# PENOBSCOT RIVER MERCURY STUDY

# Chapter 15

# Temporal trends of total and methyl mercury in surface sediments, 2006-2010

## Submitted to Judge John Woodcock United States District Court (District of Maine)

# April 2013

By: R.A. Bodaly<sup>1</sup> and A.D. Kopec<sup>1</sup>

1. Penobscot River Mercury Study

# **1 SUMMARY**

The purpose of this chapter is to present data on total mercury (Hg) concentrations in surface sediments in the contaminated zone of the Penobscot River over the period 2006 – 2010, to determine whether statistically significant declines are evident. Six different classes of sediments were sampled: subtidal (Fort Point Cove), intertidal, wetland - high elevation, wetland - medium elevation, wetland - low elevation, and wetland - mudflats. It was concluded that total Hg concentrations were generally stable. There were no significant changes over time at any of the subtidal sites, or at any of the wetland high elevation, medium elevation or low elevation sites. One out of seven intertidal sites showed a significant increase in total Hg whereas two out of six wetland mudflat elevation sites showed significant decreases. Methyl Hg concentrations were also generally stable over the period sampled, but more variable than total Hg, with some tendency towards decreases. One site out of five subtidal sites showed a significant decrease in methyl Hg, two sites out of seven intertidal sites showed decreases, one site out of six medium elevation wetland sites showed a decrease, one site out of six low elevation wetland sites showed a decrease and two sites out of six mudflat elevation wetland sites showed a decrease. Also, at high elevation wetland sites, two sites showed increases and one site showed a decrease. Thus, as predicted by sediment core studies and by modeling of the system, declines in total Hg concentrations may be taking place but not at a pace discernible within our five year sample period. Methyl Hg concentrations are subject to short term changes in environmental conditions, such as temperature and supply of organic matter to methylating bacteria, and this was reflected by more variability in methyl Hg concentrations at individual sites, as compared to total Hg. However, methyl Hg concentrations continued to reflect, overall, those of total Hg concentrations.

# 2 INTRODUCTION

The purpose of the work described in this chapter was to determine whether there have been declines in the concentrations of total mercury (Hg) in surface sediments in the contaminated zone of the Penobscot River over the period 2006 – 2010. At other sites contaminated by chlor-alkali plants, it is commonly observed that Hg in surface sediments decrease during the later years of plant operation and after plants have been closed (see Munthe et al. 2007 for a review). Also, we have observed, in deep sediment cores (Phase I Report, Chapters 6 and 7 of this report) that Hg concentrations tend to decrease towards the surface at many contaminated sites in the Penobscot system. Further, modeling of the Penobscot system (Chapter 15 of this report) predicts steady, if slow, declines in the concentration of total Hg in surface sediments. It is therefore expected that Hg in surface sediments at sites in the lower river and bay would decrease over time and analyses presented here were used to determine whether such decreases were statistically evident from 2006 – 2010. A secondary objective of the chapter was to examine methyl Hg concentrations in the same surface sediments to determine whether they tend to follow total Hg concentrations.

The Penobscot River Mercury Study began in 2006 and 2007 with geographic surveys to define the extent of contamination in the system. Various other studies on Hg in sediments were also conducted in 2008 and 2009; many of the same sites were sampled. In 2010, a dedicated sampling program was put in place to build on the data collected at various sites in previous years. This chapter examines relevant data from 2006 to 2009 and compares them to the results of sampling conducted in 2010. Sampling was also conducted in 2012 but these data are not yet available for inclusion in this analysis.

# **3 DATA EXAMINED IN THIS ANALYSIS**

Dedicated sampling was carried out in August 2010 to define recent concentrations of total Hg and methyl Hg in surface sediments of Fort Point Cove (Sites E01-1, E01-2, E01-3, E01-4 and E01-5), at selected intertidal sites (OV1, OV4 (reference sites), OB1, OB5, ES2, ES4, ES13), and at selected wetland sites (four elevations at each of the following sites: W63, W17, W21, and W25). E01 sites were sampled in 2007 as part of the geographic survey of subtidal sediments (see Phase I report). Intertidal sites were sampled in 2006 and 2007 as part of the original geographic surveys of intertidal sites (Samplings I, II, III, IV, V, and VI - see Phase I Update report). Intertidal sites were sampled in 2008 and 2009 to define seasonal trends in methyl Hg production (see Chapter 5). Wetlands were sampled in 2007 as part of the geographic survey of Hg in contaminated wetlands (see Phase I Update report). They were also sampled in 2008 and 2009 to define seasonal trends in methyl Hg production (See Chapter 5). W63 was not sampled in 2007. All sampling in 2010 followed the same methods as used in previous years (2006, 2007, 2008, and 2009). Surface sediments (0-3 cm) only were sampled. Samples were taken by hand at wetland and intertidal sites and by Van Veen dredge at subtidal sites. All samples for Hg analysis were frozen in the field, on dry ice, within one minutes of being exposed to air. All analysis methods for total Hg and methyl Hg followed standard methods previously described in the Phase I and Phase I Update report. All raw data are shown in Appendices 12d-1, 12d-2, and 12d-3.

Temporal trends were examined statistically, on a site-by-site basis using analysis of variance with an independent model and pooled variance, with year as the independent variable. Because it was not expected that total Hg concentrations would vary seasonally, concentrations derived from samples taken at different times of the year were used directly. Because it was possible that methyl Hg concentrations varied with time of the year (see Chapter 12 of this report), statistical tests were first conducted to determine whether there was any seasonal influence on methyl Hg concentrations. Sampling across years was grouped into 11 collection periods, from May 11-12 to October 20-22 and Analysis of Variance on % methyl Hg by reach was performed with further subgroups for Mendall Marsh and ES South. There were no statistically significant seasonal differences in % methyl Hg in Brewer to Orrington (BO), Orrington to Bucksport (OB), Mendall Marsh or ES North. There were statistically significant seasonal differences in ES South, however % methyl Hg did not differ consistently according to season, so it was concluded that there were no statistically significant seasonal trends. Similarly, sites in the Old Town to Veazie (OV) reach also had statistically significant differences, but no consistent trends. Therefore, sample date was not used a control variable for these analyses. The results of ANOVA for individual sites for total Hg and methyl hg concentrations at the six classes of sites are shown in Appendix 4. All analyses tested for significant effects among years.

# 4 RESULTS

## 4.1 Subtidal Sites (Transect E01)

At all subtidal sites, there were no obvious declines in total Hg in surface sediments (Figure 15-1). Concentrations in 2010 were as high or higher as concentrations seen in 2007, the first year of sampling at all five E01 sites. There was no statistically significant temporal trend in total Hg concentrations at any of these sites. Total Hg concentrations did vary consistently among years at the E01 sites: concentrations increased from 2007 to 2008, decreased to 2009 and then increased again to 2010. This pattern was presumably due to some physical process that affected all of Fort Point Cove, such as rates of sedimentation or the lateral redistribution of surface sediments.

Methyl Hg at most subtidal sites also did not decline significantly over the period 2007 – 2010 (Figure 15-1). At one site (E01-4), there was a significant decline in methyl Hg concentration (p=0.045) (Appendix 15-4). Based on visual examination of % methyl Hg concentrations over time, there appeared to be a general trend at all sites toward lower percent methyl Hg concentrations over time (Figure 15-1), resulting in lower percent methyl Hg values in all 2010 subtidal samples as compared to the first year of sampling in 2007.

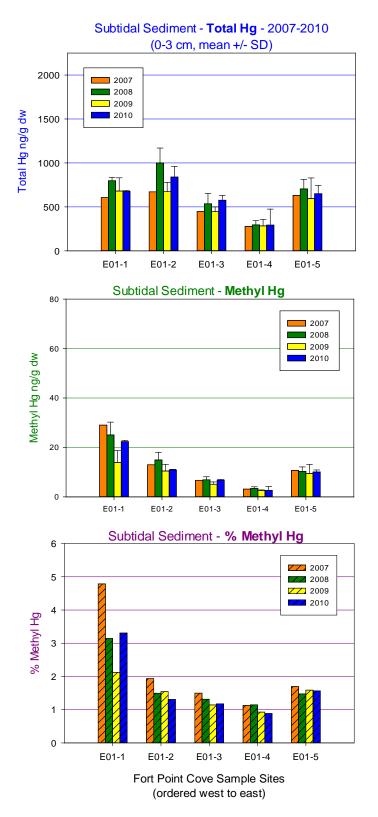



Figure 15-1. Mean concentrations of total Hg (+/- 1 SD), methyl Hg (+/- 1 SD) and % methyl Hg in surface (0-3 cm) sediments at five E01 sites in Fort Point Cove, 2007 to 2010.

#### 4.2 Intertidal Sites

Total Hg concentrations in surface sediments at intertidal sites were quite variable and there was no consistent pattern among the sites. At most sites, there were no significant trend at intertidal sites over the period 2006 - 2010 (Figure 15-2; Appendix 15-4). However, at ES13, at the southern tip of Verona Island, there was a significant increase in total Hg concentrations (p=0.009).

Methyl Hg concentrations at most of the intertidal sites also did not change significantly over the period 2006-2010. Significant declines were found at two of the seven sites (Figure 15-2; Appendix 15-4). ES04 (P = 0.003) and OV1 (P = 0.001; a reference site) but the extremely low concentrations at both sites reduce the importance of these findings.

Percent methyl Hg at intertidal sites varied among years with no consistent trend. Declines in percent methyl Hg were apparent at ES04 and OV1, sites where significant declines in methyl Hg concentrations were found (Figure 15-2). Again, site OV1 was a reference site.

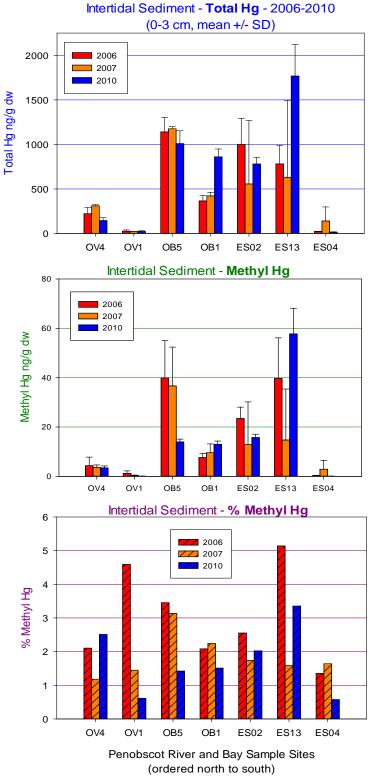
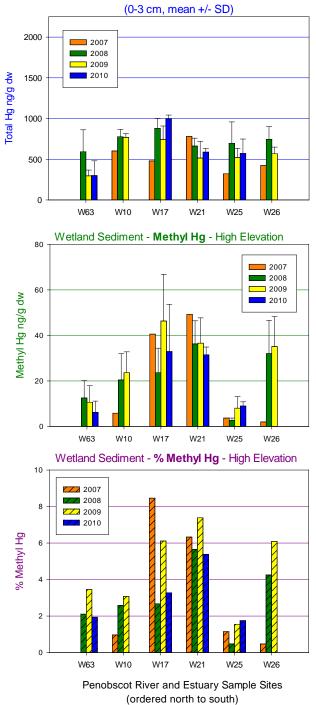
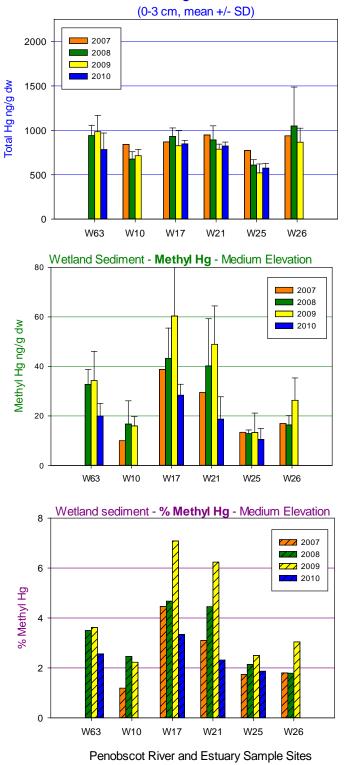




Figure 15-2. Mean concentrations of total Hg (+/- 1 SD), methyl Hg (+/- 1 SD), and % methyl Hg in surface (0-3 cm) sediments at OV1, OV4, OB1, OB5, ES2, ES4, intertidal sites in the Penobscot system, 2006 to 2010.

#### 4.3 Wetland Sites (High Elevations)

At the six high elevation sites sampled, there was no statistically significant trend in total Hg concentrations detected (Figure 15-3, Appendix 15-4). Some sites appeared to show modest increases in total Hg over the sample period, whereas others seemed to show modest decreases, but none of these changes were statistically significant.

Methyl Hg concentrations showed significant, though conflicting, trends at three of the six sites (Figure 3; Appendix 4). There were significant increases in methyl Hg at W25 (p = 0.001) and W26 (P = 0.003) and a significant decrease at W63 (p = 0.04; Appendix 15-4). Percent methyl Hg varied within sites, but there was no consistent pattern among the sites sampled.



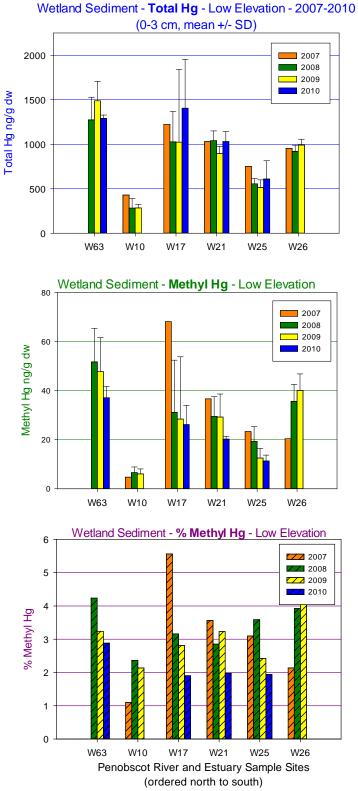

Wetland Sediment - **Total Hg** - High Elevation - 2007-2010 (0-3 cm, mean +/- SD)

Figure 15-3. Mean concentrations of total Hg (+/- 1 SD), methyl Hg (+/- 1 SD), and % methyl Hg in surface (0-3 cm) sediments at high elevation wetland sites W63, W17, W21, and W25, 2007 or 2008 to 2010. Sites are shown in North to South order. Four elevations were sampled at each site: High, Medium, Low and Mudflat.

#### 4.4 Wetland Sites (Medium Elevations)

Total Hg in the surface sediments at all of the medium elevation wetland sites did not show statistically significant changes over the sampling period (Figure 15-4; Appendix 15-4). Methyl Hg showed a significant decrease at one individual site (W21; p = 0.038). The net effect on % methyl Hg was a variable mix of increases and declines (Figure 15-4).





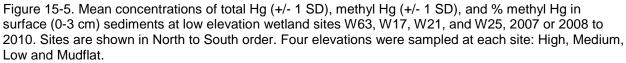
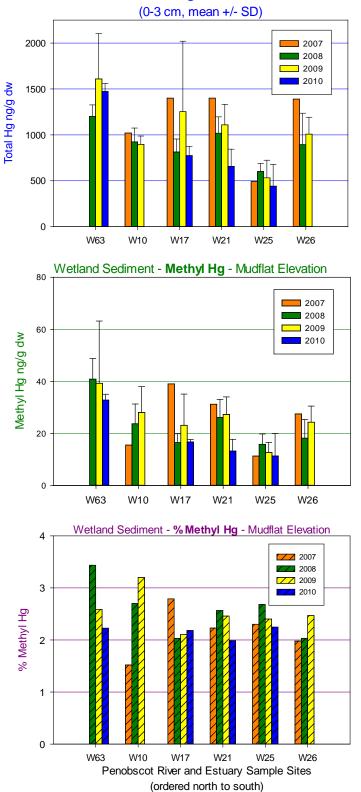


enobscot River and Estuary Sample Sites (ordered north to south)

Figure 15-4. Mean concentrations of total Hg (+/- 1 SD), methyl Hg (+/- 1 SD), and % methyl Hg in surface (0-3 cm) sediments at medium elevation wetland sites W63, W17, W21, and W25, 2007 or 2008 to 2010. Sites are shown in North to South order. Four elevations were sampled at each site: High, Medium, Low and Mudflat.

#### 4.5 Wetland Sites (Low Elevations)

At the low elevation sites, there were no statistically significant changes in total Hg concentrations in surface sediments, as was found for the high and medium elevation sites (Figure 15-5; Appendix 15-4). Methyl Hg concentrations declined significantly at one site (W25; P = 0.011), while concentrations at the other five sites had no temporal trend. Percent methyl Hg values showed no consistent temporal trends over the sites sampled (Figure 15-5).






#### 4.6 Wetland Sites (Mudflats)

At mudflat elevations, two of the six sites sampled had significant declines in total Hg concentrations (W21, P = 0.016 and W25, P = 0.044). Methyl Hg also declined significantly at the same two sites W21 (P = 0.011) and W25 (P = 0.036). Thus, the declines in methyl Hg at these two sites were related to decreases in total Hg concentrations. Percent methyl Hg appeared to be variable at the six different sites sampled, with no noticeable overall trend.

The mudflat sites were similar to the intertidal sites presented above, although mudflat sites are adjacent to wetlands and intertidal sites are not. However, trends in total and methyl Hg concentrations at these two classes of sites were the somewhat different; total Hg at one intertidal site (ES13) showed an increase but decreases were present at two mudflat sites (W21 and W25). Methyl Hg declined at two intertidal sites (OV1 and ES04) and two mudflat sites showed decreases at W21 and W25, although as noted above, decreases in methyl Hg at the two mudflat sites were probably related to decreases in total Hg.



Wetland Sediment -**Total Hg -** Mudflat Elevation - 2007-2010 (0-3 cm, mean +/- SD)

Figure 15-6. Mean concentrations of total Hg (+/- 1 SD), methyl Hg (+/- 1 SD), and % methyl Hg in surface (0-3 cm) sediments at mudflat (intertidal) elevations wetland sites W63, W17, W21, and W25, 2007 or 2008 to 2010. Four elevations were sampled at each site: High, Medium, Low and Mudflat.

# 5 DISCUSSION

Our primary hypothesis was that there would be declines in total Hg concentrations in surface sediments of the contaminated zone (Brewer to Fort Point) of the Penobscot River over the period 2006 – 2010. We found little support for this hypothesis in that there were no significant decreases in total Hg at the majority of sites sampled in any of the six classes of sediments that were examined. Changes at individual sites showed little in the way of consistent trends in total Hg as well: only one individual site (ES13 Intertidal) showed a significant increase in total Hg and only two individual sites (W21 and W25 Wetland Mudflat) showed a significant decrease in total Hg. There was a fairly large amount of inter-year variation at most sites and this variability is probably due to small-scale spatial variability (Krabbenhoft et al. 2007). The monitoring plan for the Penobscot system has taken this variability into account (see Chapter 13 of this report). Power analysis has indicated that assuming a half-time for recovery of 20 years. sampling every second year, and a monitoring period of 12 years, a minimum power of detection of 0.8 at most sites would result from collecting n=3 replicates at subtidal sites, n=5 replicates at intertidal sites, and n=4 replicates at wetland sites. We may see more statistically significant declines after the analysis of samples taken in 2012.

Similar to the finding that total Hg was stable at most sites, methyl Hg also did not show significant changes, on an overall basis, in the six classes of sediments sampled. Certainly, methyl Hg was more variable than total Hg with some tendency for decreasing concentrations: eight individual sites showed significant decreases in methyl Hg whereas two individual sites showed significant increases in methyl Hg. Two of the declines in methyl Hg would appear to be related to decreases in total Hg as it has been shown that, within sediment types, methyl Hg is closely related to total Hg in the Penobscot system (see Chapter 12 of this report). This greater variability in methyl Hg concentrations as compared to total Hg concentrations is to be expected (Krabbenhoft et al. 2007). Even though the supply of inorganic Hg on particles to the surface layers of sediments may not have diminished significantly over the period 2006 to 2010 at most sites (keeping total Hg relatively stable), the conditions for Hg methylation or the balance between Hg methylation and methyl Hg demethylation are more likely to have undergone changes, especially on a site to site basis. Because so many factors can affect methylation and demethylation of Hg, such as temperature, supply of organic C, the supply of sulfate which can be influenced by river flows, dissolved organic matter, and others, it is not surprising that methyl Hg concentrations were more variable that total Hg. However, it is difficult to monitor for all of the parameters that affect methyl Hg concentrations (see Chapter 12 of this report) and therefore it is difficult to ascribe differences in methyl Hg concentrations to any particular factor.

It would be unrealistic to expect a lock-step relationship between methyl Hg in surface sediments, the source of Hg for many species of biota, and Hg in biota because of the complicated system that transfers methyl Hg from sediments and porewater to the bottom of the food chain. There are many factors that can affect Hg in biota, including transfer efficiencies, growth rates, feeding patterns and excretion rates (Sandheinrich and Wiener 2011). However, there would appear to be a general correspondence

between temporal trends in methyl Hg concentrations in surface sediments and temporal trends in Hg in biota. This should be especially true for animals tied to sediment-based food webs (e.g. tomcod, flounder and eels – see Chapter 16 of this report). Methyl Hg in surface sediments did not, in general, show trends over time as was also generally the case for Hg in eels, tomcod, and flounder (see Chapter 14 of this report). Also, birds that inhabit wetland areas have also shown little in the way of temporal trends (see Chapter 14 of this report), mirroring the general lack of trend of methyl Hg in the surface sediments of wetlands, as shown here.

Demonstrating that Hg in biota is often related to Hg in surface sediments, there were a number of significant correlations between the two (Table 15-1). Significant relationships were found for six of the nine biota species tested (mussels, sand worms, periwinkles, eels, smelt and flounder). The significant relationships for mussels and smelt were not expected because they feed on pelagically-based food chains. There were no significant relationships for soft-shelled clams, tomcod and mummichogs. The latter two are surprising because of indications that they receive their Hg from sediment-based food webs (see Chapter 16 of this report). Figures 12d-7 and 12d-8 provide two examples of these correlations. These observations do not prove cause-effect relationships, perhaps indicating general correlations between levels of Hg contamination in the Penobscot system and Hg in biota. However, they do strengthen the hypothesized link between Hg in surface sediments and Hg in biota (See Chapter 16 of this report). They also support the view that if total and methyl Hg in sediments can be lowered by remediation actions, then Hg in biota will follow.

| Table 15-1: Details of correlations between Hg (methyl or total) in sediment and   |
|------------------------------------------------------------------------------------|
| Hg (methyl or total) in various species of biota in the Penboscot system.          |
| Hg data for sediments and biota was from sampling in 2006-7 in Phase I             |
| of the Study. The strongest correlation, depending on total Hg or methyl           |
| Hg in sediment or biota is given. Asterisks indicate p<0.05. r <sup>2</sup> values |
| given only when p values were less than 0.05.                                      |

| SPECIES           | In X (sediment) | Ln Y (biota) | p value | r <sup>2</sup> |
|-------------------|-----------------|--------------|---------|----------------|
| SHELLFISH         |                 |              |         |                |
| Blue mussel       | Methyl Hg       | Total Hg     | 0.005*  | 0.65           |
| Soft-shelled clam | Methyl Hg       | Total Hg     | 0.133   | -              |
| INVERTEBRATES     |                 |              |         |                |
| Sand worm         | Methyl Hg       | Total Hg     | 0.000*  | 0.69           |
| Periwinkles       | Methyl Hg       | Total Hg     | 0.000*  | 0.79           |
| FISHES            |                 |              |         |                |
| American eel      | Total Hg        | Total Hg     | 0.013*  | 0.74           |

Table 15-1: Details of correlations between Hg (methyl or total) in sediment and Hg (methyl or total) in various species of biota in the Penboscot system. Hg data for sediments and biota was from sampling in 2006-7 in Phase I of the Study. The strongest correlation, depending on total Hg or methyl Hg in sediment or biota is given. Asterisks indicate p<0.05. r<sup>2</sup> values given only when p values were less than 0.05.

| SPECIES         | In X (sediment) | Ln Y (biota) | p value | r <sup>2</sup> |
|-----------------|-----------------|--------------|---------|----------------|
| Rainbow smelt   | Methyl Hg       | Total Hg     | 0.035*  | 0.54           |
| Winter flounder | Methyl Hg       | Total Hg     | 0.021*  | 0.87           |
| Tomcod          | Methyl Hg       | Total Hg     | 0.117   | -              |
| Mummichog       | Total Hg        | Total Hg     | 0.279   | -              |

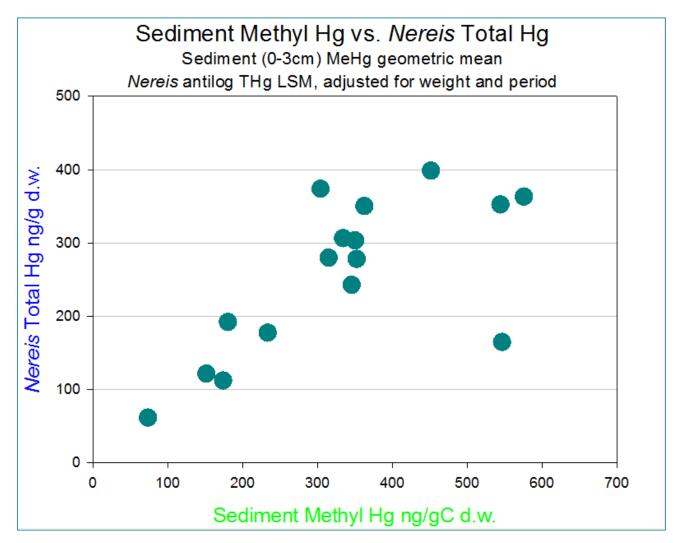



Figure 15-7. Relationship between total Hg in Nereis and methyl Hg in surficial (0-3 cm) sediments, based on data from 2006-7 (Phase I of the Study). See Table 1 for statistical details.

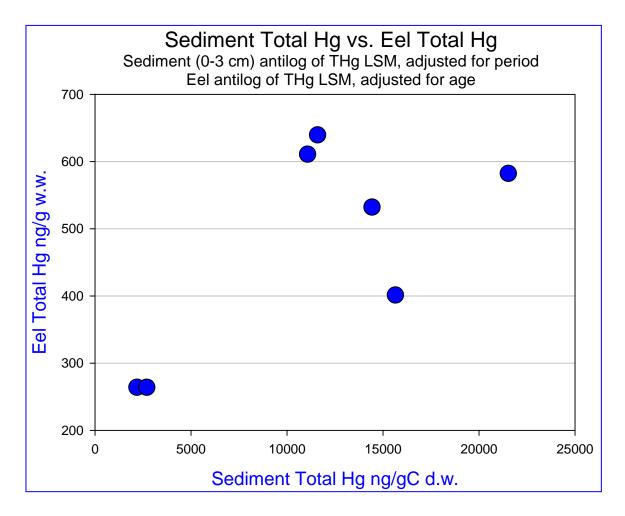



Figure 15-8. Relationship between total Hg in American eels and total Hg in surficial (0-3 cm) sediments, based on data from 2006-7 (Phase I of the Study). See Table 15-1 for statistical details.

# **6** ACKNOWLEDGEMENTS

Staff at Normandeau Associates, Inc. carried out most of the sediment sampling over the five years of study. In particular, we thank M. Bowen, C. Francis, S. Lee, K. Payne, R. Simmons, and E. Sobo. M. Bowen of Normandeau Associates is thanked for her efficient management oversight of field sampling. Statistical advice was provided by J. Siegrist of Applied BioMathematics. Most laboratory analyses were carried out at Flett Research Ltd, with particular thanks to R. Flett and D. Gilbert. J. Wiener (University of Wisconsin – La Crosse) provided insightful comments that strengthened the chapter.

# 7 REFERENCES

- Krabbenhoft, D., D. Engstrom, C. Gilmour, R. Harris, J. Hurley and R. Mason. 2007. Monitoring and evaluating trends in sediment and water indicators, pp. 47-86, in Ecosystem responses to mercury contamination: Indicators of Change, R Harris, DP Krabbenhoft, R Mason, MW Murray, R Reash, T Saltman (eds.), CRC Press, Boca Raton, FL.
- Munthe, J., R.A. Bodaly, B.A. Branfireun, C.T. Driscoll, C.C. Gilmour, R.C. Harris, M. Horvat, M. Lucotte, O. Malm. 2007. Recovery of mercury-contaminated fisheries. Ambio. 36: 33-44.
- Sandheinrich, M.B. and J.G. Wiener. 2011. Methylmercury in freshwater fish: Recent advances in assessing toxicity of environmentally relevant exposures. Pp 169-190 IN WN Beyer and JP Meador (eds.) Environmental contamination in biota: Interpreting tissue concentrations, CRC Press, Boca Raton, FL.

## **APPENDIX 15-1:**

Raw data for total Hg concentrations in surface (0-3 cm) sediments in Fort Point Cove (the E01 transect). All concentrations are given as ng/g d.w. Data from 2007 are from the geographic survey of Hg in estuary sediments (see Phase I Report). Data from 2008 and 2009 are from seasonal survey of Hg in estuary sediments (see Chapter 12 of this report). Data from 2010 are from sampling done to define temporal trends in Hg in sediments (see methods section in this chapter). Multiple observations for the same date are from replicate samples.

| E01-1      | THg | MeHg  |
|------------|-----|-------|
| 8/17/2007  | 606 | 29    |
| 7/23/2008  | 864 | 30.5  |
| 8/6/2008   | 810 | 26.9  |
| 8/20/2008  | 760 | 29.2  |
| 9/3/2008   | 830 | 19.5  |
| 9/18/2008  | 788 | 25.75 |
| 9/30/2008  | 760 | 27.1  |
| 10/20/2008 | 777 | 16.4  |
| 5/12/2009  | 672 | 9.52  |
| 6/3/2009   | 931 | 8.74  |
| 6/25/2009  | 654 | 17.7  |
| 7/15/2009  | 458 | 10.7  |
| 8/5/2009   | 671 | 20.4  |
| 9/4/2009   | 699 | 16.1  |
| 8/23/2010  | 690 | 22.9  |
| 8/23/2010  | 672 | 21.9  |
| 8/23/2010  | 665 | 22.2  |

| E01-2      | THg   | MeHg |
|------------|-------|------|
| 8/17/2007  | 672   | 13   |
| 7/23/2008  | 1030  | 13.3 |
| 8/6/2008   | 980   | 14   |
| 8/20/2008  | 1260  | 20.5 |
| 9/3/2008   | 1160  | 15.7 |
| 9/18/2008  | 927   | 16.1 |
| 9/30/2008  | 885   | 14.3 |
| 10/20/2008 | 754   | 10.6 |
| 6/3/2009   | 773   | 14.7 |
| 6/25/2009  | 734.5 | 10.4 |
| 7/15/2009  | 479   | 6.89 |
| 8/5/2009   | 639   | 11.3 |
| 9/4/2009   | 728   | 11.2 |
| 8/23/2010  | 960   | 10.7 |
| 8/23/2010  | 840   | 11.2 |
| 8/23/2010  | 720   | 10.6 |

| E01-3      | THg   | MeHg  |
|------------|-------|-------|
| 8/17/2007  | 447   | 6.69  |
| 7/23/2008  | 369   | 5.79  |
| 8/6/2008   | 684.5 | 6.565 |
| 8/20/2008  | 542.5 | 8.61  |
| 9/3/2008   | 564   | 7.07  |
| 9/18/2008  | 674.5 | 8.52  |
| 9/30/2008  | 456   | 5.88  |
| 10/20/2008 | 462   | 5.92  |
| 5/12/2009  | 433   | 5.59  |
| 6/3/2009   | 476.5 | 4.78  |
| 6/25/2009  | 500   | 5.25  |
| 7/15/2009  | 360   | 3.77  |
| 8/5/2009   | 493   | 6.49  |
| 9/4/2009   | 414   | 4.74  |
| 8/23/2010  | 535   | 6.58  |
| 8/23/2010  | 556   | 6.63  |
| 8/23/2010  | 638   | 7.03  |

| E01-4      | THg   | MeHg  |
|------------|-------|-------|
| 8/17/2007  | 278   | 3.14  |
| 7/23/2008  | 268   | 3.07  |
| 8/6/2008   | 369   | 4.14  |
| 8/20/2008  | 253   | 3.81  |
| 9/3/2008   | 324   | 3.66  |
| 9/18/2008  | 334   | 2.9   |
| 9/30/2008  | 279.5 | 3.83  |
| 10/20/2008 | 244   | 2.17  |
| 5/12/2009  | 225   | 2.43  |
| 6/3/2009   | 425   | 2.3   |
| 6/25/2009  | 286   | 2.64  |
| 7/15/2009  | 252   | 3.05  |
| 8/5/2009   | 231   | 2.32  |
| 9/4/2009   | 289   | 2.31  |
| 8/23/2010  | 143   | 1.285 |
| 8/23/2010  | 495   | 4.33  |
| 8/23/2010  | 241   | 2.095 |

| E01-5      | THg | MeHg  |
|------------|-----|-------|
| 8/17/2007  | 631 | 10.7  |
| 7/23/2008  | 720 | 10.3  |
| 8/6/2008   | 655 | 9.72  |
| 8/20/2008  | 606 | 11.7  |
| 9/3/2008   | 604 | 7.7   |
| 9/18/2008  | 744 | 8.88  |
| 9/30/2008  | 689 | 10.85 |
| 10/20/2008 | 918 | 13.1  |
| 5/12/2009  | 273 | 3.71  |
| 6/3/2009   | 973 | 13.3  |
| 6/25/2009  | 643 | 12.1  |
| 7/15/2009  | 544 | 11.6  |
| 8/5/2009   | 671 | 9.39  |
| 9/4/2009   | 472 | 6.52  |
| 8/23/2010  | 695 | 11    |
| 8/23/2010  | 716 | 9.63  |
| 8/23/2010  | 540 | 9.515 |

## **APPENDIX 5-2:**

Raw data for total Hg concentrations in surface (0-3 cm) sediments at intertidal sites. All concentrations are given as ng/g dry.wt. Data from 2006 are from the geographic survey of Hg in intertidal sediments (Sampling I, II, III and IV) (see Phase I Report). Data from 2007 are from the geographic survey of Hg in intertidal sediments (Sampling V and VI) (see Phase I Report). Data from 2010 are from sampling done to define temporal trends in Hg in sediments (see methods section in this chapter). Multiple observations from the same date are from replicate samples.

| ES02       | THg    | MeHg |
|------------|--------|------|
| 5/29/2007  | 993.0  | 27.8 |
| 7/10/2007  | 1059.0 | 25.1 |
| 8/1/2006   | 886.2  | 27.9 |
| 9/6/2006   | 1059.5 | 25.4 |
| 9/27/2006  | 680.8  | 23.3 |
| 10/22/2006 | 1374.9 | 17.1 |
| 8/26/2010  | 785.0  | 13.7 |
| 8/26/2010  | 717.0  | 16.7 |
| 8/26/2010  | 695.0  | 15.3 |
| 8/26/2010  | 846.0  | 15.6 |
| 8/26/2010  | 858.0  | 17.2 |

| ES04       | THg   | MeHg |
|------------|-------|------|
| 8/1/2006   | 24.8  | 0.2  |
| 9/6/2006   | 17.5  | 0.5  |
| 9/27/2006  | 22.3  | 0.2  |
| 10/22/2006 | 20.7  | 0.2  |
| 5/29/2007  | 251.6 | 5.4  |
| 7/10/2007  | 29.3  | 0.3  |
| 8/23/2010  | 11.6  | 0.1  |
| 8/23/2010  | 12.7  | 0.0  |
| 8/23/2010  | 9.2   | 0.0  |
| 8/23/2010  | 8.3   | 0.0  |
| 8/23/2010  | 23.0  | 0.2  |

| ES13       | THg    | MeHg |
|------------|--------|------|
| 8/1/2006   | 702.7  | 36.3 |
| 9/6/2006   | 693.2  | 56.5 |
| 9/27/2006  | 640.1  | 18.3 |
| 10/22/2006 | 1087.9 | 47.6 |
| 5/29/2007  | 17.4   | 0.1  |
| 7/10/2007  | 1239.6 | 29.3 |
| 8/26/2010  | 2390.0 | 55.2 |
| 8/26/2010  | 1640.0 | 46.6 |
| 8/26/2010  | 1550.0 | 51.2 |
| 8/26/2010  | 1710.0 | 73.1 |
| 8/26/2010  | 1550.0 | 62.6 |

| OB1        | THg   | MeHg |
|------------|-------|------|
| 8/1/2006   | 417.1 | 9.9  |
| 9/6/2006   | 347.8 | 5.9  |
| 9/27/2006  | 283.8 | 6.8  |
| 10/22/2006 | 412.6 | 7.8  |
| 5/29/2007  | 449.9 | 12.1 |
| 7/10/2007  | 394.4 | 7.0  |
| 8/24/2010  | 883.0 | 12.5 |
| 8/24/2010  | 797.0 | 12.8 |
| 8/24/2010  | 922.0 | 13.3 |
| 8/24/2010  | 958.0 | 15.0 |
| 8/24/2010  | 745.0 | 11.4 |

| OB5        | THg    | MeHg |
|------------|--------|------|
| 8/1/2006   | 1091.7 | 41.2 |
| 9/6/2006   | 1161.9 | 27.1 |
| 9/27/2006  | 961.0  | 30.7 |
| 10/22/2006 | 1347.7 | 60.8 |
| 5/29/2007  | 1159.6 | 47.8 |
| 7/10/2007  | 1191.7 | 25.5 |
| 8/25/2010  | 1050.0 | 13.2 |
| 8/25/2010  | 978.0  | 13.8 |
| 8/25/2010  | 784.5  | 15.9 |
| 8/25/2010  | 1050.0 | 13.0 |
| 8/25/2010  | 1180.0 | 13.9 |

| OV1        | THg  | MeHg |
|------------|------|------|
| 8/1/2006   | 11.5 | 0.8  |
| 9/6/2006   | 44.4 | 2.7  |
| 9/27/2006  | 27.7 | 0.8  |
| 10/22/2006 | 20.9 | 0.5  |
| 5/29/2007  | 19.6 | 0.2  |
| 7/10/2007  | 21.4 | 0.4  |
| 8/24/2010  | 7.6  | 0.1  |
| 8/24/2010  | 24.0 | 0.1  |
| 8/24/2010  | 30.7 | 0.1  |
| 8/24/2010  | 25.0 | 0.1  |
| 8/24/2010  | 21.7 | 0.1  |

| OV4        | THg   | MeHg |
|------------|-------|------|
| 8/1/2006   | 168.5 | 1.4  |
| 9/6/2006   | 166.9 | 8.5  |
| 9/27/2006  | 309.4 | 5.9  |
| 10/22/2006 | 246.5 | 1.5  |
| 5/29/2007  | 302.2 | 3.0  |
| 7/10/2007  | 319.0 | 4.3  |
| 8/26/2010  | 103.0 | 2.9  |
| 8/26/2010  | 179.0 | 2.7  |
| 8/26/2010  | 173.0 | 3.3  |
| 8/26/2010  | 141.0 | 3.8  |
| 8/26/2010  | 127.0 | 4.6  |

## APPENDIX 15-3:

Raw data for temporal analysis of total mercury concentrations in wetland sediments. All values are for surface sediments (0-3 cm) in ng/g dry wt. Data from 2007 are from the geographic survey of Hg in wetland sediments (see Phase I Report). Data from 2008 and 2009 are from sampling to define seasonal trends in methyl Hg production (see Chapter 12 of this report). Data from 2010 are from sampling done to define temporal trends in Hg in sediments (see methods section in this chapter). Multiple observations from the same date are from replicate samples.

| W63 High   | THg      | MeHg  |
|------------|----------|-------|
| 7/22/2008  | 727.00   | 12.40 |
| 8/4/2008   | 1,030.00 | 25.20 |
| 8/20/2008  | 371.00   | 6.45  |
| 9/3/2008   | 603.00   | 20.85 |
| 9/16/2008  | 420.00   | 9.15  |
| 9/30/2008  | 752.00   | 8.45  |
| 10/21/2008 | 242.00   | 5.07  |
| 5/12/2009  | 320.00   | 4.20  |
| 6/2/2009   | 319.00   | 19.20 |
| 6/24/2009  | 214.00   | 3.57  |
| 7/16/2009  | 299.00   | 7.10  |
| 8/4/2009   | 221.00   | 9.73  |
| 9/1/2009   | 405.00   | 19.90 |
| 8/25/2010  | 297.00   | 6.50  |
| 8/25/2010  | 124.00   | 2.35  |
| 8/25/2010  | 231.00   | 2.97  |
| 8/25/2010  | 549.00   | 13.05 |

| W63 Medium | THg   | MeHg  |
|------------|-------|-------|
| 7/22/2008  | 948   | 27.8  |
| 8/4/2008   | 1030  | 35.45 |
| 8/20/2008  | 832   | 32.6  |
| 9/3/2008   | 1100  | 44.7  |
| 9/16/2008  | 828   | 32.9  |
| 9/30/2008  | 1030  | 27.3  |
| 10/21/2008 | 817   | 28.5  |
| 5/12/2009  | 1030  | 37.5  |
| 6/2/2009   | 944   | 14.6  |
| 6/24/2009  | 644   | 37    |
| 7/16/2009  | 1020  | 51.3  |
| 8/4/2009   | 1090  | 32.9  |
| 9/1/2009   | 1180  | 32.35 |
| 8/25/2010  | 978   | 23.2  |
| 8/25/2010  | 902.5 | 21.6  |
| 8/25/2010  | 591   | 12.3  |
| 8/25/2010  | 660   | 22.5  |

| W63 Low    | THg  | MeHg  |
|------------|------|-------|
| 7/22/2008  | 1130 | 62.15 |
| 8/4/2008   | 1610 | 52.5  |
| 8/20/2008  | 1100 | 70    |
| 9/3/2008   | 1400 | 52    |
| 9/16/2008  | 962  | 54    |
| 9/30/2008  | 1580 | 44.7  |
| 10/21/2008 | 1135 | 26.9  |
| 5/12/2009  | 1550 | 46    |
| 6/2/2009   | 1200 | 30.5  |
| 6/24/2009  | 1320 | 70.4  |
| 7/16/2009  | 1780 | 53.7  |
| 8/4/2009   | 1410 | 37.3  |
| 9/1/2009   | 1670 | 48.8  |
| 8/25/2010  | 1260 | 43.2  |
| 8/25/2010  | 1315 | 38    |
| 8/25/2010  | 1330 | 32.5  |
| 8/25/2010  | 1260 | 34.9  |

| W63<br>Mudflat | THg  | МеНд  |
|----------------|------|-------|
| 7/22/2008      | 1420 | 46.3  |
| 8/4/2008       | 1090 | 41.1  |
| 8/20/2008      | 1100 | 43.75 |
| 9/3/2008       | 1280 | 36.7  |
| 9/16/2008      | 1090 | 53.4  |
| 9/30/2008      | 1250 | 35.4  |
| 10/21/2008     | 1190 | 29.1  |
| 5/12/2009      | 935  | 28.65 |
| 6/2/2009       | 1160 | 28.65 |
| 6/24/2009      | 1720 | 25.5  |
| 7/16/2009      | 1650 | 86.2  |
| 8/4/2009       | 1900 | 42.6  |
| 9/1/2009       | 2290 | 23.9  |
| 8/25/2010      | 1450 | 33.2  |
| 8/25/2010      | 1360 | 29.6  |
| 8/25/2010      | 1550 | 33.5  |
| 8/25/2010      | 1530 | 34.85 |

| W10 High   | THg   | MeHg  |
|------------|-------|-------|
| 8/17/2007  | 602   | 5.82  |
| 5/12/2008  | 823   | 16    |
| 7/22/2008  | 763   | 2.87  |
| 8/4/2008   | 645   | 21.25 |
| 8/20/2008  | 871   | 37.3  |
| 9/3/2008   | 786   | 16    |
| 9/16/2008  | 892.5 | 26.4  |
| 9/30/2008  | 797   | 28.2  |
| 10/21/2008 | 685   | 11.1  |
| 6/2/2009   | 819   | 22.2  |
| 6/24/2009  | 698   | 14.5  |
| 7/16/2009  | 749   | 26.1  |
| 8/4/2009   | 762   | 40.1  |
| 9/1/2009   | 759   | 22.8  |

| W10 Medium | THg   | MeHg |
|------------|-------|------|
| 8/17/2007  | 842   | 10   |
| 5/12/2008  | 721   | 18.8 |
| 7/22/2008  | 737   | 15   |
| 8/4/2008   | 587   | 10.2 |
| 8/20/2008  | 724   | 37.3 |
| 9/3/2008   | 805   | 12.4 |
| 9/16/2008  | 612   | 17   |
| 9/30/2008  | 676   | 10.8 |
| 10/21/2008 | 594   | 14.2 |
| 6/2/2009   | 689   | 9.99 |
| 6/24/2009  | 605   | 13.9 |
| 7/16/2009  | 830   | 20.8 |
| 8/4/2009   | 722   | 16   |
| 9/1/2009   | 715.5 | 16.3 |

| W10 Low    | THg   | MeHg |
|------------|-------|------|
| 8/17/2007  | 430   | 4.72 |
| 5/12/2008  | 293   | 8.05 |
| 7/22/2008  | 353.5 | 9.76 |
| 8/4/2008   | 476   | 8.48 |
| 8/20/2008  | 237   | 6.42 |
| 9/3/2008   | 217   | 7.48 |
| 9/16/2008  | 148   | 2.81 |
| 9/30/2008  | 255   | 4.62 |
| 10/21/2008 | 296   | 6.37 |
| 6/2/2009   | 254   | 7.91 |
| 6/24/2009  | 240   | 4.19 |
| 7/16/2009  | 263   | 3.44 |
| 8/4/2009   | 317   | 7.56 |
| 9/1/2009   | 341   | 5.17 |

| W10<br>Mudflat | THg  | MeHg |
|----------------|------|------|
| 8/17/2007      | 1020 | 15.5 |
| 5/12/2008      | 871  | 33.6 |
| 7/22/2008      | 980  | 22.5 |
| 8/4/2008       | 768  | 23.5 |
| 8/20/2008      | 819  | 35.6 |
| 9/3/2008       | 831  | 29.5 |
| 9/16/2008      | 1030 | 20.4 |
| 9/30/2008      | 1190 | 11.2 |
| 10/21/2008     | 855  | 23.3 |
| 6/2/2009       | 824  | 27.6 |
| 6/24/2009      | 1060 | 20.1 |
| 7/16/2009      | 822  | 45.2 |
| 8/4/2009       | 938  | 20.9 |
| 9/1/2009       | 869  | 20.6 |

| W17 High   | THg  | MeHg  |
|------------|------|-------|
| 8/18/2007  | 480  | 40.6  |
| 7/22/2008  | 928  | 29.7  |
| 8/4/2008   | 720  | 18.6  |
| 8/20/2008  | 818  | 33.5  |
| 9/3/2008   | 1100 | 37.9  |
| 9/18/2008  | 838  | 10.9  |
| 9/30/2008  | 933  | 10.4  |
| 10/21/2008 | 824  | 24.2  |
| 5/12/2009  | 834  | 43.5  |
| 6/2/2009   | 802  | 37.6  |
| 6/24/2009  | 791  | 59.55 |
| 7/15/2009  | 865  | 79.5  |
| 8/4/2009   | 747  | 37.4  |
| 9/2/2009   | 411  | 20.6  |
| 8/24/2010  | 974  | 19.2  |
| 8/24/2010  | 1020 | 63.8  |
| 8/24/2010  | 1050 | 25.3  |
| 8/24/2010  | 953  | 23.4  |

| W17 Medium | THg   | MeHg  |
|------------|-------|-------|
| 8/18/2007  | 870   | 38.8  |
| 7/22/2008  | 939   | 46.7  |
| 8/4/2008   | 937   | 43.7  |
| 8/20/2008  | 929   | 68.7  |
| 9/3/2008   | 884   | 34.2  |
| 9/18/2008  | 909   | 39.6  |
| 9/30/2008  | 1120  | 36.5  |
| 10/21/2008 | 802   | 33.5  |
| 5/12/2009  | 1055  | 95.5  |
| 6/2/2009   | 908   | 91.5  |
| 6/24/2009  | 840.5 | 54.8  |
| 7/15/2009  | 803   | 56.6  |
| 8/4/2009   | 816   | 31.9  |
| 9/2/2009   | 537   | 31.7  |
| 8/24/2010  | 819   | 27.5  |
| 8/24/2010  | 826   | 31.4  |
| 8/24/2010  | 843   | 22.4  |
| 8/24/2010  | 906   | 32.15 |

| W17 Low    | THg  | MeHg  |
|------------|------|-------|
| 8/18/2007  | 1225 | 68.15 |
| 7/22/2008  | 413  | 6.81  |
| 8/4/2008   | 1540 | 16.8  |
| 8/20/2008  | 996  | 48.3  |
| 9/3/2008   | 908  | 69.9  |
| 9/18/2008  | 1220 | 29.1  |
| 9/30/2008  | 1050 | 26.5  |
| 10/21/2008 | 1060 | 20.4  |
| 5/12/2009  | 305  | 12.9  |
| 6/2/2009   | 785  | 12.4  |
| 6/24/2009  | 1410 | 40.7  |
| 7/15/2009  | 565  | 17.6  |
| 8/4/2009   | 566  | 11.6  |
| 9/2/2009   | 2510 | 75.2  |
| 8/24/2010  | 921  | 18.7  |
| 8/24/2010  | 2190 | 37.1  |
| 8/24/2010  | 1320 | 25.4  |
| 8/24/2010  | 1190 | 23.4  |

| W17 Mudflat | THg   | MeHg  |
|-------------|-------|-------|
| 8/18/2007   | 1400  | 39.05 |
| 7/22/2008   | 507   | 10.8  |
| 8/4/2008    | 856.5 | 17.9  |
| 8/20/2008   | 906   | 20.4  |
| 9/3/2008    | 921.5 | 18.8  |
| 9/18/2008   | 790   | 18.2  |
| 9/30/2008   | 853   | 16    |
| 10/21/2008  | 860.5 | 13.2  |
| 5/12/2009   | 658   | 17    |
| 6/2/2009    | 708   | 27.4  |
| 6/24/2009   | 1290  | 9.44  |
| 7/15/2009   | 752   | 13.9  |
| 8/4/2009    | 1440  | 28.8  |
| 9/2/2009    | 2670  | 42.1  |
| 8/24/2010   | 739   | 16    |
| 8/24/2010   | 894   | 18.05 |
| 8/24/2010   | 656   | 16.6  |
| 8/24/2010   | 806.5 | 16.2  |

| W21 High   | THg   | MeHg  |
|------------|-------|-------|
| 8/22/2007  | 779   | 49.3  |
| 7/23/2008  | 837.5 | 28.6  |
| 8/5/2008   | 595   | 47.2  |
| 8/20/2008  | 755   | 36.15 |
| 9/3/2008   | 654   | 21.1  |
| 9/18/2008  | 608   | 30    |
| 9/30/2008  | 600   | 46.4  |
| 10/21/2008 | 589   | 44.5  |
| 5/12/2009  | 908   | 46.5  |
| 6/3/2009   | 396   | 22    |
| 6/25/2009  | 432   | 40.7  |
| 7/15/2009  | 569.5 | 49.4  |
| 8/4/2009   | 341   | 25.4  |
| 9/2/2009   | 441   | 35.6  |
| 8/26/2010  | 652   | 29.3  |
| 8/26/2010  | 564   | 36.3  |
| 8/26/2010  | 553   | 28.7  |
| 8/26/2010  | 583   | 31.6  |

| W21 Medium | THg   | MeHg   |
|------------|-------|--------|
| 8/22/2007  | 948   | 29.4   |
| 7/23/2008  | 1110  | 37.4   |
| 8/5/2008   | 666   | 17.6   |
| 8/20/2008  | 1000  | 73.3   |
| 9/3/2008   | 885   | 57.1   |
| 9/18/2008  | 786   | 38.8   |
| 9/30/2008  | 785   | 27     |
| 10/21/2008 | 1020  | 30.5   |
| 5/12/2009  | 775   | 49.2   |
| 6/3/2009   | 859   | 25.35  |
| 6/25/2009  | 839   | 65     |
| 7/15/2009  | 796   | 64.4   |
| 8/4/2009   | 752   | 52.4   |
| 9/2/2009   | 703.5 | 37.3   |
| 8/26/2010  | 793   | 21.6   |
| 8/26/2010  | 826   | 11.725 |
| 8/26/2010  | 787   | 30.2   |
| 8/26/2010  | 885   | 11.25  |

| W21 Low    | THg   | MeHg  |
|------------|-------|-------|
| 8/22/2007  | 1030  | 36.7  |
| 7/23/2008  | 1040  | 29.1  |
| 8/5/2008   | 944   | 28.4  |
| 8/20/2008  | 1030  | 39.4  |
| 9/3/2008   | 1240  | 37.8  |
| 9/18/2008  | 903   | 32.2  |
| 9/30/2008  | 1100  | 16.25 |
| 10/21/2008 | 1030  | 23.15 |
| 5/12/2009  | 892   | 30.2  |
| 6/3/2009   | 840.5 | 15.9  |
| 6/25/2009  | 893   | 38    |
| 7/15/2009  | 1050  | 41.5  |
| 8/4/2009   | 872   | 24.9  |
| 9/2/2009   | 823   | 24.95 |
| 8/26/2010  | 942   | 18.7  |
| 8/26/2010  | 1190  | 21.5  |
| 8/26/2010  | 1030  | 20.6  |
| 8/26/2010  | 958   | 20.2  |

| W21 Mudflat | THg  | MeHg  |
|-------------|------|-------|
| 8/22/2007   | 1400 | 31.2  |
| 7/23/2008   | 959  | 29.5  |
| 8/5/2008    | 962  | 21.35 |
| 8/20/2008   | 1100 | 38.1  |
| 9/3/2008    | 1340 | 29.7  |
| 9/18/2008   | 890  | 24.7  |
| 9/30/2008   | 1090 | 22.2  |
| 10/21/2008  | 789  | 17.1  |
| 5/12/2009   | 1120 | 33.2  |
| 6/3/2009    | 866  | 19.2  |
| 6/25/2009   | 1220 | 30.3  |
| 7/15/2009   | 1450 | 35.8  |
| 8/4/2009    | 863  | 23.5  |
| 9/2/2009    | 1140 | 21.6  |
| 8/26/2010   | 849  | 18.7  |
| 8/26/2010   | 402  | 7.71  |
| 8/26/2010   | 691  | 14    |
| 8/26/2010   | 689  | 12.4  |

| W25 High   | THg  | MeHg  |
|------------|------|-------|
| 8/19/2007  | 322  | 3.69  |
| 7/23/2008  | 1050 | 1.34  |
| 8/5/2008   | 567  | 2.02  |
| 8/18/2008  | 819  | 2.66  |
| 9/4/2008   | 546  | 3.02  |
| 9/17/2008  | 1010 | 2.12  |
| 9/29/2008  | 487  | 4.26  |
| 10/22/2008 | 399  | 3.55  |
| 5/11/2009  | 507  | 1.86  |
| 6/3/2009   | 606  | 4.75  |
| 6/25/2009  | 507  | 15.1  |
| 7/16/2009  | 678  | 12.75 |
| 8/5/2009   | 481  | 8.38  |
| 8/31/2009  | 350  | 5.37  |
| 8/24/2010  | 682  | 9.43  |
| 8/24/2010  | 403  | 10    |
| 8/24/2010  | 761  | 6.18  |
| 8/24/2010  | 440  | 10.2  |

| W25 Medium | THg   | MeHg  |
|------------|-------|-------|
| 8/19/2007  | 773   | 13.4  |
| 7/23/2008  | 711   | 11.9  |
| 8/5/2008   | 569   | 14    |
| 8/18/2008  | 682   | 10.4  |
| 9/4/2008   | 576   | 14.1  |
| 9/17/2008  | 578.5 | 11.9  |
| 9/29/2008  | 573   | 14.4  |
| 10/22/2008 | 572   | 13.2  |
| 5/11/2009  | 529   | 12.6  |
| 6/3/2009   | 572   | 7.29  |
| 6/25/2009  | 481   | 7.94  |
| 7/16/2009  | 642   | 18    |
| 8/5/2009   | 558   | 26.8  |
| 8/31/2009  | 349   | 7.17  |
| 8/24/2010  | 622   | 6.07  |
| 8/24/2010  | 499   | 11.15 |
| 8/24/2010  | 598   | 8.48  |
| 8/24/2010  | 579   | 16.4  |

| W25 Low    | THg | MeHg |
|------------|-----|------|
| 8/19/2007  | 752 | 23.3 |
| 7/23/2008  | 646 | 20   |
| 8/5/2008   | 542 | 24.4 |
| 8/18/2008  | 446 | 29.4 |
| 9/4/2008   | 565 | 15   |
| 9/17/2008  | 559 | 13.5 |
| 9/29/2008  | 558 | 19.6 |
| 10/22/2008 | 577 | 13.5 |
| 5/11/2009  | 527 | 16.4 |
| 6/3/2009   | 621 | 12.5 |
| 6/25/2009  | 511 | 11.2 |
| 7/16/2009  | 480 | 7.91 |
| 8/5/2009   | 576 | 17.9 |
| 8/31/2009  | 373 | 9.22 |
| 8/24/2010  | 528 | 8.47 |
| 8/24/2010  | 895 | 13.2 |
| 8/24/2010  | 602 | 13.4 |
| 8/24/2010  | 415 | 10.2 |

| W25 Mudflat | THg    | MeHg |
|-------------|--------|------|
| 8/19/2007   | 491    | 11.3 |
| 7/23/2008   | 489    | 14.4 |
| 8/5/2008    | 528    | 18.4 |
| 8/18/2008   | 598    | 16.7 |
| 9/4/2008    | 770    | 17.4 |
| 9/17/2008   | 586    | 17.9 |
| 9/29/2008   | 604    | 18.5 |
| 10/22/2008  | 630    | 7.38 |
| 5/11/2009   | 518    | 12.4 |
| 6/3/2009    | 398    | 10.4 |
| 6/25/2009   | 305    | 7.4  |
| 7/16/2009   | 506    | 11.3 |
| 8/5/2009    | 859    | 18.3 |
| 8/31/2009   | 609.75 | 15.9 |
| 8/24/2010   | 133    | 1.78 |
| 8/24/2010   | 380    | 7.26 |
| 8/24/2010   | 582.75 | 14.4 |
| 8/24/2010   | 668    | 21.8 |

| W26 High   | THg | MeHg  |
|------------|-----|-------|
| 8/23/2007  | 423 | 1.995 |
| 7/23/2008  | 903 | 25.2  |
| 8/5/2008   | 693 | 35.5  |
| 8/18/2008  | 907 | 62.8  |
| 9/4/2008   | 575 | 26.8  |
| 9/17/2008  | 559 | 17.8  |
| 9/30/2008  | 682 | 24.5  |
| 10/22/2008 | 897 | 31.3  |
| 5/11/2009  | 640 | 53.1  |
| 6/3/2009   | 439 | 24.2  |
| 6/25/2009  | 645 | 34.9  |
| 7/16/2009  | 611 | 37.2  |
| 8/5/2009   | 504 | 16.9  |
| 8/31/2009  | 565 | 44.5  |

| W26 Medium | THg   | MeHg  |
|------------|-------|-------|
| 8/23/2007  | 939   | 16.9  |
| 7/23/2008  | 926   | 16.9  |
| 8/5/2008   | 2020  | 10.27 |
| 8/18/2008  | 998.5 | 16.8  |
| 9/4/2008   | 872.5 | 14.7  |
| 9/17/2008  | 756   | 16.9  |
| 9/30/2008  | 781   | 22.9  |
| 10/22/2008 | 986   | 16.2  |
| 5/11/2009  | 860   | 34.5  |
| 6/3/2009   | 825   | 22    |
| 6/25/2009  | 686   | 26.9  |
| 7/16/2009  | 930   | 33.1  |
| 8/5/2009   | 1140  | 31    |
| 8/31/2009  | 755   | 10.3  |

| W26 Low    | THg  | MeHg |
|------------|------|------|
| 8/23/2007  | 954  | 20.4 |
| 7/23/2008  | 865  | 41.1 |
| 8/5/2008   | 1010 | 32.2 |
| 8/18/2008  | 901  | 38.1 |
| 9/4/2008   | 1030 | 24   |
| 9/17/2008  | 870  | 45.7 |
| 9/30/2008  | 891  | 34.2 |
| 10/22/2008 | 876  | 34.1 |
| 5/11/2009  | 1030 | 45.3 |
| 6/3/2009   | 920  | 37.1 |
| 6/25/2009  | 974  | 38.6 |
| 7/16/2009  | 1100 | 42.7 |
| 8/5/2009   | 986  | 47.9 |
| 8/31/2009  | 939  | 29.1 |

| W26 Mudflat | THg  | MeHg  |
|-------------|------|-------|
| 8/23/2007   | 1390 | 27.5  |
| 7/23/2008   | 1340 | 28.2  |
| 8/5/2008    | 992  | 19.5  |
| 8/18/2008   | 671  | 16.9  |
| 9/4/2008    | 1360 | 26.45 |
| 9/17/2008   | 515  | 9.66  |
| 9/30/2008   | 656  | 10.6  |
| 10/22/2008  | 719  | 15.8  |
| 5/11/2009   | 1190 | 28.1  |
| 6/3/2009    | 1150 | 13.6  |
| 6/25/2009   | 1150 | 31.1  |
| 7/16/2009   | 976  | 27.5  |
| 8/5/2009    | 813  | 23.5  |
| 8/31/2009   | 768  | 21.9  |

## APPENDIX 15-4:

Results of ANOVA statistical analysis of data for total and methyl Hg in surface sediments 2006 – 2010. All analyses test for an effect of year. Level of significance used was p=0.05. Only significant test results shown; all sites not listed were not significant.

| Sites                             | Parameter | Site  | p value | Comment              |
|-----------------------------------|-----------|-------|---------|----------------------|
| E01 transect                      | Total Hg  | All   | n/a     | No sites significant |
|                                   | Methyl Hg | E01-4 | 0.045   | Significant decrease |
| Intertidal                        | Total Hg  | ES13  | 0.009   | Significant increase |
|                                   | Methyl Hg | OV1   | 0.001   | Significant decrease |
|                                   |           | ES04  | 0.003   | Significant decrease |
| Wetlands –<br>high elevation      | Total Hg  | All   | n/a     | No sites significant |
|                                   | Methyl Hg | W25   | 0.001   | Significant increase |
|                                   |           | W26   | 0.003   | Significant increase |
|                                   |           | W63   | 0.04    | Significant decrease |
| Wetlands –<br>medium<br>elevation | Total Hg  | All   | n/a     | No sites significant |
|                                   | Methyl Hg | W21   | 0.038   | Significant decrease |
| Wetlands – low elevation          | Total Hg  | All   | n/a     | No sites significant |
|                                   | Methyl Hg | W25   | 0.011   | Significant decrease |
| Wetlands -<br>mudflats            | Total Hg  | W21   | 0.016   | Significant decrease |
|                                   |           | W25   | 0.044   | Significant decrease |
|                                   | Methyl Hg | W21   | 0.011   | Significant decrease |
|                                   |           | W25   | 0.036   | Significant decrease |