966	0.100663	-0.004039584	0.05461	0.00	19165-1 0416		337.031942	200.242708	215.204498	0 psample10	CT	1
F611323-BLK4	C16	1	2.8966	0.070098	0.01816679	0.097289	0.00	10105-1.MAW		46.92908/5	1.04928977	27.8697917	0 psample10	ОК	1
F611323-BLK5	C17	1	2,8966	0.081618	0.004366406	0 077949		10100-1.KAW		34.9525331	11.2042614	47.3868608	0 psample10	OK	1
F611323-BLK6	C18	ī	2.8966	0.083634	0.000703912	0.055172		1010/-1.RAW		40.2203598	4.89334754	38.5425663	0 psample10	OK	1
1610865-03RE1	C19	125	2.8966	88 43437	120 7684476	1330 175		10100-1.KAW		41.14218/5	3.21848958	28.1039299	0 psample10	OK	1
1611082-01RE1	C20	1	2,8966	0 209777	0 375120376	1 242936		10109-1.KAW		325.424/8/	444.715743	4869.20688	0 psample10	ст	1
1610618-09RE1	C21	500	2,8966	274 9028	808 5044000	1050 278		18170-1.KAW		98.5761364	174.439086	571.245272	0 psample10	cr	1
1610618-10RE1	A1	500	2 8966	197 1284	507 8802272	1033.270 003 COAE		18171-1.KAW		254.322633	742.436884	971.711965	0 psample10	ст	1
1611293-02RE1	A2	500	2.8966	197.1458	130 2265022	22 00712		18172-1.KAW		183,190167	467.412027	829.24154	0 psample10	CT	1
1611293-03RF1	AR	2500	2.8966	681 6566	\$140 1000C	108 1004		181/3-1.RAW		169.487121	122.10232	33.0757576	0 psample10	СТ	1
1611293-04RF1	A 4	2500	2.0000	576 2456	5145.120000 5645 543636	190.1004		181/4-1.RAW		127.58518	1493.53331	39.1440814	0 psample10	СТ	1
SEC+CCV5	A 5	2,500	2.0300	1 00.2400	0 663008004	100.1401	(33) 3 (18175-1.RAW		108.303409	1035.57893	31.8244792	0 psample10	ок	1
SEQ-CCB5	46	1	2.0300	0.120501	0.002990994	0.552093	132.76	18176-1.RAW		462.399596	306.085937	255.368708	0 psample10	сī	1
1611203-05PF1	47	2500	2.0300	672 2762	0.009380247	0.047968	0.00	18177-1.RAW		62.5748185	7.18892045	24.8321496	0 psample10	CT	1
1611703-06PE1	48	2000 -	7 9066	497 5051	9645.563665	142.5209		18178-1.RAW		125.869129	1803.85024	28.9665009	0 psample10	CT	1
1611293-00RE1	AO AD	2500 /	2.8900	487.5951	5698.470338	156.5886		18179-1.RAW		92.0874527	1045.26046	31.5397727	0 psample10	СТ	1
1011253-0/RE1	A9 A10	2500 /	2.8966	544.3483	8123.222922	161.9069		18180-1.RAW		102.46875	1488.79607	32.5125947	0 psample10	СТ	1
F011332-DUF2	AIU	500 4	2.8966	92.95718	301.1937654	58.3454		18181-1.RAW		87.9151989	278.368324	56.2592803	0 psample10	ОК	1
F011332-MS33	A11	500 4	2.8966	110.079	667.3327847	64.2855	22244.43	18182-1.RAW		103.574858	613.238968	61.6920928	0 psample10	ст	- 1
F011352-P15U3	A12	500 4	2.8966	105.1376	670.8371742	73.33051		18183-1.RAW		99.0554451	616.444081	69.9646544	0 psample10	cr	1
F011352-BUKA	A13	500 2	2.8966	57.36315	6.557813764	34.32766		18184-1.RAW		55.3609094	8.89436553	34.292661	0 psample10	OK	1
F611352-BLKB	A14	500 2	2.8966	48.2436	4.323177882	40.42646		18185-1.RAW		47.0201705	6.85056818	39.8706155	0 psample10	OK	1
7011352-BLKC	A15	500 2	2.8966	40.60289	1.246949083	40.35114		18186-1.RAW		40.0319839	4.03705019	39.8017356	0 osamole10	OK	1
SEQ-CLV6	A16	1 2	2.8966	0.60562	0.686987951	0.587937	137.57	18187-1.RAW		279.846591	317.056084	271.759896	0 psampie10	<u>cr</u>	1
SEQ-CCB6	A17	1 2	2.8966	0.081435	0.002336053	0.047189	0.00	18188-1.RAW	23:37:26	40.1369853	3.96486742	24.4762784	0 psample10	OK	1
													a patriplero	Conc.	1

MethylMercury	Operat RN	BlankS	2.8966	6 Calib Eq	n: Conc = (Area-2.897) / 456.741	Run Date: #####	# Blank SD:		0						
EPA1630	Workst MMHg	27 CalibFa	456.74	Status:	OK,1 Warnings		Run Time: 10:50:	02 Blank RSD		0						
	Descrip MMHa	JI KI 22001-161	0.9968	5 R4:	0.993649694		CalibAnaly MeHg	CF SD:	60.7159973	32						
Sample/ID	I oration Rince	Diluita	Diant	Canadian	A CANADALISTAN			CF RSD%:	13.2933220)2 Material Contractor						
Clean		oran an a	n an		и солотка другу 0 Л ППОФФ1961	1.000021	CONCHING (T KECK)	QA	RawData	RunEnd	PeakHg0 (R	n PeakMeHg (R PeakHg2(Raw	PeakPrHg(Rai Control (etf)	Flags	RunCount
WS	A1		2 8966	6 17515	0.000091091	0.000932			18103-1.RAW	8:34:	28 1.0502275	0.4073626	9 4.07963228	0 cleandry	ст	1
SEO-IBL1	A2	1	2.0500	0 34656	0.002201007	0.030921		1	18104-1.RAW	8:44:	59 82.898626	1.8547348	5 17.0195313	0 psample10	OK	1
SEQ-CAL1	A3	1	2.8966	0.39814	3 0.000341873	0.071204	93.45	1	18105-1.RAW	8:55:	30 158.28884	2.8965909	1 32.5493608	0 psample10	OK	1
SEO-CAL2	A4	1	2.8966	0.44864	3 D 191186288	0.030011	02.40		18106-1.RAW	9:06:0	0 184.74443	21.725828	6 29.40625	0 psample10	ст	1
SEQ-CAL3	A5	1	2.8966	0.57836	7 1 021593037	0.003423	102.15		18107-1.KAW	9:16:	31 207.81003	90.219128	8 41.0003551	0 psample10	CT	1
SEQ-CAL4	A6	1	2.8966	0.72062	6 2.008858004	0.27700	102.10	1	0108-1.KAW	9:27:0	32 267.060298	469.49959	7 84.1326941	0 psample10	CT	1
SEQ-CAL5	A7	1	2.8966	0.96255	3 4.77416736	0.689881	110 35	1	0109-1.KAW	9:37:3	32 332.03555	920.4235	8 156.550284	0 psample10	СТ	1
SEQ-ICV1	A8	1	2.8966	0.34911	6 0.024115985	0.055536	4.83	1	0110-1.KAW	9:48:0	/3 442.5336/3	2183.452	5 317.993182	0 psample10	ст	1
SEQ-ICB1	A9	1	2.8966	0.35801	1 0.006303569	0.150004	0.00	1	8117-1 DAW	9:56:3	4 102.352170	13.91134	4 28.2623106	0 psample10	cr	1
*F611352-BLK7	A10	500	2.8966	165.823	5 2.044138665	40.56315	0.00	1	8112-1, RAW	10.09:0	/4 100.414/1/	5.77568655	5 /1.4092803	0 psample10	ĊT	1
*F611352-BLK8	A11	500	2.8966	152.730	5 0.954090332	39,96961		1	R114-1 DAW	10.19.3	00 104.373224	4./038/31	1 39.9502604	0 psample10	ОК	1
*F611352-BLK9	A12	500	2.8966	140.4630	6 -3.060625685			ŕ	APTIPING	10:30:0	192.913021	3.7681344/	/ 39.4080/29	0 psample10	OK	1
SEQ-JCV2	A20	1	2.8966	0.878626	6 0.509861685	0.427598	102.10	1	8116-1 PAW	11.00.3	131.207401	0.100/6695	0	0 psample10	cr	
SEQ-ICB2	A21	1	2.8966	0.274722	2 -0.003521691	0.062876	0.00	1	8117-1 PAW	11,11,0	- 109.20008/	235.771117	198.198049	0 psample10	СТ	1
F611352-BLK7	A10	500	2.8966	144.6675	5 -1.012920805	86.21567	0.00	1	8118-1 RAW	11.11.0	0 120.3/3293 7 135 047633	1.20009180	31.0144880	0 psample10	ст	1
F611352-BLK8	A11	500	2.8966	130, 1953	-1.48092111	32.46577		1	R119-1 RAW	11.21.0	7 121 927500	1.9/130002	61.052983	U psample10	ст	1
F611352-BLK9	A12	500						1	8120-1.RAW	11.02.0	R 121.027303	1.343/9/33	34.3534304	0 psample10	CI	1
1610618-02RE1	A13	500	2.8966	363.8763	424.8232982	639.9247		1	8121-1.RAW	11:53:0	9 335 20072	300 064679	597.2030729	0 psampiet0	UK CT	1
1610618-03RE1	A14	500	2.8966	357.3917	309.5258848	579.8271			8122-1.RAW	12.03.3	9 333.23072	785 647661	522 553729	0 psample10	CT CT	1
1610618-04RE1	A15	2500	2.8966	1192.717	1684.944155	2247.218		18	8123-1.RAW	12:14:1	0 220 801563	310 720545	412 4E4004	0 psample10	CI m	1
1610618-05RE1	A16	2500	2.8966	1373.563	1172.742469	2231.855		18	8124-1.RAW	17.74.4	1 253 841448	217 152235	410 649067	0 psample10	сі —	1
1610618-06RE1	A17	500	2.8966	335.1643	518.4790804	826.9677		18	9125-1.RAW	12:35:1	1 309.062828	476 517472	758 216027	0 psample10		1
1610618-07RE1	A18	2500	2.8966	2225.905	7509.339082	5392.675		18	3126-1.RAW	12:45:42	2 409.560993	1374 82457	988 118014	0 psamplet0		1
1610618-08RE1	A19	2500	2.8966	1822.689	4542.58685	4518.424		18	127-1.RAW	12:56:1	3 335 895029	832 810109	878 305590	0 psample10		1
SEQ-CCV1	A8	1	2.8966	0.909026	0.499847546	0.390042	100.09	18	3128-1.RAW	13:06:43	418.085843	231 197254	181 044744	0 psample10	с; С	1
SEQ-CCB1	A9	1	2.8966	0.260122	0.004817257	0.055626	0.00	18	129-1.RAW	13:17:14	121.704974	5,09682765	28 3030777	0 psample10		1
F611388-BLK1	B1	1.25	2.8966	0.367495	0.011638197	0.087336		18	130-1.RAW	13:27:45	137.176636	7.14910038	34 8085464	0 psample10		1
F611388-BLK2	B2	1.25	2.8966	0.307631	0.008195851	0.085725		18	3131-1.RAW	13:38:15	115.30258	5.89129319	34,2197443	0 psemplet0		1
F611388-BLK3	83	1.25	2.8966	0.255467	0.012200196	0.079281		18	132-1.RAW	13:48:46	96.2422585	7.35445076	31,8651042	0 psample10	ст (т	1
F611388-B51	B4	1.25	2.8966	0.245914	1.10128774	0.090827		18	133-1.RAW	13:59:17	92.7518929	405,29884	36.0841856		ά ά	1
F611388-BSD1	B5	1.25	2.8966	0.234762	1.067874039	0.088621		18	134-1.RAW	14:09:47	88.6768919	393.089725	35.2780777	6 psample10	сі ст	1
F611388-DUP1	86	1.25	2.8966	0.766657	1.299617447	1.419185		18	135-1.RAW	14:20:18	283.027413	477.767022	521,45607	0 psample10	CT CT	1
F611388-MS1	B7	1.25	2.8966	0.754819	2.530400778	1.287239	253.04	18	136-1.RAW	14:30:49	278.701922	927.485985	473,243899	0 nsample10	CT CT	1
F611388-MSD1	88	1.25	2.8966	0.787383	2.557547478	1.080493		18	137-1.RAW	14:41:20	290.600237	937.405185	397,700483	0 psample10	ά.	1
P011388-M52	89	1.25	2.8966	0.321443	1.143454352	0.282648	57.17	18	138-1.RAW	14:51:51	120.349479	420.706203	106.174219	0 psample10	(T	1
F611388-MSD2	810	1.25	2.8966	0.32306	1.179791564	0.16172		18	139-1.RAW	15:02:22	120.94027	433.983546	61.9879735	0 psample10	a d	1
SEQ-CCV2	811	1	2.8966	0.613606	0.569781585	0.39957	114.10	18	140-1.RAW	15:12:53	283.15554	263.138968	185.396237	0 psample10	ä	1
1610654.01	B12 D12	1.	2.8966	0.174124	0.008466249	0.051034	0.00	18	141-1.RAW	15:23:24	82.4260417	6.76347064	26.2057292	0 psample10	οκ	1
1010039-01	B13	1.25	2.8966	0.623988	1.412433238	1.304038		18:	142-1.RAW	15:33:54	230.897112	518.989063	479.382283	0 psample10	ά.	1
1010034-05	D14 D14	1.25 4	2.8900	0.626018	1.400214/71	1.46937		18:	143-1.RAW	15:44:25	231.638989	514.524527	539.793484	0 psample10	ĊT	1
1610654-07	D13	1.25 2	2.0900	0.233081	1.211235869	0.870093		18:	144-1.RAW	15:54:56	222.015365	445.473059	320.821856	0 psample10	a	1
1610654-00	010	1.25 4	2.8900	0.682663	1.072498322	0.982441		181	145-1.RAW	16:05:26	252.336458	394.779403	361.873029	0 psample10	ст	1
1610654-11	B19	1.45 4	2.0900	0.053/34	1.19333443	1,071549		181	146-1.RAW	16:15:57	241.766193	438.932008	394.432475	0 psample10	CT	1
1610654-13	B10	1.25 2	2.8900	0.004904	1.137789263	1.076296		181	147-1.RAW	16:26:28	242.211837	418.636222	396.167069	0 psample10	ά	1
1610740-01	970	1.25 2	2.0900	0.30800	0.01613199	0.140406		181	148-1.RAW	16:36:58	115.459304	8.79109848	54.1999053	0 psample10	ок	1
1610740-02	82t	1.20 2	0900	0.207370	0.0025080/	0.08065		181	149-1.RAW	16:47:29	100.666809	3.81302083	32.3689867	0 psample10	a	1
1610785-05	C1	1 25 2	2.0500	0.200201	0.004727754	0.09437		181	150-1.RAW	16:58:00	105.279948	4.6240767	37.3788093	0 psample10	cr	1
SED-CCV3	~~ ~~	1.2.5 2	0000	1 002240	0.00114005	0.070258		181	151-1.RAW	17:08:30	87.8159328	3.31337595	30.7607244	0 psample10	OK	1
SEO-CCB3		1 2	8066	1 153405	0.079191494	0.403972	115.98	181	152-1.RAW	17:19:01	461.16482	267.436837	214.811458	0 psample10	ĊΤ	1
1610786-12	C4	125 7	8966	0.133405	0.000897748	.055134	0.00	181	53-1.RAW	17:29:32	72.9629972	3.30662879	28.0784328	0 psample10	α	1
1610828-10	 C5	1 75 7	20200	0.200127	0.002423194	7.103302		181	54-1.RAW	17:40:02	76.0213297	3.78200758	43.0763258	0 psample10	cr	1
1610860-12		1.25 2	8966	0.203073	0.0009002	J.U049U4		181	55-1.RAW	17:50:33	77.8288352	6.17788826	33.9199811	0 psample10	ОК	1
1610860-13		125 2	8066	0.103304	0.032331038	7114202 7114202		181	56-1.RAW	18:01:04	63.2974432	14.7101089	44.7649148	0 psample10	ст	1
1610860-14	 CB	1 25 7	8966	0.105013	0.122/91004 0.122/91004	0.04025		181	57-1.RAW	18:11:34	69.4033617	47.7454782	239.024259	0 psample10	ст	1
		., <i></i> 2			0.0712700/3			181	56-1.KAW	18:22:05	53.4078125	17.965696	47.5682765	0 psample10	OK	1

1610860-15	C9	1.25 2.8966	6 0.142025	0.081613935	0 21 1947		10100 1 0404	10.00.00						
1610860-16	C10	1.25 2.8966	0.15941	0.071109262	0.14456		10109-1.RAW	18:32:36	54.7915483	32.7177083	80.3403409	0 psample10	ОК	1
1610860~17	C11	1.25 2.8966	0.1155	-0.005060133	0.074677		10100-1.RAW	18:43:05	61.1436553	28.8793797	55.7178977	0 psample10	OK	1
1610860-18	C12	1.25 2.8966	0.130117	-0.003397913	0.071043		10101-1.KAW	18:53:37	45.0994081	1.04765625	30.1830729	0 psample10	CT	1
1611168-01	C13	1.25 2.8966	0.108025	0.007700572	0 105676		10102-1.KAW	19:04:08	50.4403409	1.65501894	29.1841856	0 psample10	OK	1
SEQ-CCV4	C14	1 2.8966	1.213282	0 576576997	0.470360	115 46	18163-1.KAW	19:14:39	42.3679924	5.71032197	41.5098011	0 psample10	OK	1
SEQ-CC84	C15	1 2.8966	0.100786	-0.004567007	0.054677	113,40	18104-1.KAW	19:25:09	557.051942	266.242708	217.733381	0 psample10	cr	1
F611323-BLK4	C16	1 2.8966	0.070173	0.018189035	0.097421	0.00	10105-1.KAW	19:35:40	48.9296875	0.81065341	27.8697917	0 psample10	OK	1
F611323-BLK5	C17	1 2.8966	0.081718	0.004371752	0.078044		10100-1.KAW	19:46:11	34.9474432	11.2042614	47.3926373	0 psample10	OK	1
F611323-BLK6	C18	1 2.8966	0.083706	0 000704774	0.05519		1010/-1.KAW	19:56:41	40.2203598	4.89334754	38.5425663	0 psample10	OK	1
1610865-03RE1	C19	125 2.8966	88.54266	120 9163261	1331 904		10100-1.KAW	20:07:12	41.1285856	3.21848958	28.1039299	0 psample10	0K	1
1611082-01RE1	C20	1 2.8966	0.209483	0 375502105	1 244358		18169-1.RAW	20:17:43	326.424787	444.715743	4869.20688	0 psampie10	CT	1
1610618-09RE1	C21	500 2.8966	275, 2394	800 5845080	1060 575		18170-1.KAW	20:28:13	98.5761364	174,444792	571.245272	0 psample10	ст	1
1610618-10RE1	AI	500 2.8966	197.3698	508 9493204	004.6108		18171-1.KAW	20:38:44	254.322633	742.436884	971.711965	0 psample10	cr	1
1611293-02RE1	A2	500 2.8966	187.3689	130 4960977	32 02754		18172-1.RAW	20:49:15	183.190167	467.812216	829.24154	0 psample10	CT	1
1611293-03RE1	A3	2500 2.8966	682 4913	8150 020300	109 /021		18173-1.KAW	20:59:45	169.487121	122.10232	33.0757576	0 psample10	СТ	1
1611293-04RE1	A4	2500 2.8966	576 9512	5652 455491	158 3079		18174-1.RAW	21:10:16	127.58518	1493.52055	39.1440814	0 psample10	ст	1
SEQ-CCV5	A5	1 2,8966	1 006048	0.663910973	0 552760	132.02	18175-1.KAW	21:20:47	108.303409	1035.57893	31.8352746	0 psample10	OK	1
SEO-CCB5	A6	1 2,8966	0 130684	0.000010023	0.332709	132.93	181/6-1.RAW	21:31:17	462,399596	306.085938	255.368708	0 psample10	CΤ	1
1611293-05RE1	A7	2500 2 8966	673 0084	0957 620590	147 6054	0.00	18177-1.RAW	21:41:48	62.585204	7.18892045	24.8321496	0 psample10	a	1
1611293-06RE1	AB	2500 2,8966	488 1071	5705 449000	156 7904		18178-1.RAW	21:52:19	125.869129	1803.85024	28.9665009	0 psample10	CT	1
1611293-07RE1	A9	2500 2.8966	545 0148	9132 160640	100.7004		181/9-1.RAW	22:02:49	92.0874527	1045.26046	31.5397727	0 psample10	СТ	1
F611352-DUP2	A10	500 2.8966	03 071	201 5625712	103.310/		18180-1.RAW	22:13:20	102.46875	1488.79607	32.7708333	0 psample10	ст	1
F611352-MS3	A11	500 2,8966	110 2138	501.3023/12 669 140030E	57.47214	22224 44	18181-1.RAW	22:23:51	87.9151989	278.368324	55.3963068	0 psample10	OK	1
F611352-MSD3	A17	500 2,8966	105 2664	671 6596011	72 4202	222/1.66	18182-1.RAW	22:34:21	103.574858	613.238968	61.6920928	0 psampie10	α	1
F611352-BLKA	A13	500 2,8966	57 43339	6 565642670	73.4203		18183-1.RAW	22:44:52	99.0554451	616.444081	69.9646544	0 psample10	cr	1
F611352-BLKB	A14	500 2.8966	49 31397	4 330471570	37.309/		18184-1.RAW	22:55:23	55.3609094	8.89436553	34.292661	0 psample10	OK	1
F611352-BLKC	A15	500 2.0500	40.51307	1.173040166	40.47390		18185-1.RAW	23:05:53	47.0303977	6.85056818	39.8706155	0 psample10	OK	1
SEO-CCV6	A16	1 2 8966	0.606362	1.1/2010105	40.40055 0 F80676		18186-1.RAW	23:16:24	40.0319839	3.96723485	39.8017356	0 psample10	OK	1
SEO-CCB6	A17	1 2,0500	0.000302	0.00/029100	0.300030	137.74	18187-1.RAW	23:26:55	279.846591	317.056084	271.759896	0 psampie10	ст	1
		1 2.0300	0.001000	0.002000313	0.047247	0.00	18188-1.RAW	23:37:26	40.1369853	3.96486742	24.4762784	0 psample10	OK	1

Failing Data Report - 6K21024

Sample ID	Analysis	Result	MRL	Dup Result	Source Result	True Value	Units	% Rec.	Rec. LCL	Rec. UCL	RPD	RPD Limit	Over Cal	Failure	Qualifier
6K21024-ICV1	MHg-CVAFS-W-Dist	0.024	0.045			0.50049	ng/L	4.81	67.00	133.00			PASS-OVER	FAIL-CCV	PR JCV2
Analyst Reviewe	M ad By	(1/2) Dat	/16 te			P	eer Revi	ewed By	2			l	1-21.)6 Date		90000 11-21-16

Failing Data Report - 6K21025

Sample ID	Analysis	Result	MRL	Dup Result	Source Result	True Value	Units	% Rec.	Rec. LCL	Rec. UCL	RPD	RPD Limit	Over Cal	Failure	Qualifier
6K21025-ICV1	MHg-CVAFS-S-MeClExt	0.024	0.201			0.50049	ng/L	4.81	67.00	133.00			PASS-OVER	FAIL-CCV	PF AS ICV2
Analyst Review	ed By	n/zi/j Dat	, te			q	eer Revi	ewed By	2				11-21-16 Date		

Failing Data Report - 6K21026

Sample ID	Analysis	Result	MRL	Dup Result	Source Result	True Value	Units	% Rec.	Rec. LCL	Rec. UCL	RPD	RPD Limit	Over Cal	Failure	Qualifier
6K21026-ICV1	MHg-CVAFS-T-KOH	0.02	0.100			0.50049	ng/L	4.81	67.00	133.00	*** * * * * *		PASS-OVER	FAIL-CCV	
6K21026-CCV6	MHg-CVAFS-T-KOH	0.7	0.100			0.50049	ng/L	137	67.00	133.00	· · · · · · · · · · · · · · · · · · ·		PASS-OVER	FAIL-CCV	

hy Ma 1/23/16 Date

11.21.16 Date Peer Reviewed By

Analyst Reviewed By

IN ISBN UNDERVICE PROPERTY INTERVICE

Instrument: Hg2700-1

Calibration ID: UNASSIGNED

Analyzed: 11/18/2016

Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
6K21024-IBL1	QC	1			
6K21024-CAL1	QC	2	1606090		
6K21024-CAL2	QC	3	1606091		
6K21024-CAL3	QC	4	1606092	· · · · · · · · · · · · · · · · · · · ·	
6K21024-CAL4	QC	5	1606093		
6K21024-CAL5	OC	6	1606094		
6K21024-ICV1	OC	7	1605079		
6K21024-ICB1	OC	8			
6K21024-ICV2	OC	9	1605079		
6K21024-ICB2	OC	10			
6K21024-CCV1	OC	11	1605079		
6K21024-CCB1	00	12			
F611388-BLK1	QC	12			
F611388-BLK2	<u>с</u>	14			
F611388-BLK3	 	15			
F611388-BS1	00	16			
F611388-BSD1	00	17			
F611388-DUP1		18			
F611388-MS1	OC	19			
F611388-MSD1	OC	20			
F611388-MS2	OC	21			
F611388-MSD2	OC	22	┠────┤		
6K21024-CCV2	OC	23	1605079		
6K21024-CCB2	OC	24			
1610654-01	MHg-CVAFS-W-Dist	25			
1610654-03	MHg-CVAFS-W-Dist	26			Scan all data for level IV report
1610654-05	MHg-CVAFS-W-Dist	27		—	Scan all data for level IV report
1610654-07	MHg-CVAFS-W-Dist	28			Scan all data for level IV report
1610654-09	MHg-CVAFS-W-Dist	29			Scan all data for level IV report
1610654-11	MHg-CVAFS-W-Dist	30			Scan all data for level 1V report
1610654-13	MHg-CVAFS-W-Dist	31			Scan all data for level IV report
1610740-01	MHg-CVAFS-W-Dist	32			Scan an data for level IV report
1610740-02	MHg-CVAFS-W-Dist	33			
1610785-05	MHg-CVAFS-W-Dist	34	_		Soon all date See 1 197
6K21024-CCV3	QC	35	1605079		Scall an uata for rever IV report

Due Date: 11/18/2016

นสู่ปฏิญหิสินที่ยุกันที่เป็นที่มีมีกันที่มีหลือมายกันไขตินกลาวต่างการต่างการต่างการต่างการต่างการต่างการต่างการ แล้ปฏิญหิสินที่ยุกันที่มีการต่างการต่างการต่างการต่างการต่างการต่างการต่างการต่างการต่างการต่างการต่างการต่างการ

Instrument: Hg2700-1

Calibration ID: UNASSIGNED

					Analyzed: 11/18/2016
Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
6K21024-CCB3	QC	36			
1610786-12	MHg-CVAFS-W-Dist	37	1		Scan all data for lawel NU
1610828-10	MHg-CVAFS-W-Dist	38	<u> </u>		Scan all data for level 1V report
1610860-12	MHg-CVAES W/ Digt	20			Scan all data for Level IV
1610860 13		39	<u> </u>		Scan all data - Level IV
1010800-13	MHg-CVAFS-W-Dist	40			Scan all data - Level IV
1610860-14	MHg-CVAFS-W-Dist	41			Scan all data - Level IV
1610860-15	MHg-CVAFS-W-Dist	42			Scan all data - Level IV
1610860-16	MHg-CVAFS-W-Dist	43			
1610860-17	MHg-CVAFS-W-Dist	44			
1610860-18	MHg-CVAFS-W. Digt	45			Scan all data - Level IV
1611168-01	MILE OVATE IN Dist	+3			Scan all data - Level IV
	Ming-CVAFS-W-Dist	46			
6K21024-CCV4	QC	47	1605079		
6К21024-ССВ4	QC	48			

Samples Loaded By

_____/21/16____ Date

Data Processed By Date

Date

Due Date: 11/18/2016

Instrument: Hg2700-1

Calibration ID: UNASSIGNED

Lab Number	Analysis	Order	STDID	ISTD ID	Comments
6K21025-IBL1	QC	1		├─── ┤	
6K21025-CAL1	QC	2	1606090		
6K21025-CAL2	QC	3	1606091		
6K21025-CAL3	QC	4	1606092	 	
6K21025-CAL4	QC	5	1606093		
6K21025-CAL5	QC	6	1606094	┝───┤	
6K21025-ICV1	OC	7	1605079		
6K21025-ICB1	OC OC	8			
6K21025-ICV2	 0C		1605079		
6K21025-ICB2	 	10	1003075		:
6K21025-CCV1	<u> </u>	10	1605070		
6K21025-CCB1		11	1002019	 	
6K21025-CCV2	QU	12			
0K21025-CCV2	QC	13	1605079		
6K21025-CCB2	QC	14			
6K21025-CCV3	QC	15	1605079		
6K21025-CCB3	QC	16			
6K21025-CCV4	QC	17	1605079		
6K21025-CCB4	QC	18			
F611323-BLK4	OC	19			
F611323-BLK5	00	20	┢━━━━╋		
F611323-BLK6	OC	21			
1610865-03RE1	MHg-CVAFS-S-MeClEvt		┝━━━━┓╋		
1611082-01RF1	MILE CVATE & M. CIT.		<u> </u>		Added 11/18/2016 by RN
6K31035 COV5	MHg-UVAFS-S-MeClExt	23			Added 11/18/2016 by RN
0K21025-CCV5	QC	24	1605079		
6K21025-CCB5	QC	25			

Samples Loaded By

isjaangestoesongingengengengengengengengengen

Date Data Processed By Date

Due Date: 11/29/2016

angesunennessannannessannansennessannes

Analyzed: 11/18/2016

Instrument: Hg2700-1

Calibration ID: UNASSIGNED Г

				r	Analyzed: 11/18/2016
Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
6K21026-IBL1	QC	1			
6K21026-CAL1	QC	2	1606090		
6K21026-CAL2	QC	3	1606091		
6K21026-CAL3	QC	4	1606092		
6K21026-CAL4	QC	5	1606093		
6K21026-CAL5	QC	6	1606094		
6K21026-ICV1	QC	7	1605079		
6K21026-ICB1	QC	8			
6K21026-ICV2	QC	9	1605079		
6K21026-ICB2	QC	10			
F611352-BLK7	QC	11			
F611352-BLK8	QC	12			
F611352-BLK9	QC	13			
1610618-02RE1	MHg-CVAFS-T-KOH	14			Added 11/19/2016 h. DN
1610618-03RE1	MHg-CVAFS-T-KOH	15			Added 11/19/2016 by RN
1610618-04RE1	MHg-CVAFS-T-KOH	16			Added 11/18/2016 by KN
1610618-05RE1	MHg-CVAFS-T-KOH	17			Added 11/18/2016 by KN
1610618-06RE1	MHg-CVAFS-T-KOH	18			
1610618-07REI	MHg-CVAFS-T-KOH	19			
1610618-08RE1	MHg-CVAFS-T-KOH	20			Added 11/18/2016 by RN
6K21026-CCV1	QC	21	1605079		Added 11/18/2016 by RN
6K21026-CCB1	QC	22			
6K21026-CCV2	QC	23	1605079		
6K21026-CCB2	QC	24			
6K21026-CCV3	QC	25	1605079		
6K21026-CCB3	QC	26		——	
6K21026-CCV4	QC	27	1605079		
6K21026-CCB4	QC	28			
1610618-09RE1	MHg-CVAFS-T-KOH	29			
1610618-10RE1	MHg-CVAFS-T-KOH	30			Added 11/18/2016 by RN
1611293-02RE1	MHg-CVAFS-T-KOH	31			Added 11/18/2016 by RN
1611293-03REI	MHg-CVAFS-T-KOH	32			Added 11/18/2016 by RN
1611293-04RE1	MHg-CVAFS-T-KOH	33			Added 11/18/2016 by RN
5K21026-CCV5	00	34	1605079		Added 11/18/2016 by RN
5K21026-CCB5	OC	35			
				1	

Due Date: 11/17/2016

Instrument: Hg2700-1

Calibration ID: UNASSIGNED

		Analyzed: 11/18/20			
Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
1611293-05RE1	MHg-CVAFS-T-KOH	36			
1611293-06RE1	MHg-CVAFS-T-KOH	37			Audeu 11/18/2018 by KN
1611293-07RE1	MHg-CVAES T KOH	20	<u> </u>		Added 11/18/2016 by RN
F611352-DUP2	Ming-C VALS- 1-KOR		<u> </u>		Added 11/18/2016 by RN
7011332-10012	QC	39			
F611352-M\$3	QC	40			
F611352-MSD3	QC	41		······	
F611352-BLKA	QC	42			
F611352-BLKB	OC	43	<u> </u>		
F611352-BLKC	OC.	44			
6K21026-CCV6		45	1605070		
6K21026 CCD6		43	1605079		
0K21020-CCB0	QC	46			

Samples Loaded

By Date Data Processed By Date Data

Due Date: 11/17/2016

ahihasunaannaunaunannaum

F611388

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: Hg Aquatic/Solids - EFGS-013 Methyl Hg Distillation for Water

Prepared: 11/17/2016

Lab Number	Sample ID and Source Sample	lnitial (mL)	Final (mL)	Spikel ID	µl Spike1	Spike2 ID	μl Spike2	Extraction Comments
F611388-BLK1	Blank	45	40			······		
F611388-BLK2	Blank	45	40	1		[·····
F611388-BLK3	Blank	45	40					· · · · · · · · · · · · · · · · · · ·
F611388-BS1	LCS	45	40	1605979	45			· · · · · · · · · · · · · · · · · · ·
F611388-BSD1	LCS Dup	45	40	1605979	45			
F611388-DUP1	Duplicate [1610654-03]	45	40					
F611388-MS1	Matrix Spike [1610654-03]	45	40	1605979	45			· · · · · · · · · · · · · · · · · · ·
F611388-MS2	Matrix Spike [1611168-01]	45	40	1605979	45			· · · · · · · · · · · · · · · · · · ·
F611388-MSD1	Matrix Spike Dup [1610654-03]	45	40	1605979	45			
F611388-MSD2	Matrix Spike Dup [1611168-01]	45	40	1605979	45			

Standard ID(s): 1605979

): Description: MHg New Primary 1.0 ng/mL CAL

Expiration: 15-Jan-17 00:00

Reagent ID(s):	Description:	Expiration:
1605961	Acetate Buffer	11-Apr-17 00:00
1606301	Ethylating Agent (For Methyl Mercury Analysis)	26-Apr-17 00:00
1606667	APDC	18-Nov-16 00:00
1606762	2.5% Ascorbic Acid	24-Nov-16 00:00
1606765	0.5% HCl Distillation Dilute (Made Daily)	18-Nov-16 00:00

UNION RESIDENCE

F611388

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: Hg Aquatic/Solids - EFGS-013 Methyl Hg Distillation for Water

Prepared: 11/17/2016

Lab Number	Sample ID	Initial (mL)	Final (mL)	QC Sample	Sample Specs.	Raw Data	Sample Comments	Analysis Comments
1610654-01	NMC-5249-00	45	40	-	-	-	Preservation Blank Created Scan all dat	
1610654-03	NMC-5249-01	45	40	QC	-	-	MS/MSD Scan all data for level IV repo	
1610654-05	NMC-5249-02	45	40	-	-	-	Preservation Blank Created Scan all dat	
1610654-07	NMC-5249-03	45	40	-	-	-	Preservation Blank Created Scan all dat	
1610654-09	NMC-5249-04	45	40	-	-	-	Preservation Blank Created Scan all dat	
1610654-11	NMC-5249-05	45	40	-	-	-	Preservation Blank Created Scan all dat	
1610654-13	NMC-5249-06	45	40	-	-	-	Preservation Blank Created Scan all dat	
1610740-01	NB3153FB	45	40	-	-	-	Preservation Blank Created	
1610740-02	TB10212016-01	28.93	40	-	-	-	Preservation Blank Created	
1610785-05	NMC-5250-05	45	40	-	-	•	Scan all data for level IV report	· · · · · · · · · · · · · · · · · · ·
1610786-12	NMC-5251-12	45	40	- 1	-	-	Scan all data for level IV report	
1610828-10	TB10252016-01 Water 8661420	29.1	40	-	-	-	Preservation blank created on 10/27/16	
1610860-12	WQ3-L_102616_SW_10 Dissolved	45	40	-	-	-	Scan all data - Level IV	
1610860-13	WQ2-C_102616_SW_10	45	40	- †	-	·	Scan all data - Level IV	
1610860-14	WQ2-C_102616_SW_10 Dissolved	45	40	-	-	-	Scan all data - Level IV	
1610860-15	OV-02_102616_SW_10	45	40	-	-	-	Scan all data - Level IV	
1610860-16	OV-02_102616_SW_10 Dissolved	45	40	-	-	•	Scan all data - Level IV	
age 60-17	EB_102616_SW_QC	45	40	-	- †	-	Scan all data - Level IV	·····
10 00-18	EB_102616_SW_QC Dissolved	45	40	- 1	-	-	Scan all data - Level IV	
		1						

D[®] Date: 11/18/2016

And the second se

F611388

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: Hg Aquatic/Solids - EFGS-013 Methyl Hg Distillation for Water

Prepared: 11/17/2016

1611168 01	1611128 001C EEE 001 C1				-	-			rieparca. II	017/2010
1011100-01	1011128-001C EFT-001 GIAD	45	40	- 1	- 1	[-				
·····				L	L	L	 	 		

Southernal and

A 11/18/16 2700)

PREPARATION BENCH SHEET

F611352

Eurofins Frontier Global Sciences, Inc.

Matrix: Tissue

Prepared using: Hg Aquatic/Solids - EFGS-010 KOH/Methanol Hg Digestion

Prepared: 11/15/2016

Lab Number	Sample ID and Source Sample	lnitial (g)	Final (mL)	Spike1 ID	µl Spikel	Spike2 ID	μl Spike2	Extraction Comments
F611352-BLK1	Blank	0.25	20					
F611352-BLK2	Blank	0.25	20					
F611352-BLK3	Blank	0.25	20	1	<u></u>			
611352-BLK4	Prep Blank	0.3752	20					
611352-BLK5	Post Blank	0.3364	20					
611352-BLK6	Filter Blank	0.3424	20				· · · · · · · · · · · · · · · · · · ·	
611352-BLK7	Blank	0.25	20					5012
611352-BLK8	Blank	0.25	20		· · · · · · · · · · · · · · · · · · ·			5007
611352-BLK9	Blank	0.25	20		· · · · · · · · · · · · · · · · · · ·			500-
611352-BLKA	Pre Blank	0.3752	20					Added 11/21/2016 by RN Crass
511352-BLKB	Post Blank	0.3364	20					Added 11/21/2016 by RN Serv 3
511352-BLKC	Filter Blank	0.3424	20					Added 11/21/2016 by RN 50000
511352-BS1	DORM-4	0.1255	20	1605470	126			
11352-BSD1	DORM-4 Dup	0.1259	20	1605470	126			· · · · · · · · · · · · · · · · · · ·
11352-DUP1	Duplicate [1611039-01]	0.2688	20		1			······································
11352-DUP2	Duplicate [1611039-01]	0.2688	20					Added 11/21/2016 by RN Server
11352-MS1	Matrix Spike [1611039-01]	0.2661	20	1605978	100			
11352-MS2	Matrix Spike [1611293-01]	0.2917	20	1605978	100			
11352-MS3	Matrix Spike [1611039-01]	0.2661	20	1605978	100			Added 11/21/2016 by RN 1000 Sav
11352-MSD1	Matrix Spike Dup [1611039-01]	0.269	20	1605978	100			Nativ
52-MSD2	Matrix Spike Dup [1611293-01]	0.2871	20	1605978	100			
0 52-MSD3	Matrix Spike Dup [1611039-01]	0.269	20	1605978	100			Added 11/21/2016 by RN

F611352

Eurofins Frontier Global Sciences, Inc.

Matrix: Tissue

Prepared using: Hg Aquatic/Solids - EFGS-010 KOH/Methanol Hg Digestion

Prepared: 11/15/2016

<u>Standard ID(s):</u> 1605470 1605978	<u>Description:</u> DORM-4 MHg New Primary 100 ng/mL spike	<u>Expiration:</u> 19-Mar-17 00:00 15-Oct-17 00:00	<u>Reagent ID(s):</u> 1603399 1605926 1605961 1606119 1606301	<u>Description:</u> Boiling Chips for AFS prep 25% KOH/Methanol Acetate Buffer Methanol, HPLC Grade Ethylating Agent (For Methyl Mercury Analysis)	Expiration: 01-Jun-17 00:00 09-Apr-17 00:00 11-Apr-17 00:00 17-Oct-19 00:00 26-Apr-17 00:00
--	--	--	--	---	--

nunanonanan maanne

F611352

Eurofins Frontier Global Sciences, Inc.

Matrix: Tissue

Prepared using: Hg Aquatic/Solids - EFGS-010 KOH/Methanol Hg Digestion

Prepared: 11/15/2016

Lab Number	Sample ID	lnitial (g)	Final (mL)	QC Sample	Sample Specs.	Raw Data	Sample Comments	Analysis Comments
1610618-01	NMC-5243-01 8644941	0.2708	20	-	-	-		and a second and a second and second and second and a second second second second second second second second s
1610618-02	NMC-5243-02 8644942	0.296	20	-	-	-	••••••••••••••••••••••••••••••••••••••	
1610618-02RE1	NMC-5243-02 8644942	0.296	20	-	-	-	Added 11/18/2016 by RN	Added 11/18/2016 by RN 5614
1610618-03	NMC-5243-03 8644943	0.2699	20	-	-	-		
1610618-03RE1	NMC-5243-03 8644943	0.2699	20	-	-	-	Added 11/18/2016 by RN	Added 11/18/2016 by RN Sure 2
1610618-04	NMC-5243-04 8644944	0.276	20	-	-	-		
1610618-04RE1	NMC-5243-04 8644944	0.276	20	-		-	Added 11/18/2016 by RN	Added 11/18/2016 by RN 7 5 cm
1610618-05	NMC-5243-05 8644945	0.2694	20	-	-	-	······	
1610618-05RE1	NMC-5243-05 8644945	0.2694	20	-	-	-	Added 11/18/2016 by RN	Added 11/18/2016 by RN 2507
1610618-06	NMC-5243-06 8644946	0.2604	20	-	-	-		
1610618-06RE1	NMC-5243-06 8644946	0.2604	20 ·	-	-	-	Added 11/18/2016 by RN	Added 11/18/2016 by RN
1610618-07	NMC-5243-07 8644947	0.2962	20	- 1	-	-		7503
1610618-07RE1	NMC-5243-07 8644947	0.2962	20	-		-	Added 11/18/2016 by RN	Added 11/18/2016 by RN 7 Sc Test
1610618-08	NMC-5243-08 8644948	0.2854	20	-	-	-		
1610618-08RE1	NMC-5243-08 8644948	0.2854	20	-	-	-	Added 11/18/2016 by RN	Added 11/18/2016 by RN 2 CORE
1610618-09	NMC-5243-09 8644949	0.2644	20	-	-			
610618-09RE1	NMC-5243-09 8644949	0.2644	20	-	-	-	Added 11/18/2016 by RN	Added 11/18/2016 by RN
a) 18-10	NMC-5243-10 8644950	0.2905	20	-	-			
(9) 18-10RE1	NMC-5243-10 8644950	0.2905	20	-	-	-	Added 11/18/2016 by RN	Added 11/18/2016 by RN 500
	·····							

D[®] Date: 11/17/2016

ninuer energinger der

F611352

Eurofins Frontier Global Sciences, Inc.

Matrix: Tissue

Prepared using: Hg Aquatic/Solids - EFGS-010 KOH/Methanol Hg Digestion

Prepared: 11/15/2016

1610820-01	OL-2502-01	0.2864	20	_		1		1
							Preservation Blank Created Scan all dat	
1611039-01	NMC-5248-01	0.2556	20	QC	-	-	MD/MS/MSD Scan all data for Level P	
1611041-01	GBPE-0025-001	0.274	20	-	-	-	Scan all data for Level IV	·····
1611293-01	S-161017-00568 699794 Atlantic Cod Mazzetta	0.284	20	-	·	-		
1611293-02	S-161017-00569 699794 Atlantic Cod Trident	0.2877	20		-	-	····	
1611293-02RE1	S-161017-00569 699794 Atlantic Cod Trident	0.2877	20	-	-	-	Added 11/18/2016 by RN	Added 11/18/2016 by RN <
1611293-03	S-161017-00800 458141 Chilean Sea Bass Mazzetta	0.2979	20	-	-	-		<i>JC U Q</i>
1611293-03RE1	S-161017-00800 458141 Chilean Sea Bass Mazzetta	0.2979	20	-	-	-	Added 11/18/2016 by RN	Added 11/18/2016 by RN
1611293-04	S-161017-00801 458141 Chilean Sea Bass Mazzetta	0.2714	20	-	-	-		
1611293-04RE1	S-161017-00801 458141 Chilean Sea Bass Mazzetta	0.2714	20		-	-	Added 11/18/2016 by RN	Added 11/18/2016 by RN 2502,
1611293-05	S-161017-00802 458141 Chilean Sea Bass Mazzetta	0.2856	20	-	-	-		
1611293-05REI	S-161017-00802 458141 Chilean Sea Bass Mazzetta	0.2856	20	-	-	-	Added 11/18/2016 by RN	Added 11/18/2016 by RN 250704
1611293-06	S-161017-00803 458141 Chilean Sea Bass Mazzetta	0.2764	20	-	-	- 1	· · · · · · · · · · · · · · · · · · ·	
1611293-06RE1	S-161017-00803 458141 Chilean Sea Bass Mazzetta	0.2764	20	-	-	-	Added 11/18/2016 by RN	Added 11/18/2016 by RN 2 5 (772)
1611293-07	S-161017-00805 458141 Chilean Sea Bass Tai Foong	0.2913	20	-	-	-		
1611293-07RE1	S-161017-00805 458141 Chilean Sea Bass Tai Foong	0.2913	20	-	-] -	Added 11/18/2016 by RN	Added 11/18/2016 by RN 25.6722

⁸ Date: 11/17/2016

F611352

Eurofins Frontier Global Sciences, Inc.

Matrix: Tissue

.

Prepared using: Hg Aquatic/Solids - EFGS-010 KOH/Methanol Hg Digestion

Prepared: 11/15/2016

F611388

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: Hg Aquatic/Solids - EFGS-013 Methyl Hg Distillation for Water

Prepared: 11/17/2016

Lab Number	Sample ID and Source Sample	Initial (mL)	Final (mL)	Spike1 ID	µl Spike I	Spike2 ID	μI Spike2	Extraction Comments
F611388-BLK1	Blank	45	40					1.25
F611388-BLK2	Blank	45	40					1.25
F611388-BLK3	Blank	45	40					1-25
F611388-BS1	LCS	45	40	1605979	45			1.25
F611388-BSD1	LCS Dup	45	40	1605979	45			1.25
F611388-DUP1	Duplicate [1610654-03]	45	40					1.25
F611388-MS1	Matrix Spike [1610654-03]	45	40	1605979	45			1.25
F611388-MS2	Matrix Spike [1611168-01]	45	40	1605979	45			1.25
F611388-MSD1	Matrix Spike Dup [1610654-03]	45	40	1605979	45			1.25
F611388-MSD2	Matrix Spike Dup [1611168-01]	45	40	1605979	45			1.25

Standard ID(s): 1605979

MHg New Primary 1.0 ng/mL CAL

Description:

Expiration: 15-Jan-17 00:00

Reagent ID(s): Description: APDC

1606667

1606765

0.5% HCl Distillation Dilute (Made Daily)

Expiration: 18-Nov-16 00:00

h upilic

1605961 1606301 1606762

Page 194 of Date: 11/18/2016

F611388

Eurofins Frontier Global Sciences, Inc.

Matrix: Water

Prepared using: Hg Aquatic/Solids - EFGS-013 Methyl Hg Distillation for Water

Prepared: 11/17/2016

Lab Number	Sample ID	Initial (mL)	Final (mL)	QC Sample	Sample Specs.	Raw Data	Sample Comments	Analysis Comments
1610654-01	NMC-5249-00	45	40	-	-	-	Preservation Blank Created Scan all dat	1.2.5
1610654-03	NMC-5249-01	45	40	QC	-	-	MS/MSD Scan all data for level IV repo	1.25
1610654-05	NMC-5249-02	45	40	-	-	-	Preservation Blank Created Scan all dat	1.25
1610654-07	NMC-5249-03	45	40	-	-	-	Preservation Blank Created Scan all dat	1.25
1610654-09	NMC-5249-04	45	40	-	-	*	Preservation Blank Created Scan all dat	1.25
1610654-11	NMC-5249-05	45	40	-	-	-	Preservation Blank Created Scan all dat	1.2.5
1610654-13	NMC-5249-06	45	40	-	-	-	Preservation Blank Created Scan all dat	1.25
1610740-01	NB3153FB	45	40	-	-	-	Preservation Blank Created	1.25
1610740-02	TB10212016-01	28.93	40	-	-	-	Preservation Blank Created	1,25
1610785-05	NMC-5250-05	45	40	-	-	-	Scan all data for level IV report	1.25
1610786-12	NMC-5251-12	45	40	-	-	-	Scan all data for level IV report	1.25
1610828-10	TB10252016-01 Water 8661420	29.1	40	-	-	-	Preservation blank created on 10/27/16	1,25
1610860-12	WQ3-L_102616_SW_10 Dissolved	45	40	-		-	Scan all data - Level IV	1.25
1610860-13	WQ2-C_102616_SW_10	45	40	-	-	-	Scan all data - Level IV	1.25
1610860-14	WQ2-C_102616_SW_10 Dissolved	45	40	-	-	-	Scan all data - Level IV	1.25
1610860-15	OV-02_102616_SW_10	45	40	-	-	-	Scan all data - Level IV	1.25
1610860-16	OV-02_102616_SW_10 Dissolved	45	40	-	-	-	Scan all data - Level IV	1.25
1 00 860-17	EB_102616_SW_QC	45	40	-	-	-	Scan all data - Level IV	1.25
1 9 160-18	EB_102616_SW_QC Dissolved	45	40	-	-	-	Scan all data - Level IV	1.25
- 2								

I[®]: Date: 11/18/2016

F611388

Eurofins Frontier Global Sciences, Inc.

Name: AMB Date: _//-/7-16 Batch #: _F6/1388_ Sample Matrix: Water wo#: 1610654, 1610740, 1610785, 1610786, 1610828, 1610860, 1611168

The pH of the preserved sample must be documented before an aliquot is removed for preparation.

Digest #	Sample ID Number	Preservied pH	Sample Size (mL)	Final pH (≥3)	
BIXI	F 611388-BLKI	j - 0	45	4.0	_
Bik2	F611388-BLK2	1.0	45	3.0	Spike ID: <u>1605 979</u>
BLK3	F611388-BLK3	1.0	45	3.0	Spike Amount: <u>45</u> μ L
PSI	F611388-BSI	10	45	3.0	Spike Witness: 00 1/1/14
BSDI	F1011388 - BSDI	1.0	45	3.0	Balance #: 2
DUPI	F611388 - DUPI	1.0	45	4.0	Calibrated? 🛛 Yes 🗌 No
MSI	F611388 - MSI	1.0	45	4.0	
MSDI	F611388 - MSDI	1.0	45	4.0	Pipette #: <u>// / / / / 65 - 3</u> Cal Date: //-/A -/6
MS2	F611388 - MS2	1.0	45	3.0	cal. Date. <u>// ////////</u>
MSD2	F611388 - MSD2	1.0	45	3.0	Pipette #: <u>CJT 17087</u>
	1610654-01B	· D	45	4.0	Cal. Date: _//-/4-/6
2	1610657-038	1.0	45	4.0	Pinette # 1/Unic2
3	1610657-05B	1.0	45	4.0	Cal. Date: $1/-16 - 16$
4	1610654-07B	1.0	45	4.0	
5	1610654-09B	1.0	45	4.0	APDC ID: 1606667
6	1610657-11B	1.0	45	4.0	HCI ID: <u>1606 765</u>
7	1610654-1313	1.0	45	4.0	Temperature: No set rappe as
8	1610740-01B	1.0	45	3.0	the temp. may be changed to
9	1610740-02B	1-0	28.93	3.0. m	keep flow rate of ≥10 mL per
10	1610785-05A	j.0	45 4	JZ 5 11-1	hour. Temperature is recorded
	1610786-12A	1.0	45	4.5	ior informational purposes only.
12	1610828-10A	1.0	29.0	3.0	Unit 1: 121.7
13	1610860-12B	1.0	45	3.0	Unit 2: <u>122.0</u>
14	1610860 -13B	1.0	45	3.0	Unit 3: 120,7
15	1610860 -14B	1.0	45	3.0	Unit 4: 120.0
16	1610860 -15 B	1.0	45	4.0	Unit 5: 122.0
17	1610860 -16 B	0.)	45	4.0	una 12.2 D
18	1610860-17B	1.0	45	4.5	
19	1610860-18 B	0-1	45	4.5	Commonto
20	16/1168-01 A	1.0	45	3.0	EG11388-DUP1:
				-	1610654-03B
					F611388-MS1, MSD1:
		A-10			1610654-03B
ļ	Alle				F611388-MSZ, MSD2:
	The second s				1611168-01A
					First canada all ica
			مىسىرىمىسىرى بىرىكى بىرىكى يىرىكى بىرىكى	station in the second	THIST SWITTLE OFF: 1855

EFGS / Methyl Mercury Distillations / LOG-PR-029.03 / Effective: June 6, 2016 / QA2016-140 Verified By:____

ninin film

Page 9 of 30 Page 197 of 290

F611323

~ 1/18/16 2700)

Eurofins Frontier Global Sciences, Inc.

Matrix: Soil/Sediment

Prepared using: Hg Aquatic/Solids - EFGS-045 MeCl2 Extraction for Methyl Hg

Prepared: 11/15/2016

Lab Number	Sample ID and Source Sample	Initial (g)	Final (mL)	Spikel ID	µl Spike1	Spike2 ID	μl Spike2	Extraction Comments
F611323-BLK1	Blank	0.5	250					· · · · · · · · · · · · · · · · · · ·
F611323-BLK2	Biank	0.5	250					······································
F611323-BLK3	Blank	0.5	250					
F611323-BLK4	Blank	0.5	250					12
F611323-BLK5	Blank	0.5	250					
F611323-BLK6	Blank	0.5	250					1.
F611323-BS1	Blank Spike	0.5	250	1605978	25			· · · · · · · · · · · · · · · · · · ·
F611323-BSD1	Blank Spike dup	0.5	250	1605978	25			999
F611323-DUP1	Duplicate [1610862-01]	0.535	250					
F611323-MS1	Matrix Spike [1610862-01]	0.5257	250	1605978	25			
F611323-MS2	Matrix Spike [1611082-01]	0.521	250	1605978	25			
F611323-MSD1	Matrix Spike Dup [1610862-01]	0.5613	250	1605978	25			
F611323-MSD2	Matrix Spike Dup [1611082-01]	0.587	250	1605978	25			

Standard ID(s): Description:

MHg New Primary 100 ng/mL spike

1605978

Expiration: 15-Oct-17 00:00

Reagent ID(s);	Description:	Expiration:
1602382	Dichloromethane	05-May-19 00:00
1603399	Boiling Chips for AFS prep	01-Jun-17 00:00
1605961	Acetate Buffer	11-Apr-17 00:00
1606165	CuSO4	15-Feb-17 00:00
1606301	Ethylating Agent (For Methyl Mercury Analysis)	26-Apr-17 00:00
1606366	Acid Bromide	30-Nov-16 00:00

antheneneror

F611323

Eurofins Frontier Global Sciences, Inc.

Matrix: Soil/Sediment

Prepared using: Hg Aquatic/Solids - EFGS-045 MeCl2 Extraction for Methyl Hg

Prepared: 11/15/2016

Lab Number	Sample ID	Initial (g)	Final (mL)	QC Sample	Sample Specs.	Raw Data	Sample Comments	Analysis Comments
1610828-06	NB03SED-CHM399 8661409	0.5748	250	· ·	-		Scan all data for Level IV	
1610828-07	NB03SED-CHM386 8661412	0.5523	250	-	-	-	Scan all data for Level IV	
1610828-08	NB03SED-CHM391 8661415	0.5778	250	-	-	-	Scan all data for Level IV	······································
1610828-09	NB03SEDDUP-07 8661418	0.5486	250	-	-	-	Scan all data for Level IV	
1610862-01	NB03SED-CHM408 8664049	0.5431	250		-	-	Scan all data for Level IV	······································
1610862-02	NB03SED-CHM409 8664051	0.5382	250	-	-	-	Scan all data for Level IV	
1610862-03	NB03SED-CHM406 8664053	0.5323	250	-	-	-	Scan all data for Level IV	
1610862-04	NB03SED-CHM405 8664055	0.5304	250		-	-	Scan all data for Level IV	
1610862-05	NB03SED-CHM404 8664057	0.5415	250	-	-	-	Scan all data for Level IV	
1610862-06	NB03SED-CHM401 8664059	0.5849	250	-	-	-	Scan all data for Level IV	· · · · · · · · · · · · · · · · · · ·
1610862-07	NB03SED-CHM400 8664061	0.5675	250	-	-	-	Scan all data for Level IV	· · · · · · · · · · · · · · · · · · ·
1610862-08	NB03SED-CHM397 8664063	0.5556	250	-	-	-	Scan all data for Level IV	
1610862-09	NB03SED-CHM396 8664065	0.545	250	-	-	-	Scan all data for Level IV	
1610865-01	NB03SED-CHM407 8664077	0.5631	250	-	-	-	Scan all data for Level IV	
1610865-02	NB03SED-CHM407C 8664079	0.5494	250	-	-	-	Scan all data for Level IV	
1610865-03	NB03SED-CHM407D 8664080	0.5657	250 A.			-	Scan all data for Level IV	
610865-03RE1	NB03SED-CHM407D 8664080	0.5657	-250	-	-	-	Added 11/18/2016 by RN	Added 11/18/2016 by RN / > C
age 32-01	NB03SED-CHM402 8666474	0.5558	250		- -	-	Scan all data for Level IV	1228
e 🛱 2-01RE1	NB03SED-CHM402 8666474	0.5558	250	-	-	-	Added 11/18/2016 by RN	Added 11/18/2016 by RN ,
							·	1.2

D[®]Date: 11/28/2016

F611323

Eurofins Frontier Global Sciences, Inc.

Matrix: Soil/Sediment

Prepared using: Hg Aquatic/Solids - EFGS-045 MeCl2 Extraction for Methyl Hg

Prepared: 11/15/2016

1611082-02	NB03SED-CHM394 8666476	0.5653	250	<u> </u>	- [- 1	Scan all data for Level IV	
1611082-03	NB03SED-CHM398 8666478	0.568	250	1-	-	- 1	Scan all data for Level IV	
1611082-04	NB03SED-CHM393 8666480	0.5684	250	<u> </u>	-	-	Scan all data for Level IV	

and a submitted and a submitted as a

Methyl Mercury Sediment Preparation : EFAFS-T-AFS-SOP5134										
Technician: winger Batch#: -61/323 Date: 11/11/16										
Heat Block 45°C (nitrogen purge for 30 minutes). Balance#: / 7 Calibrated? Yes No										
	' purging: 5 6	Actual Temp (raw)°C	W/CF°C	Hot Block Unit # (10 or 11)	Date of purging: }/ &	Actual Temp (raw)°C	W/CF°C	Hot Block Unit # (10 or 11)		
1 st time	in: 8:25	48.3	47.5	//	1 st time in: 9150	49.1	48.3	11		
1 st time	out:8:55	49.2	4 8.4	[]	1 st time out: /0:20	49.2	48.4			
2 nd time	out: 9:30	- <u>49.1</u>	48.9	10	2 nd time in:					
3 rd time	in: $9:35$	49.6	48.8	<u> </u>	3 rd time in:					
3 rd time	out: 10:55	49.9	49.1	<u>ii</u>	3 rd time out:			-		
4 th time	in: [0][()	50.0	49,2	10	4 th time in:					
Final vol	.: <u>50</u> ness: <u>BC</u>	(I/IMS) (I//1//////////////////////////////	(initial and da	+) Spi ate)	ke vol.: $25 \mu L$	(LIMS ID: <u>6</u>	05978)			
CH CH CH I	nide LIMS ID:	6022	566	Pipette SN#	#: <u>CJ/7619</u> Cali	bration Date:/	(4//6			
	<u>ער</u> כוי (א <u>א א א א א א</u> א א א א א א א א א א א א	60616	V V	Dispensor	F: <u>NWV[] J L</u> Cali H: 17 7 91642	bration Date:	<u>11/0//</u> 6			
Other Acid	d LIMS ID:	NH		Boiting Chir	-16033	iorated: Ly res L らら				
Centrifuge	• Tube Lot #:	725261	7-0026	Doning Cin _t	, lot #	<u> </u>				
			Samp	e		Sample	>			
Vial #	Sample	ID Numbe	r Size	Vial #	Sample ID Num	per Size]g	ients		
	F61132	23, Blan	4 051	02 23	16/0862-0	9 0.545	U Thermometer SN	4:		
2	F6/123	3 Blan	2 0.50	71 24	1610865-	01 056	311404	18012		
3	F6113	27 Blan	123 0.490	08 25	1610865-0	2 0549	4 16108	62-01		
4	F6113	23 BS	1 0518	26	1610865 -	03 0561	7= 00	54319		
6 5	F6113	27 BSK	1 0.520	9 27	1611082 -	01 2555	8 Dunt	MILING		
6	F6117	23 Du	21 19.521	-0 28	1611017-0	2 11/11/50	4 - 16.10	862-01		
7	EGUZ	22 MG	1 0.521	· <mark>2</mark> 29	1611062 0	2 10 5				
8	FLUT	27 120	N MITI	2 30	164062 0	<u> </u>	MJZ M	502		
9				<u> </u>	1011002-0	7 0-3 08	1 6110	82-01		
	<u>F611</u>	SLS MJ	6 113611	20			16110	82-02		
	+6113	23 MSD	2 0.181	0 32			= 0.5	6539		
	16108	28-01	0.574	(f 33				0		
12	16108	28-0	7 0552	7 34			16/10	83-03		
13	1610	F26-0	8 12.527	!F 35 *		/11/11	6 = 0.51	6808		
14	16100	F28-0	9 0-54	66 36		1 21	weigh.	Samples		
15	16108	67-01	11/11/11/11/16.1	621 37			- on 11/11	116		
16	16101	P67 07	0.128	2 38	/		-F6113	2 3 Blantz		
17	16165	62 -00	$\frac{-0.330}{2}$	1 39	/-		- Adá A	cid		
18	16100	F(1 1)	$\frac{1}{1}$		·/		- on 11/141	16 8.8		
19	1000	161		Y	<u> </u> /		- 11/1/14	2014		
20	1610	200-0	1 054		↓		- Repuse	5.15		
	1010	862-01	6 0.584	19 42	ļ		3 Blank	R#/		
h. H.	1610	862-03	1 0.56=	15 43	/		161086	5-05144		
	1610	862_0	8 0.55.	56 44	14		_ 1611082	: (N2)		

Eurofins Frontier Global Sciences / Methyl Mercury Sediment Preparation (LOG-HG-54) / Effective 08/29/16 /QA2016-133

Page 11 of 60 Page 201 of 290
NARUNANNANANANASARANNANA

#1: Clean

ALL CHROMATOGRAMS REVIEWED 11.21.16 DMW

Page 20	Name Clean HgO Clean MeHg Clean EHg	Area 1.264 0.407 4.066	Start Time 29.0 138.6 154.2	EndTime 69.9 150.0 219.5	StartValue 234.36 234.40 234.40	EndValue 234.39 234.40 234.45	Peak Max 69.7 147.5 217.9	PeakHeight 0.030 0.012 0.049	Flags CT CT OK	Baseline 234.3622 234.3622 234.3622	BlDev 0.00 0.00 0.00	BlShift 0.06 0.06 0.06 0.06	Comment	016
12 of 290														

#2: WS

CVAFS Detector (mV) [©] Extra Peaks	MainPeak baseline
--------------------	----------------------------	-------------------

Page 20	Name ₩S HgO ₩S MeHg ₩S EHg	Area 82.899 1.855 17.018	Start Time 27.4 83.9 153.0	EndTime 66.4 97.4 205.1	StartValue 234.25 234.28 234.25	EndValue 234.28 234.28 234.25	Peak Max 35.2 91.5 172.9	PeakHeight 0.659 0.025 0.087	Flags OK OK OK	Baseline 234.2536 234.2536 234.2536	BlDev 0.00 0.00 0.00	BlShift -0.01 -6.01 -0.01	Comment	016
)3 of 290														

AD readings, mV

#3: SEQ-IBL1

CVAFS Detector (mV) Extra Peal	ks [🔄 MainPeak baseline
--------------------------------	--------------------------

Name SEQ-IBL1 Hg0 SEQ-IBL1 MeHg SEQ-IBL1 EHg	Area 158.289 2.897 32.549	Start Tí 23.2 80.7 154.3	me EndTime 69.8 96.9 203.3	StartVal 234.16 234.18 234.16	ue EndValue 234.19 234.19 234.19 234.14	Peak Max 34.4 89.7 173.6	PeakHeig 1.275 0.038 0.157	Jht Flags OK OK OK	Baseline 234.1571 234.1571 234.1571	BlDev 0.00 0.00 0.00	BlShift -0.01 -0.01 -0.01	Comment	J16
---	------------------------------------	-----------------------------------	-------------------------------------	--	---	-----------------------------------	-------------------------------------	-----------------------------	--	-------------------------------	------------------------------------	---------	-----

#4: SEQ-CAL1

CVAFS Detector (mV)	Extra Peaks	🔯 MainPeak baseline
---------------------	-------------	---------------------

Name SEQ-CAL1 SEQ-CAL1 SEQ-CAL1	Area 1g0 184.744 MeHg 21.726 Hg 29.406	Stari T 26.7 82.2 162.2	ime EndTime 69.9 107.0 202.4	StartVal 234.05 234.06 234.04	ue EndValue 234.08 234.08 234.05	Peak Max 34.5 90.8 175.5	PeakHeig 1.496 0.194 0.165	pht Flags CT OK OK	Baseline 234.0437 234.0437 234.0437	B1Dev 0.00 0.00 0.00	BlShift ~0.02 -0.02 -0.02	Comment	016
--	---	----------------------------------	---------------------------------------	--	---	-----------------------------------	-------------------------------------	-----------------------------	--	-------------------------------	------------------------------------	---------	-----

#5: SEQ-CAL2

Name SEQ-CAL2 Hg0 SEQ-CAL2 MeHg SEQ-CAL2 EHg	Area 207.810 90.219 41.000	Start Time 25.8 80.9 162.0	e EndTime 69.9 116.8 206.6	StartValue 233.90 233.94 233.90	EndValue 233.96 233.95 233.91	Peak Max 34.6 90.6 175.0	PeakHeight 1.662 0.695 0.224	Flags CT OK OK	Baseline 233.9086 233.9086 233.9086	BlDev 0.00 0.00 0.00	BlShift -0.01 -0.01 -0.01	Comment)16
---	-------------------------------------	-------------------------------------	-------------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	------------------------------------	---------	-----

#6: SEQ-CAL3

Page 207 of	Name SEQ-CAL3 Hg0 SEQ-CAL3 MeHg SEQ-CAL3 EHg	Area 267.060 472.075 84.133	Start Time 26.3 80.1 160.9	e EndTime 69.9 128.6 206.5	StartValue 233.77 233.81 233.78	EndValue 233.84 233.83 233.79	Peak Max 35.8 90.9 176.0	PeakHeight 2.041 3.413 0.469	Flags CT OK OK	Baseline 233.7779 233.7779 233.7779 233.7779	B1Dev 0.06 0.60 0.00	BlShift -0.02 -0.02 -0.02	Comment.	J16
290														

#7: SEQ-CAL4

Page 208 of 29	Name SEQ-CAL4 HgO SEQ-CAL4 MeHg SEQ-CAL4 EHg	Area 332.036 920.424 156.550	Start Time 26.6 79.6 160.6	EndTime 69.9 131.5 211.5	StartValue 233.64 233.68 233.68 233.66	EndValue 233.72 233.72 233.65	Peak Max 36.3 90.9 175.8	PeakHeight 2.465 6.583 0.831	Flags CT OK OK	Baseline 233.6337 233.6337 233.6337 233.6337	B1Dev 0.00 0.00 0.00	BlShift 0.01 0.01 0.01 0.01	Comment	016
290														

AD readings, mV

#8: SEQ-CAL5

Page 209 (Name SEQ-CAL5 Hg0 SEQ-CAL5 MeHg SEQ-CAL5 EHg	Area 442.534 2184.338 317.993	Start Time 26.6 79.7 160.5	EndTime 69.9 144.1 216.0	StartValue 233.50 233.56 233.57	EndValue 233.60 233.60 233.55	Peak Max 36.6 90.9 176.1	PeakHeight 3.250 15.511 1.680	Flags CT OK OK	Baseline 233.4929 233.4929 233.4929 233.4929	BlDev 0.00 0.00 0.00	BlShift 0.05 0.05 0.05	Comment	016
of 290														

PS SEO-CV1

Name SEQ-ICV1 Hg0 SEQ-ICV1 MeHg SEQ-ICV1 EHg	Area 162.352 13.912 28.262	Start Time 26.4 83.2 163.1	EndTime 69.9 108.3 204.3	StartValue 233.39 233.43 233.40	EndValue 233.43 233.43 233.40	Peak Max 35.1 91.8 177.1	PeakHeight 1.293 0.111 0.163	Flags CT OK OK	Baseline 233.3937 233.3937 233.3937	BlDev 0.00 0.00 0.00	BlShift 0.00 0.00 0.00	Comment)16
---	-------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

#10: SEQ-ICB1

Name SEQ-ICB1 Hg0 SEQ-ICB1 MeHg	Area 166.415 5.776	Start Time 15.9 82.2	EndTime 69.9 103.2	StartValue 233.30 233.33	EndValue 233.35 233.34	Peak Max 35.3 91.7	PeakHeight 1.352 0.060	Flags CT OK	Baseline 233.2936 233.2936	BlDev 0.00 0.00	BlShift 0.01 0.01	Comment	016
SEQ-1CB1 EHg	71.409	153.5	215.1	233.30	233.31	176.4	0.361	ОK	233.2936	0.00	0.01		

AD readings, InV

#11: #F611352-BLK7

		1.779 4.4 5.45 7.4 1.
CVAFS Detector (mV) Extra Peaks	MainPeak baseline

Name *F611352-BLK7 *F611352-BLK7 *F611352-BLK7	Area H 154.373 M 4.764 E 39.950	Start Time 25.2 83.7 161.1	EndTime 69.4 103.0 207.5	StartValue 233.23 233.27 233.24	EndValue 233.27 233.26 233.25	Peak Max 35.0 90.8 176.3	PeakHeight 1.233 0.047 0.221	Flags OK OK OK	Baseline 233.2248 233.2248 233.2248 233.2248	BlDev 0.00 0.00 0.00	BlShift 0.01 0.01 0.01	Comment	016
---	--	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

AD readings, mV

#12: "F611352-BLK8

CVAFS Detector	(mV) İ	Extra Peaks	【题	MainPeak baselir	he
and the second sec			- 1 - 1 - 1		

Name *F611352-BLK8 *F611352-BLK8 *F611352-BLK8	Area H 142.413 M 3.768 E 39.408	Start Time 26.4 84.2 162.9	EndTime 68.5 101.1 207.9	StartValı 233.17 233.21 233.20	e EndValue 233.22 233.21 233.19	Peak Max 35.0 90.2 176.5	PeakHeight 1.144 0.037 0.214	Flags OK OK OK	Baseline 233.1662 233.1662 233.1662	BlDev 0.00 0.00 0.00	BlShift 0.02 0.02 0.02	Connent	016
---	--	-------------------------------------	-----------------------------------	---	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

Page 214 of 290

Name Area *F611352-BLK9 H 131.207 *F611352-BLK9 M 0.038	Start Time 25.2 83.7	EndTime 69.9 88.9	StartValue 233.14 233.16	EndValue 233.18 233.19	Peak Max 35.0 88.8	PeakHeight 1.049 0.028	Flags CT CT	Baseline 233.1334 233.1334	BlDev 0.00 0.00	BlShift 0.05 0.05	Comment	016
---	----------------------------	-------------------------	--------------------------------	------------------------------	--------------------------	------------------------------	-------------------	----------------------------------	-----------------------	-------------------------	---------	-----

📓 CVAFS Detector ((mV) ¹ Extra Peaks	MainPeak baseline

Name SEQ-ICV2 Hg0 SEQ-ICV2 MeHg SEQ-ICV2 EHg	Area 404.201 235.771 198.198	Start Ti 24.8 80.1 156.7	me EndTime 69.9 124.4 219.7	StartVal: 233.11 233.18 233.16	ue EndValue 233.21 233.20 233.17	Peak Max 38.2 90.1 173.2	PeakHeig 3.022 1.700 1.000	Jht Flags CT CK OK	Baseline 233.1047 233.1047 233.1047 233.1047	BlDev 0.00 0.00 0.00	BlShift 0.07 0.07 0.07 0.07	Comment	016
---	---------------------------------------	-----------------------------------	--------------------------------------	---	---	-----------------------------------	-------------------------------------	-----------------------------	--	-------------------------------	---	---------	-----

AD readings, mV

#15: SEQ-ICB2

📓 CVAFS Detector (mV) 🕆 Extra Peaks 🔄 MainPeak baseline

Page 216 of 2	Name SEQ-ICB2 Hg0 SEQ-ICB2 MeHg SEQ-ICB2 EHg	Area 128.373 1.288 31.579	Start Time 27.5 85.2 163.2	e EndTime 69.9 96.0 209.6	StartValue 233.11 233.14 233.13	e EndValue 233.16 233.15 233.12	Peak Max 35.9 90.8 176.1	PeakHeight 1.034 C.023 0.166	Flags CT OK OK	Baseline 233.1111 233.1111 233.1111	BlDev 0.00 0.00 0.00	BlShift 6.02 0.02 0.02 0.02	Comment	016
290														

#16: F611352-BLK7

Name Area Start Time EndTime StartVal F611352-BLK7 Hg 135.048 22.9 69.9 233.10 F611352-BLK7 Me 1.971 83.9 97.4 233.14 F611352-BLK7 EH 81.653 155.3 217.7 233.12	ue EndValue 233.15 233.15 233.15 233.13	Peak Max 35.1 90.4 175.5	PeakHeigh 1.081 0.034 0.414	t Flags CT OK OK	Baseline 233.1002 233.1002 233.1002	BlDev 0.00 0.00 0.00	BlShift 0.03 0.03 0.03	Comment	016
---	---	-----------------------------------	--------------------------------------	---------------------------	--	-------------------------------	---------------------------------	---------	-----

Page 217 of 290

Comment

016

#17: F611352-BLK8

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift
F611352-BLK8 Hg	121.828	5.2	69.9	233.11	233.17	35.1	0.989	CT	233.1089	0.00	0.05
F611352-BLK8 Me	1.544	85.5	96.6	233.16	233.17	90.5	0.028	CK	233.1089	0.00	0.05
F611352-BLK8 EH	32.553	164.2	216.3	233.16	233.16	176.0	0.171	OK	233.1089	0.00	0.05

Page 218 of 290

#18: F611352-BLK9

F611352-BLK9 EH 34.283 162.5 211.3 233.16 233.17 175.6 0.189 OK 233.1327 0.00 0.03	Name F611352-BLK9 H F611352-BLK9 E	Area Start 121.745 25.8 34.283 162.5	Time EndTime 69.0 211.3	StartValue EndV 233.13 233. 233.16 233.	Value Peak Max .18 35.5 .17 175.6	PeakHeight Flags 0.983 OK 0.189 OK	Baseline 233.1327 233.1327	BlDev 0.00 0.00	BlShift 0.03 0.03	Comment	01
--	--	--	-------------------------------	---	---	--	----------------------------------	-----------------------	-------------------------	---------	----

#19: 1610618-02RE1

CVAFS Detector (mV)	Extra Peaks	MainPeak baseline
---------------------	-------------	-------------------

Page 220 of	Name 1610618-02RE1 1610618-02RE3 1610618-02RE1	Area H 335.291 M 390.965 E 587.456	Start Time 23.5 79.6 158.3	EndTime 69.9 130.7 219.1	StartValue 233.13 233.20 233.18	EndValue 233.22 233.21 233.23	Peak Max 36.4 91.4 176.4	PeakHeight 2.522 2.839 3.112	Flags CT OK OK	Baseline 233.1301 233.1301 233.1301	BlDev 6.00 0.00 0.00	BlShift 0.10 0.10 0.10 0.10	Comment	016
290														

#20: 1610618-03RE1

Name 1610618-03RE1 1610618-03RE1 1610618-03RE1	Area H 329.398 M 285.643 E 532.558	Start Time 15.9 80.3 160.1	EndTime 69.7 125.0 219.8	StartValue 233.13 233.19 233.18	EndValue 233.23 233.22 233.21	Peak Max 36.1 91.3 176.7	PeakHeight 2.578 2.119 2.820	Flags OK OK CT	Baseline 233.1299 233.1299 233.1299	BlDev 0.00 0.00 0.00	BlShift 0.08 0.08 0.08 0.08	Comment	016
---	---	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---	---------	-----

#21: 1610618-04RE1

CVAFS Detector (mV)	Extra Peaks	MainPeak baseline
---------------------	-------------	-------------------

Name 1610618-04RE 1610618-04RE 1610618-04RE	Area H 220.802 M 310.730 E 413.455	Start Time 27.0 81.2 160.2	e EndTime 69.9 126.6 218.7	StartValu 233.13 233.17 233.16	e EndValue 233.19 233.19 233.19 233.19	Peak Max 36.1 91.6 176.8	PeakHeight 1.693 2.278 2.191	Flags CT CK OK	Baseline 233.1232 233.1232 233.1232	BlDev 0.00 0.00 0.00	BlShift 0.07 0.07 0.07 0.07	Comment	016
--	---	-------------------------------------	-------------------------------------	---	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---	---------	-----

#22: 1610618-05RE1

Name 1610618-05RE1 1610618-05RE1	Area H 253.841 M 217.152 F 410.649	Start Time 26.6 80.7	EndTime 69.9 125.8	StartValue 233.12 233.17 233.16	EndValue 233.19 233.19 233.19	Peak Max 36.6 91.4 176 5	PeakHeight 1.907 1.587 2.159	Flags CT OK CT	Baseline 233.1244 233.1244 233.1244	BlDev 0.00 0.00 0.00	BlShift 0.06 0.06 0.06	Comment)16
1610618-05RE1	E 410.648	160.3	219.8	233.16	233.18	176.5	2.159	CT	233.1244	0.00	0.06		

#23: 1610618-06RE1

I CV/AES Detector (m)/	1 - Extra Doale	
wall CVAPS Detector (mv)) Extra Peaks	ManPeak Daseline

Name 1610618-06RE1 1610618-06RE1 1610618-06RE1	Area H 309.063 M 476.517 E 758.316	Start Time 18.0 81.3 161.0	EndTime 69.9 131.2 219.8	StartValue 233.11 233.17 233.17	EndValue 233.20 233.19 233.21	Peak Max 36.3 91.5 176.7	PeakHeight 2.423 3.456 4.015	Flags CT OK CT	Baseline 233.1089 233.1089 233.1089	BlDev 0.00 0.00 0.00	BlShift 0.10 0.10 0.10	Comment	016
---	---	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment	
1610618-07RE1	H 409.561	17.3	69.9	233.10	233.22	36.9	3.163	CT	233.1017	0.00	0.14		216
1610618-07RE1	M 1374.825	80.4	139.1	233.19	233.21	91.7	9.870	OK	233.1017	0.00	0.14		010
1610618-07RE1	E 988.118	158.8	219.8	233.18	233.24	177.1	5.251	CT	233.1017	0.00	0.14		

NUMBER OF THE OWNER PROVIDED IN E OWNER PROVIDED IN THE OWNER PROVIDED INTE OWNER PROVIDED INTE OWNER PROVIDED INTE OWNER PROVIDED INTE OWNER PROVIDED INT

#25: 1610618-08RE1

Name Area 1610618-08RE1 H 335. 1610618-08RE1 M 832. 1610618-08RE1 E 828.	Start 95 27.6 10 80.6 96 160.6	Time EndTime 69.9 136.4 219.8	StartValu 233.09 233.16 233.15	te EndValue 233.18 233.18 233.18 233.20	Peak Max 36.7 91.7 177.0	PeakHeigh 2.562 6.021 4.425	nt Flags CT OK CT	Baseline 233.0948 233.0948 233.0948	BlDev 0.00 0.00 0.00	BlShift 0.11 0.11 0.11	Comment	016
---	---	--	---	---	-----------------------------------	--------------------------------------	----------------------------	--	-------------------------------	---------------------------------	---------	-----

236.5₁

235.6

234.7

AD readings, mV

Hg0 //

📓 CVAFS Detector (mV) É Extra Peaks 🛅 MainPeak baseline

Name SEQ-CCV1 Hg0 SEQ-CCV1 MeHg SEQ-CCV1 EHg	Area 418.086 231.197 181.045	Start Ti 26.6 81.6 160.3	me EndTime 69.9 126.9 217.0	StartVal 233.07 233.16 233.13	ue EndValue 233.19 233.15 233.13	Peak Max 37.6 91.7 177.3	PeakHeig 3.154 1.690 0.970	ght Flags CT OK OK	Baseline 233.0723 233.0723 233.0723	BlDev 0.00 0.00 0.00	BlShift 0.06 0.06 0.06	Comment	016
---	---------------------------------------	-----------------------------------	--------------------------------------	--	---	-----------------------------------	-------------------------------------	-----------------------------	--	-------------------------------	---------------------------------	---------	-----

AD readings. mV

📓 CVAFS Detector (mV) * Extra Peaks 📗 MainPeak baseline

Name SEQ-CCB1 Hg0 SEQ-CCB1 MeHg SEQ-CCB1 EHg	Area 121.705 5.097 28.303	Start Tim 18.5 84.5 164.8	e EndTime 68.6 104.8 206.9	StartValue 233.06 233.09 233.09	e EndValue 233.10 233.10 233.09	Peak Max 35.5 91.9 176.6	PeakHeight 0.958 0.054 0.150	Flags OK OK OK	Baseline 233.0571 233.0571 233.0571	BlDev 0.00 0.00 0.00	BlShift 0.03 0.03 0.03	Comment	016
---	------------------------------------	------------------------------------	-------------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

#28: F611388-BLK1

F611388-BLK1 Me 7.149 83.5 104.7 233.08 233.08 90.9 0.064 OK 233.0313 0.00 0.03 F611388-BLK1 EH 34.809 163.5 210.1 233.07 233.07 177.2 0.186 OK 233.0313 0.00 0.03	F611388-BLK1 Mg 137.177 F611388-BLK1 Mg 7.149 F611388-BLK1 EH 34.809	233.0313 0.00 0.03 233.0313 0.00 0.03 233.0313 0.00 0.03	CT OK OK	1.047 0.064 0.186	35.6 90.9 177.2	233.09 233.08 233.07	233.03 233.08 233.07	69.9 104.7 210.1	10.1 83.5 163.5	Hg 137.177 Me 7.149 EH 34.809	F611388-BLK1 Hg F611388-BLK1 Me F611388-BLK1 EH
---	--	--	----------------	-------------------------	-----------------------	----------------------------	----------------------------	------------------------	-----------------------	-------------------------------------	---

AD readings, mV

#29: F611388-BLK2

Name F611388-BLK2 F F611388-BLK2 N F611388-BLK2 F	Area 3g 115.303 We 5.898 WH 34.220	Start Time 25.1 81.9 158.0	EndTime 69.9 105.0 207.4	StartValue 233.02 233.06 233.06	EndValue 233.07 233.07 233.06	Peak Max 35.5 90.6 177.9	PeakHeight 0.867 0.058 0.185	Flags CT OK OK	Baseline 233.0177 233.0177 233.0177	BlDev 0.00 0.00 0.00	BlShift 0.03 0.03 0.03	Comment	016
--	---	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

#30: F611388-BLK3

Name F611388-BLK3 F611388-BLK3 F611388-BLK3	Area ig 96.242 4e 7.378 5H 31.865	Start Time 27.9 83.2 163.6	EndTime 69.9 109.1 211.5	StartValue 233.01 233.05 233.05	EndValue 233.05 233.05 233.05 233.05	Peak Max 35.7 92.9 177.9	PeakHeigh 0.743 0.056 0.168	E Flags CT OK OK	Baseline 233.0140 233.0140 233.0140 233.0140	BlDev 0.00 0.00 0.00	BlShift 0.02 0.02 0.02 0.02	Comment	016
--	--	-------------------------------------	-----------------------------------	--	--	-----------------------------------	--------------------------------------	---------------------------	--	-------------------------------	---	---------	-----

areann ann ann ann ann ann

#31: F611388-BS1

Name F611388-BS1 Hg F611388-BS1 Me F611388-BS1 EH	Area D 92.739 H 405.299 T 36.084	Start Time 9.3 81.7 165.3	EndTim e 69.9 149.7 205.3	StartValue 233.01 233.04 233.05	EndValue 233.05 233.05 233.05	Peak Max 36.1 92.0 177.8	PeakHeight 0.717 2.949 0.205	Flags CT OK OK	Baseline 233.0030 233.0030 233.0030	BlDev 0.00 0.00 0.00	BlShift 0.04 0.04 0.04	Comment	016
F611388-BS1 EH	g 36.084	105.3	205.3	233.05	233.05	177.8	0.205	OK	233.0030	0.00	0.04		

hanne

#32: F611388-BSD1

Name F611388-BSD1 F611388-BSD1	Area Hg 88.722 Me 393.093	Start Time 23.1 80.7	EndTime 69.9 134.4	StartValue 233.00 233.04 233.05	EndValue 233.04 233.04 233.04	Peak Max 35.4 91.6	PeakHeight 0.665 2.834 0.194	Flags CT OK	Baseline 232.9973 232.9973 232.9973	BlDev 0.00 0.00	BlShift 0.03 0.03	Comment	016
F611388-BSD1	EH 35.278	160.1	203.5	233.05	233.04	1/6.4	U.194	OK	232.9913	0.00	0.03		

#33: F611388-DUP1

I CVAES Detector (mV) Extra Peaks 🗟	MainPeak baseline
	LAGAREANS	Main reak Daseible

Name F611388-DUP1 H4 F611388-DUP1 H4 F611388-DUP1 E2	Area g 283.027 a 477.775 H 521.174	Start Time 26.8 81.1 150.6	e EndTime 69.9 132.7 219.8	StartValu 233.00 233.05 233.05	e EndValue 233.08 233.07 233.08	Peak Max 36.2 91.7 177.4	PeakHeig 2.197 3.473 2.694	ht Flags CT OK CT	Baseline 233.0018 233.0018 233.0018 233.0018	B1Dev 0.00 0.00 0.00	BlShift 0.08 0.08 0.08 0.08	Comment	016
---	---	-------------------------------------	-------------------------------------	---	--	-----------------------------------	-------------------------------------	----------------------------	--	-------------------------------	---	---------	-----

#34: F611388-MS1

CVAFS Detector (mV) E	ra Peaks 🔣 MainPeak baseline
-----------------------	------------------------------

Page 235 of 2	Name F611388-MS1 Hg0 F611388-MS1 MeH F611388-MS1 EHg	Area 278.702 927.486 473.244	Start Time 20.0 80.2 155.8	EndTime 69.9 141.4 219.7	StartValue 232.99 233.06 233.07	EndValue 233.07 233.06 233.08	Peak Max 35.2 91.6 177.5	PeakHeight 2.161 6.610 2.460	Flags CT OX OK	Baseline 232.9911 232.9911 232.9911 232.9911	BlDev 0.00 0.00 0.00	BlShift 0.09 0.09 0.09 0.09	Comment	216
290														

#35: F611388-MSD1

F611388-MSD1 EH 397.700 160.5 219.8 233.05 233.06 177.8 2.063 CT 232.9925 0.00 0.07	Name F611388-MSD1 H4 F611388-MSD1 M4 F611388-MSD1 E	Area g 290.600 e 937.405 H 397.700	Start Time 25.1 81.1 160.5	EndTime 69.9 142.9 219.8	StartValue 232.99 233.05 233.05	EndValue 233.07 233.06 233.06	Peak Max 36.2 91.9 177.8	PeakHeight 2.242 6.714 2.063	Flags CT OK CT	Baseline 232.9925 232.9925 232.9925	BlDev 0.00 0.00 0.00	BlShift 0.07 0.07 0.07	Comment	016
---	--	---	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

#36: F611388-MS2

Name F611388-MS2 H	Area a0 120.349	Start Time 22.5	EndTime 69.9	StartValue 232.98	EndValue 233.03	Peak Max 35.6	PeakHeight 0.939	Flags CT	Baseline 232.9807	BlDev 0.00	BlShift 0.05	Comment	
F611388-MS2 M F611388-MS2 E	leH 420.826 .Hg 106.179	79.7 163.1	135.0 212.0	233.03 233.03	233.03 233.04	91.5 177.4	3.038 0.568	OK OK	232.9807 232.9807	0.00 0.00	0.05		016
#37: F611388-MSD2

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment	
F611388-MSD2 Hg	120.940	25.3	69.9	232.98	233.03	36.2	0.926	СT	232,9829	0.00	0.05		316
F611388-MSD2 Me	433.984	80.3	142.5	233.02	233.03	92.0	3.095	OK	232.9829	0.00	0.05		110
F611388-MSD2 EH	61.988	162.9	211.6	233.04	233.04	177.5	0.331	OK	232.9829	0.00	0.05		

CVAFS Detector (mV)	Extra Peaks	MainPeak baseline
---------------------	-------------	-------------------

Name SEQ-CCV2 Hg0 SEQ-CCV2 MeHg SEQ-CCV2 EHg	Area 283.156 263.143 185.396	Start Ti 27.1 81.0 158.6	me EndTime 69.9 127.5 219.8	StartVal 232.99 233.05 233.03	ue EndValue 233.06 233.05 233.05 233.05	Peak Max 37.9 91.6 177.2	PeakHeig 2.194 1.917 0.978	ht Flags CT OK CT	Baseline 232.9933 232.9933 232.9933 232.9933	BlDev 0.00 0.00 0.00	BlShift 0.05 0.05 0.05	Comment	016
---	---------------------------------------	-----------------------------------	--------------------------------------	--	---	-----------------------------------	-------------------------------------	----------------------------	--	-------------------------------	---------------------------------	---------	-----

AD readings. mV

#39: SEQ-CCB2

📓 CVAFS Detector (mV)	¹ Extra Peaks		MainPeak baseline
			 E 2022 	

Name SEQ-CCB2 Hg0 SEQ-CCB2 MeHg SEQ-CCB2 EHg	Area 82.426 6.763 26.206	Start Tim 24.9 82.4 165.7	e EndTime 68.0 104.0 207.2	StartValu 232.99 233.00 233.01	e EndValue 233.01 233.02 233.02	Peak Max 35.5 92.0 176.6	PeakHeigh 0.658 0.067 0.153	t Flags OK OK OK	Baseline 232.9868 232.9868 232.9868 232.9868	BlDev C.CO O.OO O.OC	BlShift 0.02 0.02 0.02 0.02	Comment	016
---	-----------------------------------	------------------------------------	-------------------------------------	---	--	-----------------------------------	--------------------------------------	---------------------------	--	-------------------------------	---	---------	-----

Name 1610654-01 Hg0 1610654-01 MeHg 1610654-01 PHg	Area 230.897 518.989 479 382	Start Time 25.4 81.1	EndTime 69.9 132.0 219.8	StartValue 232.98 233.03 233.03	EndValue 233.04 233.04 233.05	Peak Max 35.9 91.8 177 7	PeakHeight 1.814 3.747 2.521	Flags CT OK CT	Baseline 232.9820 232.9820 232.9820	BlDev 0.00 0.00 0.00	BlShift 0.07 0.07 0.07	Comment	016
1610654-01 EHg	479.382	161.8	219.8	233.03	233.05	177.7	2.521	CT	232.9820	0.00	0.07		

CVAFS Detector (mV) ⁶ E:	tra Peaks 🐰	MainPeak baseline
-------------------------------------	-------------	-------------------

Name 1610654-03 Hg0 1610654-03 MeHg 1610654-03 EHg	Area 231.639 514.525 539.793	Start Time 11.8 80.5 161.4	EndTime 69.9 133.5 219.7	StartValue 232.97 233.02 233.02	EndValue 233.04 233.04 233.05	Peak Max 36.4 92.2 178.1	PeakHeight 1.860 3.729 2.853	Flags CT CK OK	Baseline 232.9698 232.9698 232.9698	BlDev 0.00 0.00 0.00	BlShift 0.08 0.08 0.08	Comment	916
---	---------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

#42: 1610654-05

CVAFS Detector (mV)	Extra Peaks	MainPeak baseline
---------------------	-------------	-------------------

Name 1610654-05 Hg0 1610654-05 MeHg 1610654-05 EHg	Area 222.015 445.473 320.822	Start Time 27.3 82.0 156.1	EndTime 69.9 137.6 219.8	StartValue 232.97 233.02 233.02	e EndValue 233.02 233.02 233.02 233.04	Peak Max 36.0 92.2 178.0	PeakHeight 1.722 3.214 1.714	Flags CT OK CT	Baseline 232.9708 232.9708 232.9708 232.9708	BlDev 0.00 0.00 0.00	BlShift 0.07 0.07 0.07 0.07	Comment	016
---	---------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---	---------	-----

Name 1610654-07 Hg0 1610654-07 MeRg 1610654-07 EHg	Area 252.336 394.779 361.873	Start Time 24.4 77.5 155.7	EndTime 69.9 129.0 219.8	StartValue 232.95 233.00 233.00	EndValue 233.02 233.02 233.02	Peak Max 36.0 88.7 173.7	PeakHeight 1.937 2.705 1.695	Flags CT OK CT	Baseline 232.9557 232.9557 232.9557	B1Dev 0.00 0.00 0.00	BlShift 0.06 0.06 0.06 0.06	Comment	016
---	---------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---	---------	-----

Page 245 of 290

#44: 1610654-09

Name 1610654-09 Hg0 1610654-09 MeHg 1610654-09 EHg	Area 241.766 439.038 394.432	Start Time 24.5 81.5 159.8	EndTime 69.2 131.5 219.8	StartValue 232.95 232.99 233.00	EndValue 233.01 233.00 233.01	Peak Max 36.3 92.2 178.3	PeakHeight 1.917 3.196 2.084	Flags OK OK CT	Baseline 232.9414 232.9414 232.9414	B1Dev 0.00 0.00 0.00	BlShift 0.07 0.07 0.07 0.07	Comment)16
---	---------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---	---------	-----

CVAFS Detector (mV) * Extra Peaks 📓 MainPeak baseline

of 2	Page 246 of 2	Name 1610654-11 Hg0 1610654-11 MeHg 1610654-11 EHg	Area 242.212 418.636 396.167	Start Time 16.7 80.6 162.2	EndTime 69.9 134.6 219.4	StartValue 232.92 232.97 232.97 232.97	EndValue 232.98 232.98 232.99 232.99	Peak Max 36.2 92.2 178.2	PeakHeight 1.934 3.035 2.092	Flags CT OK OK	Baseline 232.9150 232.9150 232.9150 232.9150	BlDev 0.00 0.00 0.00	BlShift 0.08 0.08 0.08	Comment	216
------	---------------	---	---------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

AD readings. InV

#46: 1610654-13

CVAFS Detector (mV)	Extra Peaks	MainPeak baseline
---------------------	-------------	-------------------

Name 1610654-13 Hg0 1610654-13 MeHg 1610654-13 EHg	Area 115.459 8.791 54.513	Start Time 23.0 84.5 164.1	EndTime 68.4 109.8 210.0	StartValue 232.92 232.96 232.95	EndValue 232.96 232.96 232.95	Peak Max 35.7 91.5 178.0	PeakHeight 0.933 0.076 0.299	Flags OK OK OK	Baseline 232.9127 232.9127 232.9127	BlDev 0.00 0.00 0.00	BlShift 0.03 0.03 0.03	Comment	016
---	------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

AD readings. mV

#47: 1610740-01

CVAFS Detector (mV) ' Extra Peaks 🔤 MainPeak baseline

Name 1610740-01 HgC 1610740-01 MeHg 1610740-01 EHg	Area 100.667 3.808 32.369	Start Time 27.1 84.7 165.2	EndTime 69.9 102.1 207.3	StartValue 232.92 232.94 232.94	EndValue 232.95 232.95 232.94	Peak Max 35.6 90.9 178.6	PeakHeight 0.823 0.046 0.182	Flags CT CK OK	Baseline 232.9126 232.9126 232.9126	BlDev 0.00 0.00 0.00	BlShift 0.03 0.03 0.03	Comment	016
---	------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----

AD readings, mV

#48: 1610740-02

CVAFS Detector (mV) * Extra Peaks 🔄 MainPeak baseline

Name 1610740-02 Hg0 1610740-02 MeHg 1610740-02 EHg	Area 105.263 ; 4.711 36.523	Start Time 23.0 83.5 153.4	EndTime 69.8 108.7 219.8	StartValue 232.91 232.94 232.93	EndValue 232.94 232.95 232.93	Peak Max 35.7 91.8 178.2	PeakHeight 0.832 0.044 0.189	Flags OK OK CT	Baseline 232.9033 232.9033 232.9033 232.9033	BlDev 0.00 0.00 0.00	BlShift 0.03 0.03 0.03	Comment	016
---	--------------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	---------	-----