

APPENDIX A STATE AND FEDERAL PERMITS FOR 2021 BLACK DUCK COLLECTION

Effective: 12/23/2020 Expires: 03/31/2023

Issuing Office:

Department of the Interior U.S. FISH AND WILDLIFE SERVICE Migratory Bird Permit Office 1875 Century Boulevard, NE Atlanta, GA 30345 Tel: 404-679-7070 Fax: 404-679-4180

Permittee:

CHIEF, MIGRATORY BIRD PERMIT OFFICE - REGION 5

WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS 1075 BIG SHANTY ROAD NW SUITE 100 KENNESAW, GA 30144 U.S.A.

Name and Title of Principal Officer: MATTHEW C. GROSTICK - OFFICE MANAGER

Authority: Statutes and Regulations: 16 USC 703-712, 16 USC 668(a); 50 CFR Part 13, 50 CFR 21.23, 50 CFR 22.21.

Location where authorized activity may be conducted:

Activities authorized in Condition D may be conducted in Maine. Activities authorized in Condition E and F may be conducted anywhere in the U.S. permittee has appropriate corresponding State authority.

Reporting requirements:

ANNUAL REPORT DUE: 01/31 You must submit an annual report to your Regional Migratory Bird Permit Office each year, even if you had no activity. Form at www.fws.gov/forms/3-202-1.pdf.

Authorizations and Conditions:

- A. General conditions set out in Subpart B of 50 CFR 13, and specific conditions contained in Federal regulations cited above, are hereby made a part of this permit. All activities authorized herein must be carried out in accord with and for the purposes described in the application submitted. Continued validity, or renewal of this permit is subject to complete and timely compliance with all applicable conditions, including the filing of all required information and reports.
- B. The validity of this permit is also conditioned upon strict observance of all applicable foreign, state, local tribal, or other federal law.
- C. Valid for use by permittee named above.
- D. You are authorized to take, transport, and possess the following migratory birds for scientific purposes:

Species	Trap and Release	Collection Period	State
American Black Duck	45	Annually	ME

E. You are authorized to salvage dead migratory birds (except species listed as threatened or endangered under the Endangered Species Act). Any dead bald eagle or golden eagle salvaged must be reported within 48 hours to the National Eagle Repository at (303) 287-2110 and to the migratory bird permit issuing office at 413-253-8643 or fax 413-253-8424. The Repository will provide directions for shipment of these specimens.

For a list of threatened and endangered species in your state, visit the U.S. Fish and Wildlife Service's Threatened and Endangered Species System (TESS) at: <u>http://www.fws.gov/endangered/</u>.

F. You are authorized to salvage abandoned (unoccupied) migratory bird nests and nonviable eggs outside the nesting season, except for nests and eggs of bald eagles or golden eagles, or species listed as threatened or endangered under the Endangered Species Act.

G. You may not salvage and must immediately report to the USFWS Office of Law Enforcement any dead or injured migratory birds that you encounter that appear to have been poisoned, shot, electrocuted, have collided with industrial power generation equipment, or were otherwise killed or injured as the result of potential criminal activity. See FWS OLE contact information below.

- H. Any person who is
 - (1) employed by or under contract to you for the activities specified in this permit, or
 - (2) otherwise designated a subpermittee by you in writing, may exercise the authority of this permit.

I. You and any subpermittees must comply with the attached Standard Conditions for Federal Migratory Bird Scientific Collecting Permits. These standard conditions are a continuation of your permit conditions and must remain with your permit.

For suspected illegal activity, immediately contact USFWS Office of Law Enforcement at: East Orland, ME 207-469-6642

1									
STATE OF MAI	NE		P	age 1 c	of 1				
DEPARTMENT OF INLAND FISHE	RIES AND WI	LDLIFE							
BULLAUNE Wildlife Division									
650 State Stree									
Bangor, Maine 044	Bangor, Maine 04401								
Phone (207) 941-4466 Fax (2	Phone (207) 941-4466 Fax (207) 941-4450								
WILDLIFE SCIENTIFIC COLI	LECTION PE	RMIT		2020) - 605				
ISSUED TO: Wood Environment & Infrastructure Solutions			DATES	S:					
1075 Big Shanty Road NW		EFFECTI	VE E	XPIR/	ATION				
Kennesaw, GA 30144		12/1/202	20 3/	31/202	21				
NAME AND PHONE NUMBER(S) OF PRINCIPAL OFFICER	THIS PERMIT								
Dr. Louise S. Venne (770) 421-3400		Rending							
Senior Toxicologist		langered or	Threater	ned Sp	ecies				
LOCATION WHERE ALTHORIZED ACTIVITY MAY BE CONDUCT			REGIO	N(S)					
Along the Penobscot River and Frenchmen's Bay (Penobscot, Hancock, and V	Valdo counties)			N(0).	V C				
				LΕ	⊻ F				
			G						
CONDITIONS OF PERMIT:									
THIS PERMIT DOES NOT COVER SCIENTIFIC COLLECTION OF ANY FIS	H SPECIES.								
Inland Fish: A separate permit for inland fish scientific collections can be for http://www.maine.gov/ifw/pdf/scientificcollectorspermit06.pdf a	ound at and faxed to the Fisher	ies Division at (207) 287-	6395° o	r				
for more information, contact the Fisheries Division at (207) 28	37-5261.		201) 201	0000, 0					
Atlantic Salmon: If you are working on a watershed where Atlantic salmon	are listed as Endange	red or Threater	ned, you n	nay need	d				
Wildlife Service at (207) 827-5938.	e risilenes Service at	(207) 000-7322	2, 01 0. 3.	FISH an	a				
Permittee shall comply with all applicable State and Federal law	ws, rules and regu	lations. Per	mittee is	s not					
authorized to take Federal trust species without the appropriate	e Federal permit. I	Permittee ma	ay not ta	ake					
species listed by the State of Maine as state endangered of the (http://www.maine.gov/ifw/wildlife/species/endangered_species/	reatened s/state_list.htm) or	species list	e'' es he	necial					
concern" (http://www.maine.gov/ifw/wildlife/species/endangere	d_species/special	concern.htm) unless	S					
specifically permitted below.	<u>ت</u>								
- Authorized to assist Kelsey Sullivan (MDIFW Biologist) in trap	png black ducks	and permitte	d to take	e blood	ł				
samples.									
- Authorized to collect tissue samples from hunter-killed Americ	can black ducks y	when availah	le						
		internationale							
SUDPERIVITIEE(S) UNDER THIS PERIVITI									
Matthew C. Basler, Karen A. Merritt									
REPORTING REQUIREMENTS:									
Annually by January 31 on forms provided by the Commissione	r.								
SIGNATURE OF AUTHORIZED AGENCY REPRESENTATIVE	NAME AND TH	LE:	DAT	E:					
	Dr. Craig Mo	Laughlin		710 100	120				
SICINGT	Wildlife Researc	h Superviso	r '	1/24/20	020				
			0						

APPENDIX B FIELD DATA RECORDS (FDRS)

APPENDIX B-1 SEDIMENT SAMPLE FDRS

wood. Penobscot Ri	ver Mercur SF	y Study - F	hase III En ORE LOG	gineering Eva	luation	
Owner: TOM Gernard Sub: N/A	Date: 1-2-5	Project No.: 7 WO:	3217257 Time:	486.04 <u>Logg</u> 155000 <u>Crew</u>	er: SC V: т.G., S	SL
Coordinates: Lat	•	Long		Plan	Volume: (c	" 0.14 gal
Sampling Station: 11M-BKD¢	1-012521	-SED	Deploy No		Sub-tidal Lo	ocation? (2)
Weather: Clour, 20° Winds: N	one	Waters:		Traffic: N/A	Wate	er Temp:
Measured Water Depth [NAVD88]:	NIA	3	Core I	Penetration Lengt	h (ft.): 🔿	.91
Correction to NAVD88 (+/- ft. from NAVD88):	4		Recov	ered Core Lengt	h (ft): ()	79
Mudline (Corrected Depth) @ NAVD88:			Sampl	e Length Retained	d (ft.): D	.50'
Study Depth (-NAVD88):			Acceptabl	e Core (80% reco	very): 8	8%
Required Penetration Length:			Core	/olume Retained	(g a l.):).14
All	Length Me	asurement	s are in De	cimal Feet		
Sample Interval (ft.)	Samp	le ld #	ter doubt to also donatas	Descrip	tion	
0.0-0.1	NA		Not colle	oted		
0.1-0.3'	mmBLD- -SED-QL-	01-012521 03-DUP	Satura grey c' and str	ited to lay with ong orga	wet n tra nic-li	Clark Le organ Ke odar
NA			st	-25-208	LI	
Bottom						
Number of containers:	0	2	A	Co	ore Volume	S
Type of container: bucket	liner bag	jar	other	Nominal core-ba	rrel EST	. Volume
Liner Type: Altar	Vibracorer:	AND	Slambar	4.0"	.50g	al/ft
Live Organisms present Oil-Like Present Odor Present Vorganit Debris Present Vorganit Photo Numbers	None		Con	nments	1.009	

wood. Penobscot F	River Mercury Study - F SEDIMENT C	Phase III En	gineering	j Evaluat	ion
Owner: 10M GERHARD	Project No.: 3	1017207486	.04	Logger:ろ	C
Sub: N/A	WO: NA			Crew: TG	150
,	Date: 1-25-21	Time :	1515	Vessel: A	JA
Coordinates: Lat	Long	140, 235 - 10 e Tain 875	1010	Plan Volur	ne: 6", 0.14 Sal
Sampling Station: MM BKD -0	-012521_SED	Deploy No.	1	Sub-ti	idal Location? NO
Weather: CUEAR, 20* Winds: N	UNE Waters:		Traffic: N	JA	Water Temp: NC
Measured Water Depth [NAVD88	: NIA	Core F	Penetration I	Length (ft.):	0.9
Correction to NAVD88 (+/- ft. from NAVD88	n 11	Recov	ered Core I	Length (ft.):	0.78'
Mudline (Corrected Depth) @ NAVD88	: 11	Sample	e Length Re	tained (ft.):	0.5'
Study Depth (-NAVD88	:	Acceptable	e Core (80%	recovery):	0.87
Required Penetration Length	: (Core V	/olume Reta	ained (gal.):	0.14
A	Length Measurement	s are in De	cimal Fee	s dan isasa mening dalama. T	n an an air ann an ann an ann an ann an ann an ann an a
Sample Interval (ft.)	Sample Id #	S are in De	De	escription	
Top 0.0-0.1	MMBKD-01_012521_	Satir	2400	DACK	- Gopin -
	SED_00-01 @1525	Clay	with	Same	ardania
0.1-0.31	mmBKD-01-012521	Very	wet	- Dar	Kand
	-SED=01-03	medin	∞ \bigcirc	PUN	CILL IDILL
		race a	organ	ice	0203 00.71
			0		
0.3-0.5'	mmBKD-01_012521 -SED-03-05	MDÍST	dar	Kgrei	yand clay
		JND 103	<u>u gur</u>	IL UL	
Bottom		Ç	ic 1-29	5-202	21
Number of containers:	\circ 10	()		Core Vo	olumes
Type of container: bucket	liner bag jar	other	Nominal co	re-barrel	EST Volume
Liner Type: ACOLUC	Vibracorer:		4.0"		.50gal/ft
AUGUAE	Push Corer Acetate	Slambar	3.5"	s	.33gal/ft
Live Organisms present Oil-Like Present Odor Present V cragnic Debris Present Organics	None	Com	ments		
Photo Numbers			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

wood. Penobscot R	iver Mercury Study - P	Phase III Eng	ineering E	Evaluatio	on
Owner: TOM GERHARD Sub: N/A	Project No.: 3 WO: Date: 01/26/20	7617207481 Time :	6.04 <u>∟</u> 1445 v	ogger: T. Crew: 72, Vessel: 人	LV 1/A
Coordinates: Lat	Long		P	lan Volum	ne: 6", 0.14 Sat
Sampling Station: FRB-Ø2	Balanta - Anno Canada a na antin' andra andra ang ang ang	Deploy No.	1	Sub-tic	dal Location? NO
Weather: 20 ³ , CLEAR Winds:	Waters: CIA	LM	Traffic: NA	•	Water Temp: N/A
Measured Water Depth [NAVD88]:	N/A (INT)	Core P	enetration Le	ength (ft.):	0.6
Correction to NAVD88 (+/- ft. from NAVD88);	N/A	Recove	ered Core Le	ength (ft.):	0.6'
Mudline (Corrected Depth) @ NAVD88:	NA	Sample	Length Reta	ained (ft.):	0.51
Study Depth (-NAVD88):	NA	Acceptable	Core (80% r	ecovery):	100% REC
Required Penetration Length:	0.5'	Core V	olume Retair	ned (gal.):	0.14
All	Length Measurement	s are in Dec	imal Feet		
Sample Interval (ft.)	Sample Id #		Des	cription	
Top 0.0 - 0.1	FRB-02-012621_ SED-00-01 @ 1500	DARK CARY -	ANCS (GLA	CLAY LASTIC	S) SOME FINE S) PRESENT. ND NT M.
0.1-0.3	FRB-Ø2_012621_ SED_01-03 @ 1515	DARK GRA FINE ORGANIC O	Y TO BRO MCS (HAIR DUR, MOIN	WY CLA LIKE R ST. NO	4 w/ 5107. atts) fazont. (CASTICITY
0,3-0.5	FR3-Ø2_012621_ SES_03-05 (21530	PARK CRA BRESENT. 1 PLASTICITY	y to BLO huit oRG, , Som Ma The	WW CLI AVIC OD ANT	At. ROUTS
Bottom					16
Number of containers: ()	Dila	()		Core Vo	olumes
Type of container: bucket	liner bag iar	other	Nominal cord	e-barrel	EST. Volume
iner Type: ACETATE	Vibracorer:		4.0"		.50gal/ft
MOC ITIL C	Push Corer HAND	Slambar	3.5"		I.33gal/ft
Live Organisms present NO Oil-Like Present Odor Present ORLANIC Debris Present ROTS Photo Numbers	INCREASING ORG DECREASING ROO DEPTH. No NOOD PULP	Com ANIC GDS T CONTER CHAPS PRE	ments re w/ D ur AND ser7.	=P7H MO1571	ure wi

	SEDIMENT C	ORE LOG		
Owner: JOM GERHARD	Project No.:	3617207486	DY Logger:	T. GERHARD
SUD: N(H	WO:		Crew:	TGLV
	Date: 1 26 2021	Time :) 8	B30 Vessel:	NA
Coordinates: Lat	Long		Plan Vo	lume: 6" OILSal
Sampling Station: ES-13		Deploy No.	1 Su	p-tidal Location? NO
Weather: OVRCAST, 31° Winds: C	MM Waters: OK	M T	raffic: NIA	Water Temp: MIA
Measured Water Depth [NAVD88]:	N/A (INT)	Core Per	netration Length (f	0.751
Correction to NAVD88 (+/- ft. from	NIA		ionation Length (i	<u>(,)</u>
Mudline (Corrected Depth) @ NAV/D89		Recover	ed Core Length (f	t.): 0.00
Study Depth (NAVD88)		Sample L	ength Retained (f	
Required Penetration Length	1051	Acceptable C	Core (80% recover	<u>y): 4[70</u>
	0.3	Core Vol	ume Retained (ga	
All	Length Measuremen	ts are in Deci	mal Feet	A DAMPINGRAM STATE OF A STATE OF A DAMPING
Top	Sample Id #	ROMD) TO	Description	ANT IN LEADER
0.0-0.	ES-13_012421_SED_	FINE SAN	STER BEULO	Su w/some
	00-01 C 1845	TRACE DEGI	WICS (ROUTS). NO I LASTICITY
01.02	ES-13_012621 SED	BROWN TO	DARK BROLD	SILT AND FINE
0.1-0.3		SAND. TRACE	GRAVEL (0.5-1"	I AND ORGANICS
	01-03 @ 1855		, 1001.	1
0.3-0.5	ES-13_012621_SED	DARK BRO	TWN FINE 5	AND w/ some
	03-05 @ 1905	No ODOR, O	icontrics	KE NO ZLASTICIT
				,
	19 ₅ ,			
•	x			
Bottom	NY ARABA DISINA KAOMININA MPININA MPINI	n an		- 19
Number of containers:	0 6		Core	Volumes
Type of container: bucket	liner bag jar	other di	ameter	EST. Volume
Liner Type: AUT TATE	Vibracorer: (HA	NO PUSH)	4.0"	.50gal/ft
// ee nije	Push Corer	Stambar	3.5"	.33gal/ft
Live Organisms present	No.VE	Comm	ents	
Odor Present NAUE	Nene			9
Debris Present Routs Routs				
Photo Numbers				

APPENDIX B-2 CO-LOCATED SEDIMENT PHOTOGRAPHIC LOG

PHOTO 1:

Location: Penobscot River

Date: 1/25/2021

Sample collection time: 1525

Description: Intertidal sediment collected at MMBKD-01, depth 0-0.1 ft.

PHOTO 2:

Location: Penobscot River

Date: 1/25/2021

Sample collection time: 1535

Description: Intertidal sediment collected at MMBKD-01, depth 0.1-0.3 ft.

PHOTO 3:

Location: Penobscot River

Date: 1/25/2021

Sample collection time: 1540

Description: Intertidal sediment collected at MMBKD-01, depth 0.3-0.5 ft.

PHOTO 4:

Location: Penobscot River

Date: 1/25/2021

Sample collection time: 1555

Description: Intertidal sediment collected at MMBKD-01, depth 0.1-0.3 ft, duplicate sample.

PHOTO 5:

Location: Penobscot River

Date: 1/26/2021

Sample collection time: 1500

Description: Intertidal sediment collected at FRB-02, depth 0-0.1 ft.

PHOTO 6:

Location: Penobscot River

Date: 1/26/2021

Sample collection time: 1515

Description: Intertidal sediment collected at FRB-02, depth 0.1-0.3 ft.

PHOTO 7:

Location: Penobscot River

Date: 1/26/2021

Sample collection time: 1530

Description: Intertidal sediment collected at FRB-02, depth 0.3-0.5 ft.

PHOTO 8:

Location: Penobscot River

Date: 1/26/2021

Sample collection time: 1845

Description: Intertidal sediment collected at ES-13, depth 0-0.1 ft.

PHOTO 9:

Location: Penobscot River

Date: 1/26/2021

Sample collection time: 1855

Description: Intertidal sediment collected at ES-13, depth 0.1-0.3 ft.

PHOTO 10:

Location: Penobscot River

Date: 1/26/2021

Sample collection time: 1905

Description: Intertidal sediment collected at ES-13, depth 0.3-0.5 ft.

APPENDIX B-3 BLACK DUCK FDRS

Project Name: Date: 1/25 Collectors:6 Media:	USDC Penobscot River		SAMPLE COLLECTION LOG AMERICAN BLACK DUCK BLOOD									
Date: 125 Collectors: TRG Media:	-12021		Project Number: 3617207486 3617207486.04.****									
Collectors: TNG Media:	ILULI		Location ID: MMBKD									
Media:	LV, SC		Collection Meth	nod (Equip):	ROCKE	TNE	7					
	Blood (BL)			Weather:	~150	=, L1(g)	TWIND	NNN.				
				Lat/Long:	Latitude:			Longitude:				
S	ample ID	Time	Band Number	Weight (grams)	Sex	Age	Capillary Tubes	Notes				
1MBKID-01 -0	12521-ABD-01-BL	0951	224788514	1280	Fmm	ASY	Ц					
MBKD-01-0	12521_ABD_02.RL	1008	224782519	1230	m	54	7					
MIBKD- OL - OL	2521- ABD- 03- BL	1030	224788512	, 1400	m	54	5	BAND 512 TNG				
MMBKD- 01_01	2521. ABD-04-BL-	1040	224788526	1250	M	ASY	2	BAND. 526 TNG				
MMBKD-01 01	2521_ABD-05_BL	1051	224788522	1150	F	54	4					
IMBKD-01 0	12521-ABD-06-RL	1107	224788511	1430	M	ASY	5					
MMBKD- 01-01	12521-ABD-07-BL	1120	224788515	1120	F	54	8	MS/MSD				
MMBKD- 01_01	2521-ABD-02BL	1130	224788517	1310	m	54	H					
MBKD-01-0	12521-ABD-09-BL	1138	224788509	1270	M	SY	4					
MMBKD-01_01	2521_ABD-10-BL	1145	224786518	1070	F	SY	4					
MMBKD-01_0	12521-ABD-11-BL	1154	224738516	1290	m	ASY	6					
MBKD-01-0	12521-ABD-12-BL	1204	2241788523	1010	F	SY	6					
1MBKD= 01-01	2521_ABD-13-BL	1217	224788524	1150	F	SY	5					
1MBKD-01_01	2521-ABD-14-BL	1228	224738513	1440	M	SY	4					
nmbkd-01_01	2521-ABD-15-BL	233	224788570	1270	F	ASY	4					
a quested Analyses n alytes: otal Hg	Methods: 1631e			Container : 70 uL Capill	ary Tubes			Preservative Frozen				
dditional Questions: eservative at Collection: C Collected:	Wet Ice Dry Ice F	REFER) MS/MSD Source:	MMBK	(D-01.	0125	21_A	BD_07-BL				
otes: Juck sampling was conduc	ted according to the following SOPs	included	in the QAPP: SOP S-	-10 Americar	n Black Duo	k Samplin	g					
Technician name (Print	TOM (DERHARN			QA/QC by:			-					
Technician Signatur	e: AXA		-	Date				.				

wood.	SAMPLE COLLECTION LOG AMERICAN BLACK DUCK BLOOD									
Project Name: USDC Penobscot River Date: 126/2021 Collectors: TKG, LV		361720742 3617207486.04.**** FRB-01								
Media: Blood (BL)	_		Weather: Lat/Long:	CLE/ Latitude:	tR,	250=	Longitude:			
Sample ID	Time	Band Number	Weight (grams)	Sex	Age	Capillary Tubes	Notes			
RE-01-012621-ABD-01-BL	1045	191729430	1490	M	ASY	05	MS/MSD			
					-					
					· .					
equested Analyses										
nalytes: Methods: otal Hg 1631e			Container: 70 uL Capil	lary Tubes			Preservative Frozen			
dditional Questions: reservative at Collection: Wet Ice Dry Ice IC Collected: MS/MSD None	REEZE	MS/MSD Source	FRB-4	12-012	621-1	4BD-0	LBL			
Notes: Duck sampling was conducted according to the following SO	Ps included	in the QAPP: SOP S	5-10 America QA/QC by	n Black Du	ck Sampli	ng				
Technician Signature:		-	Date	:			-			

Project Name:	USDC Penobscot River	_	Proje	ect Number:			-	3617207486.04.****
Date:	1 [27]2)	_		Location ID:	FRB	- Ø2	×	
Collectors: 6	, LV		Collection Met	hod (Equip):	WIR	ETRI	AP	
Media:	Blood (BL)	_		Weather:	OVER	CHIST	~32°	F
				Lat/Long:	Latitude:		/	Longitude:
	Sample ID	Time	Band Number	Weight (grams)	Sex	Age	Capillary Tubes	Notes
-RB-Ø2-Ø127	21_ABD-03_ BL	1220	224788529	1160	F	54	4	
KB-02-012	721-ABD-\$4-BL	1240	224788530	1270	M	54	5	
RB-02-012	721-ARD-45-RI	1255	22478253)	1020	- <u></u>	54	7	
	10-1130-10 150	1055		1020		/	- 2	
					2			
						1		
		·			8. 16. juli			
		-				0	2	
						\sim		
			in .					
						-		
			-41					
quested Analyses								1
alytes:	Methods:			Container:				Preservative
al Hg	1631e			70 uL Capilla	ry Tubes			Frozen
sequetive at Collection	Wat los Daulas E	ATTOTO						
Collected.	MS/MSD_None	AUCEN	MS/MSD Source:	SEF. all:	26/21	FDR		
			May Wisd Source.	Jee on the	-1-1	120		
k sampling was cond	ucted according to the following SOP	s included i	n the QAPP: SOP S-	10 American	Black Duc	k Samplir	ng	
Technician name (Pri	INT TOM DER HARN						-	
The second second second								

SAMPLE COLLECTION LOG AMERICAN BLACK DUCK BLOOD								
Project Name: USDC P	enobscot River	Project Number:						3617207486.04.****
Date: 30 2021		_		Location ID:	ES-	3 (1	ERON	HA ISLAND)
Collectors: TNG, LV		_	Collection Meth	nod (Equip):	WIRI	ETR	AP	
Media: B	lood (BL)	_		Weather:	CLEP	+R, 1	5°F.	
				Lat/Long:	Latitude:		2	Longitude:
Sample ID)	Time	Band Number	Weight (grams)	Sex	Age	Capillary Tubes	Notes
ES-13_013021_AB	D-OI-BL	1634	224788533	1050	F	54	3	
ES-13-013021- AB	D-02-BL	1645	224788538	1300	M	AST	-3	RECAP,043 # 187-
B-13-013021-AB	0-03-BL	1654	224788539	1370	m	ASY	4	RECAP and # 1827-87007
ES-13-013021_AB	D-04-BL	1704	224788543	1440	M	ASY	ů.	
FS-13-1013021_AB	D_105-BL	1714	224788547	1480	m	ASÝ	5	
ES-13-Ø13021-AB	D-06-BL	1722	224788537	1250	M	54	5	
ES-13-013021_4B	D- 07-BL	1729	224788540	1300	m	ASY	3	
ES-13_013021-AB	D-08-RL	1740	224788535	1230	m	54	U U	
ES-13-013021-AT	30-09-BL	1752	224789548	1140	m	SV	-T	
ES-13_013021-A	BD-10-BL	1758	224783544	1250	m	ASV	K	
ES-13-013021-AI	30-11-BL	1206	224788534	1420	m	$\sqrt{\sqrt{2}}$	Ц –	
ES-13_013021-AC	3D-12-BL	1816	274788542	1250	\hat{n}	1 N <v< td=""><td>1</td><td></td></v<>	1	
ES-13-013021_AR	10-13-RI	1925	224788549	1150	E	54	Ц	
ES-13_013021-A	BD-14 RI	1826	224782545	1200	m	54	6	MELMEN
FS-13_013021-AR	D-15-BI	1845	724788546	1070	F	<	~2	113/11313
EB_CAPILLARY- (4)3	ØZI-ABD-QC	1850		1010		J /	~	FOURMENT RIADY
		1050						LOUITIENT BLANK
Requested Analyses Analytes:	Methods:			Container:				Proconctive
Total Hg	1631e	-		70 uL Capilla	ry Tubes			Frozen
Additional Questions:								
Collected:	MS/MSD None	LEER	MS/MSD Sources	ES-12	ØIZd	21_A	RN ILL	R)
Hotes: Duck sampling was conducted accord	ding to the following SOPs	included i	n the QAPP: SOP S-1	LO American	Black Duc	k Samplin	, 71-17	
Technician name (Print):	MGERHARD			QA/QC by:		. sampini	5	
	XI			Date:				

L

APPENDIX B-4 BLACK DUCK PHOTOGRAPHIC LOG

PHOTO 1:

Location:

FRB-02 (Frenchman Bay – Jordan River)

Description:

Wire duck trap setup in progress.

PHOTO 2:

Location:

FRB-02 (Frenchman Bay – Jordan River)

Description:

Wire duck trap setup in progress, with corn bait.

PHOTO 3:

Location:

Frenchman Bay -Skilling

Description:

Wire duck trap setup complete.

PHOTO 4: Location: ES-13 Description: Rocket net blind.

PHOTO 5:

Location:

ES-13

Description:

Baited and set wire duck trap.

PHOTO 6:

Location:

ES-13

Description:

Wire trap with captured ducks.

PHOTO 7:

Location:

MMBKD-01

Description:

Maine DIFW biologist and Wood scientists aging a mallard via wear patterns on the primary coverts.

PHOTO 8:

Location:

Field Office

Description:

American black duck wing during aging, duck collected at MMBKD-01.

PHOTO 9:

Location:

MMBKD-01

Description:

Wood scientist banding a drake mallard, supervised by Maine DIFW biologist.

PHOTO 10:

Location:

FRB-02

Description:

Wood scientist banding a mallard.
Black Duck Photographic Log 2021 Black Duck Monitoring Report Penobscot River, Maine Photographs Taken 1/23/2021-1/30/2021 Wood (PLC) Project No. 3617207486

PHOTO 11:

Location:

Field office

Description:

Wood scientist collecting a blood sample from an American black duck, collected at MMBKD-01. Black Duck Photographic Log 2021 Black Duck Monitoring Report Penobscot River, Maine Photographs Taken 1/23/2021-1/30/2021 Wood (PLC) Project No. 3617207486

PHOTO 12:

Location:

Field office

Description:

Wood scientist collecting a blood sample from an American black duck, collected at MMBKD-01. Black Duck Photographic Log 2021 Black Duck Monitoring Report Penobscot River, Maine Photographs Taken 1/23/2021-1/30/2021 Wood (PLC) Project No. 3617207486

PHOTO 13:

Location:

Field office

Description:

Banded and processed black ducks from ES-13 awaiting release.

APPENDIX C STANDARD OPERATING PROCEDURES

SOP S-6: Sediment Collection

SOP S-7: Procedure for Descriptions and Identification of Soils

SOP S-7A: Procedure for Physical Description and Identification of Penobscot Sediment Characteristics

SOP S-10: Duck Collection and Sampling of Breast Muscle Tissue and Blood

SOP S-17: Decontamination Procedures

SOP S-19: Sample Chain of Custody Procedures

SOP S-20: Sample Packaging and Shipment

SOP S-23: Sediment Processing – Extrusion & Sampling

SOP No. S-6

WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS, INC. STANDARD OPERATING PROCEDURE

SEDIMENT COLLECTION

DEFINITIONS

FDR	Field Daily Record
FOL	Field Operation Lead
FSP	Field Sampling Plan
HASP	Health and Safety Plan
PM	Project Manager
PPE	Personal Protective Equipment
QAPP	Quality Assurance Project Plan
SOP	Standard Operating Procedure
Wood	Wood Environment & Infrastructure Solutions, Inc. (formerly Amec Foster Wheeler)

TERMINOLOGY

- Sampling Station or Location
- Sediment Collection retrieval of bulk sediment
- Sediment Sample aliquot of the bulk sediment to be subjected to laboratory analyses
- Deployment individual use of sampling device to recover sediment
- Penetration depth of the sampling device beneath the mudline
- Recovered Sediment sediment removed and contained within sampling device
- Percent Recovery amount of recovered sediment divided by penetration or capacity of sampling device
- Interval a measured amount or increment, often measured where zero is surface of recovered sediment within the sampling device
- Strata a layer of physically-similar material such as a 3-inch gravel layer or 2-foot sand layer
- Homogenization blending of the recovered sediment often performed by designated interval
- Composing combining homogenized recovered sediment often performed to add like strata or like intervals from multiple deployments (or across multiple stations) to achieve laboratory-required sample volume or mass

SEDIMENT COLLECTION

PURPOSE

The purpose of this SOP is to provide a standardized method for collecting polluted or contaminated sediment samples. This SOP may be used by employees of Wood, or its subcontractors supporting the Penobscot River Estuary Project. Deviations from the procedures outlined in this document are to be approved by the Project Manager (PM), Technical Lead (TL), or Field Operation Leader (FOL) prior to initiation of the sampling activity.

This SOP is applicable to the collection of representative sediment samples. Analysis of sediment may be biological, chemical, or physical in nature and may be used to determine the following:

- toxicity
- biological availability and effects of contaminants
- benthic biota
- extent and magnitude of contamination
- contaminant migration pathway and potential source
- fate of contaminants
- physical characteristics

The methodologies discussed in this SOP are applicable to the sampling of sediment in flowing waters, tidal flats, or vegetated marshes/wetlands.

This SOP is intended to provide general procedure and guidance for the operation of multiple types of sediment sampling equipment. On-water and nearshore operations are heavily dependent on a number of factors and conditions that may change during the period of work performance. If conditions change in the field that would require changing the proposed sampling method or location, field personnel shall contact the FOL, TL, or PM before making field changes.

RESPONSIBILITIES

Project Manager – responsible for work execution in accordance with scope of work, budget, and corporate policies and procedures.

Technical Lead – designated personnel with the requisite knowledge, skills, and abilities to develop scope, provide instruction, and resolve field conditions encountered to achieve the task objectives.

Field Operation Leader - may be a Wood employee or contractor who is responsible for overseeing the sediment sampling activities. The FOL is also responsible for checking work performed and verifying that the work satisfies the specific tasks outlined by this SOP and the Field Sampling Plan (FSP). It is the responsibility of the FOL to communicate with the field

personnel regarding specific collection objectives and anticipated situations that require deviation from the FSP. It is also the responsibility of the FOL to communicate the need for any deviations from the Field Sampling Plan with the appropriate personnel (Project Manager or Technical Leader).

Field Crew Member / Field Personnel - performing sediment sampling are responsible for adhering to the applicable tasks outlined in this procedure while collecting samples.

EQUIPMENT

The following list of equipment shall be maintained by the field personnel and equipped on the vessel or in the field while performing sampling. This list <u>does not include</u> the sampling device and the parts of the device. See following sections on the specific equipment needs for each sampling device.

- <u>Aluminum foil</u> cover decontaminated equipment or used to lay sampling equipment or sample upon as a clean surface (as a separation barrier)
- <u>Brush</u> for clearing debris and contamination from sampling equipment prior to decontamination. Also, for scrubbing sampling equipment in decontamination detergent prior to rinse.
- <u>Bucket</u> 2 or 5-gallon bucket, minimum of two, one for mixing decontamination detergent, one for rinse water for equipment decontamination.
- <u>Camera device</u> for photographic documentation of each core or grab collected. Device should be a standalone camera, not a tablet, phone or other device.
- <u>Collection containers</u> glass or plastic jars or bottles, commonly supplied by the analytical laboratory, with lined lids.
- <u>Clear Packing Tape</u> for placing over the sample label on sampling containers once the label has been completed filled out. This will prevent label degradation from field conditions.
- <u>Decontamination Detergent</u> Alconox or equivalent detergent to perform equipment decontamination.
- <u>FDR</u> Enough copies of the FDR paperwork to fill out in the field at each sampling location that is planned to be visited during the workday. Ensure enough copies are provided each day in case multiple are needed at a given sampling location.
- Field Clothing and Personal Protective Equipment (PPE) as specified in the HASP.
- <u>Field notebook</u> a bound book used to record progress of sampling effort and record any problems and field observations during sampling. Alternatively, an electronic tablet device with pre-loaded forms for electronic data entry may be used.
- <u>Gloves</u> for personal protection and to prevent cross-contamination of samples. May be nitrile or latex, disposable, powderless.
- <u>GPS Device</u> for recording coordinates of each deployment at a sampling location and to provide navigation to the proposed station.

- <u>Tablet</u> to store necessary forms used to record and track samples collected at the site. iPads, or equivalent, will contain the necessary field forms and maps for field personnel reference.
- <u>Lead line</u> measuring tape with a weighted end to measure water depth at sampling location.
- Marker flags Used for identifying sediment sampling locations.
- <u>Permanent marking pen</u> used to mark sample jars/lids, coring tubes, and for documentation of field logbooks and data sheets.
- Ruler wooden preferred
- <u>Sample Labels</u> –sample labels to affix to collection containers for each sampling location to be visited during the workday, as appropriate pre-printed.
- <u>Stainless steel lab spoon</u> or equivalent. Used for homogenizing sediment samples.
- <u>Stainless steel bowls or bucket</u> used for compositing samples; sized appropriate for sample volume capacity.
- <u>Stainless steel or equivalent tray –</u> upon which sampling devices will be placed providing a decontaminated surface for the equipment (e.g., ponar dredge).
- <u>Trash bags</u> used to dispose of gloves and any other non-hazardous waste generated during sampling.
- <u>White Board</u> used for documentation project name, project number, sampling station, core ID, date and time sampled while photo documenting sampling efforts. Place behind or under a core when taking photograph.

METHOD SUMMARY

Sediments can be collected with numerous sampling devices.

- For recovering sub-aqueous surface sediment from the 0 6-inch depth interval, collection can be performed with a grab sampler such as a Ponar dredge The Ponar dredge requires sufficient water depth is available to allow sufficient gravitational force during descent for the Ponar dredge to engage (or "dig in to") surface sediments and to trigger its pressure-activated closure springs. If used in shallow depths, or does not adequately engage, the Ponar dredge may not trigger as intended or adequately engage, resulting in no recovery of sediment, leading to multiple deployments.
- For recovering sediment deeper than 6 inches, a coring device is commonly required. Coring devices can consist of gravity core, vibracore, box core, push core or hammer core.
- For sediment samples in shallow water (less than 1 foot), submerged, mud flat or marsh/wetland areas collection can be performed using push core, hammer core, shovel, hand auger or split spoon sampler.

Procedures on how to operate each type of coring device are detailed in the following sections.

SAMPLE COLLECTION PROCEDURE BY METHOD

Before sampling with any of the below sampling devices, the following procedures shall be performed:

- Sampling equipment shall be decontaminated prior to deployment. If the sampling station is the first to be visited that day, decontamination of equipment shall be performed before deployment. At the completion of sample collection at a given station, the equipment shall be decontaminated prior to moving to the next sampling location so as to not track contaminated materials or equipment to the next location. Decontamination shall be performed in accordance with SOP S-17.
- 2. An individual FDR will be completed for each deployment with deployments sequentially identified with an Alpha designation added to the Station ID. On each individual FDR, the station and deployment information will be fully completed including indicating not pertinent information rather than blank cells (if left blank, mark through cell to indicate not applicable). The FDR serves to record station information, conditions, deployment sequence, work conditions and crew, collection details, recovered sediment characteristics, and incremental sample identification and handling.
- 3. For each deployment, individual date, time, weather and water conditions, GPS coordinates, and crew roles will be recorded on the FDR.
- 4. When handling the recovered sediment and its incremental samples, a new pair of nitrile gloves shall be donned.

Grab Sample with Ponar Dredge

The Ponar dredge is a commonly used grab sampler When the scoop strikes the bottom, its tapered cutting edges penetrate beneath the mudline with minimal disturbance. Removable screens on top of each scoop allow water to flow through as it descends and minimize wash out upon retrieval. Often a winch is used for deployment and recovery due to the device's working weight especially when fully loaded.

Prior to leaving the field station, ensure all required parts of the Ponar dredge are properly functioning and the equipment is ready for deployment per the following:

- 1. Ensure that a sturdy nylon rope is securely fastened to the shackle at the top of the Ponar dredge. If needed, secure the knot in the line using cable ties to ensure the knot cannot work its way loose, causing it to come untied from the equipment during deployment. This can prevent equipment loss during sampling.
- Inspect the nylon rope for any wear. If excessive where is noted, replace rope, or cut and splice together. Use cable ties at the splice to ensure knot will not loosen during deployment.
- 3. Ensure the Ponar dredge has at a minimum two screens free of damage. Damage that would require replacement may include screen broken from the frame or rips/tears in the screen covers. Carry extra screens with the equipment in the field in case screens are lost during deployment.
- 4. Ensure the spring-loaded trigger pin attached to the Ponar dredge is functioning by depressing the spring. Inspect the spring for signs of rust and significant wear that may lead to functionality issues while in the field.
- 5. Inspect all screws on the jaw and on the weight blocks and ensure they are securely fastened.
- 6. Safety check the functionality of the Ponar dredge by opening the jaws, placing the trigger pin in place and gently placing the dredge back on the ground. If the pin does not trigger, pull the pin out and then lift the ponar, closing the jaws. Ensure the jaws close completely.
- 7. For sampling stations where collection is for purposes of monitoring (station is re-visited from past campaigns) FOL will review the available logs and records of previous sampling campaigns and provide station-specific expectations to the field personnel.

The following steps shall be followed when deploying the Ponar dredge for collecting a sediment sample:

1. Ensure the deployment line is securely fastened on the Ponar dredge shackle.

- Measure water depth and pull enough deployment line to reach the bottom with some contingency length. Tie off deployment line to a cleat or secure location on the vessel/working platform such that if the operator's grip is lost on the rope during deployment, the equipment is not lost.
- 3. Place the screens in the correct locations.
- 4. Arrange the jaws of the Ponar dredge in the open position and place the spring-loaded trigger pin into the alignment hole on the Ponar dredge arms.
- 5. Lift and deploy the Ponar dredge over the side of the vessel/working platform, slowly lowering the sampler to approximately one to two meters above mudline. The drop depth can be adjusted based on field or site conditions including flows and sediment type. Stop momentarily and then drop the sampler to impact the sediment. Slack on the deployment line will allow the Ponar dredge to trigger, releasing the trigger pin and Ponar dredge jaws.
- 6. Give the deployment line a few quick, sharp tugs to ensure the Ponar dredge has property triggered.
- 7. Lift the Ponar dredge slowly and deliberately to the water surface and lift onto the deck of the vessel/working platform. Place the Ponar dredge onto the sampling tray.
- 8. Before removing the screens, carefully tip the Ponar dredge towards one side to slowly decant water through the screen. Care should be taken to retain the fine sediment fraction during this operation.
- 9. Remove the screens from the Ponar dredge, measure recovery, and collect interval by placing into bowl or equivalent. If necessary, follow procedures to re-deploy sampler if needed to obtain sufficient quantity of sample.
- 10. Take a photo of the sample, in the Ponar with whiteboard denoting project name, project number, sampling station, Core ID, date and time.
- 11. Record depth of recovery on the FDR form. With nitrile gloved hands, remove a small portion of the sediment to provide a sample classification on the FDR.
- 12. Properly mark or label the sample container per the FSP sampling nomenclature.

Watermark Universal Core Head Sediment Sampler (Push Core)

The Watermark universal core head sediment sampler is a device used to collect sediment in submerged, mud flat or marsh/wetland areas under human power. The sample is slowly lowered, or placed, at the sediment interface and pushed into the subsurface strata to obtain a sample. The sampler is then retrieved from the sediment by pulling the device out or by digging around the sampler, if on land or in shallow water, to minimize sample disturbance.

A push core sampler can be used at deeper depths (up to 10 feet of water depth) but manipulation and handling of the device becomes more difficult in deeper waters. The optimum depth for push sampling in most water conditions is 4 feet or less. The sampler is human powered and pushed into the sediment to the collection depth, or refusal. The push sampler consists of the following parts:

- Lexan tube (typically 2-4 ft in length; diameter may vary)
- Sampler head with check valve
- Nosecone, or core catcher, if needed
- T-handle to attach at sampler head or drive head
- Extension rods (typically 4 ft in length)

Prior to leaving the field station, ensure all required parts of the Watermark sampler are properly functioning and the equipment is ready for deployment per the following:

- 1. Inspect the pipe clamps securing the rubber sleeve secured to the sampler head. Ensure the clamps are not damaged or severely rusted and that the screw advances easily using the nut driver or screwdriver.
- 2. Inspect the rubber sleeve for any visible cracks or damage. If sleeve has large cracks splitting through the rubber, replace the sleeve.
- 3. Inspect the check valve in the sampler head. Submerge the head in a bucket of water and ensure the valve functions properly. As the sampler head is pushed deeper into the water, the valve should rise to the top of the sampler head. As the sampler head is lifted through the water column, the valve should lower to the bottom of the sampler head and should seal to provide suction on the sample tube holding the sample or water in the tube. A simple function test is to shake the sampler head in a vertical orientation. If the valve moves freely, a click can be heard as it moves in its travel channel.
- 4. Inspect Lexan liner tubes used to collect sample and ensure they are free from cracks or other debris. Ensure the ends of the tubes are not cracked or gouged. If longitudinal cracks (running the length of the tube) are present, replace the tube as these cracks can prevent the valve from providing a seal when retrieving the sample, increasing the possibility that sample will be lost during retrieval.
- 5. Inspect liner end caps for cracks and other damage. If cracks exist, replace caps.

- 6. Inspect threads in the top of the sampler head. T-handle or extensions rods should freely thread into the top of the sampler head. Fasten either the T-handle or extension rod to the top of the sampler head to ensure a proper fit.
- 7. Inspect the threads on extension rods, if used to ensure they are free of debris and that they thread correctly to other rods and the sampler head.
- 8. Inspect the core catcher, if used, for any signs of wear or rust. Ensure the teeth of the catcher are stiff and provide resistance to hold the sample in the liner tube. This can be performed by pulling the teeth away from the center and feeling if there is resistance.
- 9. For sampling stations where collection is for purposes of monitoring (station is re-visited from past campaigns) FOL will review the available logs and records of previous sampling campaigns and provide station-specific expectations to the field personnel.

The following steps shall be followed when deploying the Watermark sampler for collecting a sediment core. Steps below in **bold** are for when the sample is being obtained from **below** water only.

1. Secure a Lexan liner tube into the bottom of the rubber sleeve secured to the sampler head. Fasten pipe clamp using nut driver or flat head screwdriver. Pull gently upward on the sampler head while holding the liner stationary to ensure a tight fit.

When fastening or removing a liner from the sampler head, only loosen and tighten the pipe clamp at the bottom of the rubber sleeve.

2. Measure water depth at the sampling location and determine the required length of extension rods, if needed, and secure to the sampler. Measurement shall include water depth, air gap from water surface to vessel/working platform deck, and length of liner tube to account for the depth the sampler will be pushed into the mudline.

2a. When sampling on land, ensure enough length of rods are used to reach the desired depth.

3. Slowly lower the sampler through the water column to the mudline.

4. Push the sampler to the required depth, or refusal, defined as resistance at which the sampler will no longer advance under human power. Ensure the sampler is always perpendicular to the mudline while sampling.

4a. If a sample is being collected in the marsh platform and a drive hammer is required to reach the required depth, thread the drive hammer into the top of the sampler head and drive the sampler to the required depth.

5. Twist the sampler clockwise 1 - 2 full rotations to shear the bottom of the sediment core, allowing the core to be recovered in the liner and not pulled back out of the liner during

retrieval. Gently and deliberately retrieve the sampler to the water surface, leaving the bottom end of the liner just below the water surface.

- 6. Reach over the side of the vessel/working platform and cap the bottom of the liner so as the core breaks the water surface it does not slide out of the liner.
- 7. Keep the sample vertical. If overlying water exists above the sediment, carefully tip the sample slowly decant the overlying water from the top of the core. Take care to retain the fines fraction of sample that may be at the sediment interface.
- 8. Keep the sample vertical and record pertinent information on the FDR.
- 9. Take a photo of the sample, in the liner with whiteboard denoting project name, project number, sampling station, Core ID, date and time.
- 10. Proceed to process the sample per SOP S-23.

AMS Professional Series Multi-Stage Sediment Sampler (Push/Hammer Core)

The AMS sediment sampler is a device used to collect sediment in submerged, mud flat, or marsh/wetland areas under human power. The sample is slowly lowered, or placed, at the sediment interface and pushed or hammered into the subsurface strata to obtain a sample. The sampler is then retrieved from the sediment by pulling the device out or by digging around the sampler, if on land or in shallow water, to minimize sample disturbance.

A push core sampler can be used at deeper depths (up to 10 feet of water depth) but manipulation and handling of the device becomes more difficult in deeper waters. The optimum depth for push sampling in most water conditions is 4 feet or less. The sampler is human powered and pushed into the sediment to the collection depth, or refusal. The push sampler consists of the following parts:

- Lexan tube (typically 2-4 ft in length)
- Sampler head with check valve
- Nosecone
- Core catcher, if needed
- T-handle to attach at sampler head
- Drive hammer, if needed
- Extension rods (typically 4 ft in length)

Prior to leaving the field station, ensure all required parts of the AMS sediment sampler are properly functioning and the equipment is ready for deployment per the following:

- 1. Inspect the threads on the stainless-steel sleeves to ensure they are clean and that the nose cone and sampler head thread properly to the sleeve.
- 2. Inspect the check valve in the sampler head. A simple function test is to shake the sampler head in a vertical orientation. If the valve moves freely, a click can be heard as it moves in its travel channel.

- 3. Inspect Lexan liner tubes used to collect sample and ensure they are free from cracks or other debris. Ensure the ends of the tubes are not cracked or gouged. If longitudinal cracks (running the length of the tube) are present, replace the tube as these cracks can prevent the valve from providing a seal when retrieving the sample, increasing the possibility that sample will be lost during retrieval.
- 4. Inspect liner end caps for cracks and other damage. If cracks exist, replace caps.
- 5. Inspect threads in the top of the sampler head. T-handle or extensions rods should freely thread into the top of the sampler head. Fasten either the T-handle or extension rod to the top of the sampler head to ensure a proper fit.
- 6. Inspect the threads on extension rods, if used to ensure they are free of debris and that they thread correctly to other rods and the sampler head.
- 7. Inspect the core catcher, if used, for any signs of wear. Ensure the teeth of the catcher are stiff and provide resistance to hold the sample in the liner tube. This can be performed by pulling the teeth away from the center and feeling if there is resistance. If teeth are weak, or broken, replace core catcher.
- 8. For sampling stations where collection is for purposes of monitoring (station is re-visited from past campaigns) FOL will review the available logs and records of previous sampling campaigns and provide station-specific expectations to the field personnel.

The following steps shall be followed when deploying the AMS sediment sampler for collecting a sediment core. Steps below in **bold** are for when the sample is being obtained from **below**. **water only**.

- 11. Secure the nose cone to the bottom of the stainless-steel sleeve. Insert a lexan liner into the sleeve.
- 12. Secure the sampler head to the top of the stainless-steel sleeve.
- 13. Measure water depth at the sampling location and determine the required length of extension rods, if needed, and secure to the sampler. Measurement shall include water depth, air gap from water surface to vessel/working platform deck, and length of liner tube to account for the depth the sampler will be pushed into the mudline.

2a. When sampling on land, ensure enough length of rods are used to reach the desired depth.

14. Slowly lower the sampler through the water column to the mudline.

15. Push the sampler to the required depth, or refusal, defined as resistance at which the sampler will no longer advance under human power. Ensure the sampler is always perpendicular to the mudline while sampling.

4a. If a sample is being collected which must be hammered to reach the proposed depth, thread the drive hammer into the top of the sampler head, or onto the extension rods, and drive the sampler to the required depth.

- 16. Twist the sampler clockwise 1 2 full rotations to shear the bottom of the sediment core, allowing the core to be recovered in the liner and not pulled back out of the liner during retrieval. Gently and deliberately retrieve the sampler to the water surface, leaving the bottom end of the liner just below the water surface.
- 17. Reach over the side of the vessel/working platform and cap the bottom of the liner so as the core breaks the water surface it does not slide out of the liner.
- 18. Keep the sample vertical. If overlying water exists above the sediment, carefully tip the sample slowly decant the overlying water from the top of the core. Take care to retain the fines fraction of sample that may be at the sediment interface.
- 19. Remove the sampler head and nosecone from the stainless-steel sleeve and remove the lexan liner, maintain a vertical orientation during this process.
- 20. Take a photo of the sample, in the liner with whiteboard denoting project name, project number, sampling station, Core ID, date and time.
- 21. Keep the sample vertical and record pertinent information on the FDR.
- 22. Proceed to process the sample per SOP S-23.

Gravity Core Sampler

There are several types of gravity coring devices. Generally, the gravity core sampler uses the pull of gravity with a weighted sampler head to penetrate the mudline with a polycarbonate liner. The device can generally obtain cores up to 3 feet in length in deep water, depending on water and current conditions. The device is generally only effective in water depths greater than 4 feet with slack conditions facilitating the gravitational force to drive the liner into the sediments with sufficient penetration to preclude device falling over. The sediment is retained in the liner using suction induced by a ball valve or sealing cover. Recovering sediment using the gravity core is dependent upon multiple factors, which are tailored to station conditions, including: water depth, water circulation, weights, sediment type and compaction, liner length and diameter, suction efficiency, overlying water between the suction device and recovered sediment in liner, retrieval rate, and ability to effectively plug the liner at or beneath the water surface. The polycarbonate liner can be either dedicated or re-usable where the recovered sediment is extruded from the liner.

Field crews will review the manufacturer instruction manual prior to device use and tailor the means and methods outlined in this SOP to the device obtained and sampling station conditions. It is recommended that a ponar grab be performed at the sampling station prior to tailoring the gravity core and its deployment.

The gravity core device generally consists of the following parts:

- Sampler head
- Nylon deployment rope
- Polycarbonate liner tube
- Weight rings
- Suction device with integrated trigger
- Plug, stopper, or caps

Prior to leaving the field station, ensure all required parts of the gravity core sampler are properly functioning and the equipment is ready for deployment per the following:

- 1. Inspect the sampler head plunger for any significant wear including the rubber washer used to create a seal on the top of the liner during sample retrieval. If any cracks or damage or found, discontinue use of sampler.
- 2. Inspect shackle at top of sampler head. Ensure shackle bolt is securely fastened.
- Inspect the nylon rope for any wear. If excessive wear is noted, replace rope, or cut and splice together. Use cable ties at the splice to ensure knot will not loosen during deployment.
- 4. Inspect the polycarbonate liner tube for any damage. If significant damage including chips, and gouges are noted, especially around the top of the liner, discard and use new liner.
- 5. Inspect liner clamp to ensure proper functionality. Lift the sampler head and place a liner into the head. Gently tug on the liner downward to test resistance of liner clamp. If liner falls out or is easily pulled out, discontinue use of the sampler until repairs have been made.
- 6. For sampling stations where collection is for purposes of monitoring (station is re-visited from past campaigns) FOL will review the available logs and records of previous sampling campaigns and provide station-specific expectations to the field personnel.

The following steps shall be followed when deploying the gravity core sampler for collecting a sediment sample.

- 1. Secure a polycarbonate liner into the sampler head and ensure it is secure by gently pulling downward on the liner.
- 2. Measure water depth and pull enough deployment line to reach the bottom with some contingency length. Tie off deployment line to a cleat or secure location on the vessel/working platform such that if the operator's grip is lost on the rope during deployment, the equipment is not lost.

- 3. Slowly lower the sampler through the water column to approximately 2-3 meters above the mudline. Hold the sampler at this depth for approximately 10-15 seconds to ensure it is stationary and perpendicular to the sediment surface.
- 4. Release the sampler and allow it to penetrate the mudline. Hold slight tension on the deployment line so that the operator can feel if the sampler remained perpendicular during penetration and to feel when the sampler reaches refusal.
- 5. Pull the sampler out of the mudline with the deployment line and slowly retrieve the sampler to the water surface, leaving the bottom end of the liner just below the water surface.
- 6. Reach over the side of the vessel/working platform and cap the bottom of the liner so as the core breaks the water surface it does not slide out of the liner.
- 7. Keep the sample vertical. If overlying water exists above the sediment, carefully tip the sample slowly decant the overlying water from the top of the core. Take care to retain the fines fraction of sample that may be at the sediment interface.
- 8. Keep the sample vertical and record pertinent information on the FDR.
- 9. Take a photo of the sample, in the liner with whiteboard denoting project name, project number, sampling station, Core ID, date and time.
- 10. Proceed to process the sample per SOP S-23.
- 11. Log the remaining recovered sediment on the FDR.
- 12. Dispose of the remaining sediment and decontaminate the equipment.

Box Core Sampler

The box core sampler is a grab sample device that recovers a cube of sediment. For the Penobscot River sediment collection, the box core sampler is a tool to, in essence, bring undisturbed sediment to the vessel deck where the field crew will hand-insert a cylinder (liner segment) thereby creating a "core" suitable for incremental sampling. The box core is a heavy sampling device often capable to withstand water circulation forces in the water column during descent and requires the use of an A-frame and properly sized vessel to deploy. The sampler is attached to a winch cable and lowered through the moonpool of the vessel. Depending on the stiffness of the sediment at the mudline, the box core can be dropped from different water depths to ensure sufficient penetration is achieved. As the box impacts the mudline, it penetrates until it reaches sufficient resistance to stop advancement. The device is retrieved and as the bottom of the box breaks the mudline interface, the jaws close to retain the sediment within the box. The device is then raised to deck and placed in a stand where short Lexan liner tubes can be manually pushed into the undisturbed sediment to recover a cylindrical core. The device operation is performed by Wood's subcontractor with assistance from Wood field staff.

Prior to leaving the dock, Wood field staff shall work with the subcontractor to ensure all required parts for the box core sampler are properly functioning and the equipment is ready for deployment per the following:

- 1. Inspect the box core sampler arms to ensure there is no significant damage of wear. Ensure the jaws open and close as intended.
- 2. Inspect shackle at top of box core sampler. Ensure shackle bolt is securely fastened.
- 3. Inspect winch cable to ensure no fraying is present or burrs are present that could cause hand injury.
- 4. For sampling stations where collection is for purposes of monitoring (station is re-visited from past campaigns) FOL will review the available logs and records of previous sampling campaigns and provide station-specific expectations to the field personnel.

The following steps shall be followed when deploying the box core sampler for collecting a sediment sample.

<u>The box core sampler shall only be handled by Wood's subcontractor or those personnel</u> who have been properly trained in the operation of the sampler.

- 1. Using a lead line, and depth sounder if equipped, measure and confirm water depth.
- 2. Secure the winch cable to the shackle on top of the box core sampler.
- 3. With two crew members supporting, lift the box core sampler out of the stand and in a controlled manner, move the sampler over the moonpool of the vessel.
- 4. Slowly lower the box core sampler into the water to the prescribed depth for deployment.
- 5. Release the box core sampler into the mudline. Allow the sampler to sit for a short period of time to allow it to fully penetrate.

- 6. Retrieve the box core sampler to deck and place in the stand.
- 7. Push two short Lexan liner segments about 1 foot long each parallel to one another into the sediment inside the box core sampler.
- 8. Let the Lexan liners sit for approximately 30-60 seconds once pushed into the sediment to allow the sediment to gain cohesion and stick to the inside of the liner.
- 9. Place a cap on top of each liner to create suction when pulling the liner out of the sediment. Twist the liner clockwise 1 2 full rotations to shear the sediment and pull the liner from the box corer contained sediment. If the twisting removal results in sediment loss, separation, or disturbance within the liner, then manually dig out the second liner segment by excavating the box core-containing sediment around the second liner. If the twisting removal of the first liner is successful, repeat for second liner.
- 10. Pull the liners out of the box core sampler and record pertinent information on the FDR.
- 11. Dispose of remaining sediment in the box core sampler and decontaminated the equipment.
- 12. Take a photo of the sample, in the liner with whiteboard denoting project name, project number, sampling station, Core ID, date and time.
- 13. Process the cores per SOP S-23.

HEALTH AND SAFETY

All field personnel must wear protective clothing and equipment as specified in the HASP.

SITE CLEAN-UP

Excess sediment not included in the sample shall be returned into the waterbody from which it was collected.

Throw all used wipes and gloves into the trash bags and take with you to dispose of at the field office.

RECORD KEEPING AND QUALITY CONTROL

Each field crew will carry and complete at the time of work field data sheets, site diagrams, and sample labels. In addition, a field notebook shall be maintained by each individual or team that is collecting samples, as described in the QAPP. Each sample shall have an ID number affixed to the outside of the collection container. Deviations from the SOP shall be noted in the field notebook, as necessary.

Samples taken from waters with visible color abnormalities, foaming, unusual odor, iridescent film, or other indications of non-homogeneous conditions shall also be noted. Field personnel will collect the proper type and quantity of quality control samples as prescribed in the QAPP.

DECONTAMINATION

Because decontamination procedures are time consuming, having a quantity of pre-cleaned sampling tools available is recommended. All sampling equipment must be decontaminated prior to reuse as prescribed in the FSP and detailed in the QAPP SOP No. S-17, Decontamination of Field Equipment.

The general procedure for equipment decontamination is as follows:

- 1. Brush off any loose soil/sediment
- 2. Detergent Wash
- 3. River water rinse
- 4. Deionized water rinse
- 5. Air Dry

REFERENCES

- Wood, 2020a. Field Sampling Plan; Penobscot River Phase III Engineering Study Penobscot River, Maine. July 2016.
- Wood, 2020b. Quality Assurance Project Plan; Penobscot River Phase III Engineering Study Penobscot River, Maine. July 2016.

- END OF PROCEDURE -

AMEC FOSTER WHEELER ENVIRONMENT & INFRASTRUCTURE, INC. STANDARD OPERATING PROCEDURE

PROCEDURE FOR DESCRIPTION AND IDENTIFICATION OF SOILS

PROCEDURE FOR DESCRIPTION AND IDENTIFICATION OF SOILS

SCOPE AND APPLICABILITY

The appearance and textural properties of soil samples will be described using the Unified Soil Classification System (USCS). The USCS uses grain size to divide soils into different soil classes, coarse grained vs. fine grained. The system then further describes the soils based on the mix of coarse materials such as sand and gravel or the relative plasticity of the fine grained materials such as silt and clay.

Soil type identifications and descriptions will be recorded by field samplers during field investigation activities. Soil types will determined when completing explorations (monitoring well installations, soil borings, and surface soil sampling) and other activities where descriptions of soils are needed to characterize site location conditions. These field descriptions may be supplemented with laboratory data on grain size distributions analyses to characterize soils.

EQUIPMENT AND SUPPLIES

- USCS Key
- 6 foot folding rule or other measuring tool
- PID
- Field Data Records
- Knife of spatula

PROCEDURE

Soil descriptions are made using the USCS Classifications and will include the following observations:

- Color
- Name
- Gradation
- Density
- Moisture
- Plasticity
- Structure
- geologic origin
- USCS classification designation.

A USCS key to soil descriptions and terms is included as Attachment 1. All sample descriptions will be recorded in a field log book and/or the Field Data Record for the media being sampled (see FDR Appendix).

ATTACHMENT 1 - K	KEY TO SOIL DES	CRIPTIONS AN	D TERMS				
UNIFIED SOIL CLASSIFICATION SYSTEM				TERMS DESCRIBING SOILS (excludes particles > 3", organics,	TERMS DESCRIBING MATERIALS		
MAJOR DIVISIONS		GROUP SYMBOLS	TYPICAL NAMES	debris, etc.)	i.e. particles > 3", organics, debris, etc.)		
				Trace: Particles present, but < 5%	Occasional: Particles present, but < 10%		
					Few: 5% - 10%	Some: 10% to 25%	
					Little: 10% - 25%	Frequent: >25%	
COARSE-	GRAVELS	CLEAN	GW	Well-graded gravels or	Some: 25% - 45%		
GRAINED SOILS ((>50% fi	(>50% of coarse GRAVEI fraction (<5% fin RETAINED on	GRAVELS (<5% fines)	GRAVELS <5% fines)	gravel-sand mixtures; trace or no fines.	TERMS DESCRIBING MOISTURE	TERMS DESCRIBING STRUCTURE	
RETAINED on F			GP	Poorly-graded gravels			
sieve)	the No. 4 sieve)	e)		or gravel-sand mixtures; trace or no fines.	Dry: Absence of moisture; dusty	Layer: > 3" thick	
		GRAVEL WITH FINES	AVEL GM S TH FINES s	Silty gravels or gravel-	Moist: Damp, but no visible water	Seam: 1/16" to 3" thick	
				sand-silt mixtures.	Wet: Visible/free water	Parting: < 1/16" thick	
		(~12 % 11165)	GC	Clayey gravels or gravel-sand-clay mixtures.	CORRELATION OF STANDARD PENETRATION TEST (SPT) WITH RELATIVE DENSITY AND CONSISTENCY		
5	SANDS CLEAN (50% or more of coarse fraction (<5% fi	DSCLEAN SANDS (<5% fines)SWor more of e fraction (<5% fines)	SW	Well-graded sands or sand-gravel mixtures; trace or no fines.	GRAVEL, SAND & SILT (NON-PLASTIC)		
					Relative Density	N-Value (blows per foot)	
PASSES the No 4 sieve size)	PASSES the No.		SP	Poorly-graded sands or sand-gravel mixtures; trace or no fines.	Very loose	0 - 4	
	4 sieve size)				Loose	5 - 10	
			SM	Silty sands or sand- gravel-silt mixtures.	Compact	11 - 30	
					Dense	31 - 50	
			SC	Clayey sands or sand-	Very Dense	> 51	
				gravel-clay mixtures.	SILT (PLASTIC) & CLAY		

ATTACHMENT 1	- KEY TO SOIL DESCRIPTIONS	AND TERMS					
FINE-GRAINED SOILS	SILTS AND CLAYS (liquid limit <50)	ML	Inorganic silts or rock flour, non-plastic or very	Consistency	SPT N-Value	<u>Su (psf)</u>	<u>Field</u> Guidelines
(50% or more PASSES the No. 200 sieve)			slightly plastic. PI <4 or plots below "A" line.	Very Soft	0 - 2	0 - 250	Fist easily penetrates
				Soft	3 - 4	250 - 500	Thumb easily penetrates
		CL	Inorganic lean clays. Low to medium plasticity. PI >7 and plots on or above "A"	Medium Stiff	5-8	500 - 1000	Thumb penetrates with moderate effort.
		OL	line. Organic silts, clavs and	Firm	9 - 15	1000 - 2000	Indented by thumb with
			silty clays. Low to medium plasticity.	Very Stiff	16 - 30	2000 - 4000	great effort Indented by thumbnail
	SILTS AND CLAYS (liquid limit ≥50)	MH	Inorganic elastic silt. PI line plots on or above "A" line.	Hard	>31	over 4000	Indented by thumbnail with difficulty
		СН	Inorganic fat clay. High plasticity. PI line plots on or above "A" line.	ROCK QUALITY DESIGNATION (RQD)			
		OH	Organic silts and clays. High plasticity.	RQD = <u>sum of the lengths of intact pieces of core* >100mm</u> (0.3ft.)			
	HIGHLY ORGANIC SOILS	Pt	Peat and other highly organic soils.	length of core advance			
				*Minimum NQ rock core (1.88 in. OD of core)			
			Decomposed vegetable tissue. Fibrous to amorphous texture				

Desired Soil Observations: (in this order)			Quality Description	RQD			
Color		_	Very Poor	<25%			
Primary Soil Component			Poor	26% - 50%			
Secondary Soil Components			Fair	Fair 51% - 75%			
Angularity and/or shape of sand/gra	avel particles		Good	76% - 90%			
USCS Symbol (See ASTM D 2488	Figs 1a, 1b, & 2)		Excellent	>91%			
Density/Consistency			Desired Rock Observation	Desired Rock Observations: (in this order)			
Moisture							
Plasticity (as applicable)			Color (i.e. olive brown, gray	, reddish brown)			
Structure			Texture (aphanitic, fine-gra	ined, etc.)			
Geologic Origin			Lithology (igneous, sedime	Lithology (igneous, sedimentary, metamorphic, etc.)			
Fill, Alluvium, Lacustrine, Glacial Ti	ll, etc.		Hardness (very hard, hard,	Hardness (very hard, hard, mod. hard, etc.)			
Presence of organics (leaves, roots, rootlets, etc.) or debris (concrete, brick, wood, metal, etc.)			c.) Weathering (fresh, very slig severe, etc.)	Weathering (fresh, very slight, slight, moderate, mod. severe, severe, etc.)			
Presence of cobbles or boulders (b	ased on observations of drilling	g)	Geologic discontinuities/joir	nting:			
Odor, PID data, Torvane or pocket penetrometer data, etc. Example Descriptions:			-dip (horiz - 0°-5°, low angle steep - 55°-85°, vertical - 85°-90°) -spacing (very close - <5 cm	-dip (horiz - 0°-5°, low angle - 5°-35°, mod. dipping - 35°-55°, steep - 55°-85°, vertical - 85°-90°) -spacing (very close - 55 cm, close - 5-30 cm, mod close 30-			
Olive brown, fine to medium sand, little silt, trace angular gravel, SM, medium dense, moist: FILL			FILL 100 cm, wide - 1-3 m, very wide >3	 100 cm, wide - 1-3 m, very wide >3 m) 			
- occasional concrete and brick fragments; petroleum odor; PID = 1.4 ppm			-tightness (tight, open or hea	aled)			
Gray, CLAY, little fine sand, trace angular gravel, CL, stiff, moist, desiccated: LACUSTRINE			-infilling (grain size, color, et	-infilling (grain size, color, etc.)			
Yellowish brown, fine SAND, trace silt, trace rounded gravel, poorly-graded, SP, loose, wet: ALLUVIUM			Interpreted Formation (Wat etc.)	Interpreted Formation (Waterville, Ellsworth, Cape Elizabeth, etc.)			
			RQD and Rock Mass Desc	RQD and Rock Mass Description (very poor, poor, fair, etc.)			
- occasional partings of fine sand; 1-inch seam of olive brown silt at 8' bgs; Torvane = 0.55 tsf			f Recovery				

- END OF PROCEDURE -

SOP No. S-7A

SOP No. S-7A

AMEC FOSTER WHEELER ENVIRONMENT & INFRASTRUCTURE, INC. STANDARD OPERATING PROCEDURE

PROCEDURE FOR PHYSICAL DESCRIPTIONS AND IDENTIFICATION OF PENOBSCOT SEDIMENT CHARACTERISTICS

PROCEDURE FOR PHYSICAL DESCRIPTIONS AND IDENTIFICATION OF PENOBSCOT SEDIMENT CHARACTERISTICS

SCOPE AND PURPOSE

The purpose of this SOP is to provide a field guide for the uniform completion of the sediment description section of core forms, grab forms, visual forms and sediment trap forms. The intended users are from a broad background of environmental investigation including, geologists, biologists, chemists, engineers and environmental scientists. The visual appearance and textural properties of sediment samples will be described using the Unified Soil Classification System (USCS) without the group symbol and density. When further description is necessary the field descriptions may be supplemented with laboratory data on grain size distributions and density analyses to characterize sediments, determined by an Amec Foster Wheeler employee who has been competency tested on ASTM D 2488-09a classification skills.

TERMS

- Wood Waste is the broad term that encompasses four principal subgroups:
 - Twigs and bark (generally 2 inches and larger)
 - Wood mulch defined as pieces ¹/₂-inch and larger in any one direction
 - Wood chips defined as pieces 1/8-inch to ½-inch and generally appear like chain saw cuttings and often a mix of browns and black
 - Wood fines defined as pieces smaller than 1/8-inch and generally appear like flat sand grain-sized particles and often black

Typical wood chips

• New Mud- Dr. Geyer- generally a brown silt or clay (mobile) with a Munsell color of #

YR #/#, add others

"New mud"

 Old Mud- Dr. Geyer – Generally a darker black silt or clay (non-mobile) with a Munsell color of # YR #/#, add others

"Old Mud"

EQUIPMENT AND SUPPLIES

USCS Key; Munsell Soil Color Charts; Field Data Records; Knife or spatula; PID (Optional based on site conditions).

SEDIMENT DESCIPTION PROCEDURE

Information to be documented on field data records with each sediment sample description will include the following observations:

Sediment descriptions are to be written in following sequence:

Primary Material [Abundance + color (Munsell code) + sediment texture "and" non-mineral observations (such as wood waste, shells, redox features, organisms, sheens] with Secondary Material [abundance + color (Munsell code) + sediment texture]...if pertinent continue in same manner for sequential Materials.

As example: Abundant brown (7.5YR4/4) sandy-silt and wood chips with some green (1 Gley 5/5G) silt and shells.

1.

The following practices will be employed for each Material by strata:

Describing the Abundance use the following nomenclature

Table 1: DESCRIBING Abundance	Э
-------------------------------	---

• Desc	ription	•	Criteria	•	Abbreviation
 Trace Som Mod Occa Abur 	e e lerate asional ndant	• • • • •	~ 05% ~ 5-20% ~ 20-50% ~ 50-70% ~ 80-100%	• • •	TR Some Mod Occ Abnt

• <u>Primary constituent</u>: Description of the sediment texture using USCS terminology (Sand, Silt, and Clay) using the bold text descriptions on the triangle below:

Figure 1 - Credit - Google image

- <u>Stated color (primary or secondary)</u>: a one word description of the color as determined by the person characterizing (i.e., brown)
- <u>Munsell soil color</u>: Using the Munsell soil color chart describe the soil next to the soil chip. User should do this in natural sun light and while not wearing sunglasses.
- <u>Secondary constituent</u>: For heterogeneous samples describe other materials and strata's in the same order.

Soil Redox:1

Some soils will have reddish streaking through it, this is a redox feature and should be noted. Sampler should indicate the approximate percent of the observed sample is a reduction. If this is a separate mineral type then it should be indicated.

Soil redox example

Execution

The following steps are typically expected:

- 1. Retrieve sediment
- 2. Using a knife, spatula, spoon, or Nitrile-gloved hand remove about a golf-ball sized piece of the retrieved sediment. If it is solid, break apart and observe and record its primary and secondary matrix abundance and color and redox features. Record findings on FDR.
- 3. Using a Nitrile-gloved hand, hold and feel the material to identify its texture(s). Record findings on FDR
- 4. Dispose of assessed material.
- 5. Remove and properly dispose Nitrile gloves. Complete sediment description on FDR.

ATTACHMENT INDEX

Attachment 1: ASTM D 2488-09a Attachment 2: Penobscot River Field Form: Grab Log Attachment 3: Penobscot River Field Form: Core Log Attachment 4: Penobscot River Field Form: Sediment Trap Form Attachment 5: Penobscot River Field Form: Visual Assessment

¹ Applies to intertidal and marshes only

REFERENCES

- ASTM International, 2009. Standard Practice for Description and Identification of Soils (Visual, Manual Procedure) Designation D 2488-09a. West Conshohocken, PA.
- ASTM International, 2013. Standard Practice for Handling, Storing, and Preparing Soft Intact Marine Soil Designation D 3213-13. West Conshohocken, PA.
- Munsell Color (Firm). (2010). Munsell soil color charts : with genuine Munsell color chips. Grand Rapids, MI :Munsell Color,

- END OF PROCEDURE -

Standard Practice for Description and Identification of Soils (Visual-Manual Procedure)¹

This standard is issued under the fixed designation D 2488; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope*

1.1 This practice covers procedures for the description of soils for engineering purposes.

1.2 This practice also describes a procedure for identifying soils, at the option of the user, based on the classification system described in Test Method D 2487. The identification is based on visual examination and manual tests. It must be clearly stated in reporting an identification that it is based on visual-manual procedures.

1.2.1 When precise classification of soils for engineering purposes is required, the procedures prescribed in Test Method D 2487 shall be used.

1.2.2 In this practice, the identification portion assigning a group symbol and name is limited to soil particles smaller than 3 in. (75 mm).

1.2.3 The identification portion of this practice is limited to naturally occurring soils (either intact or disturbed).

NOTE 1—This practice may be used as a descriptive system applied to such materials as shale, claystone, shells, crushed rock, etc. (see Appendix X2).

1.3 The descriptive information in this practice may be used with other soil classification systems or for materials other than naturally occurring soils.

1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.

1.5 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements see Section 8.

1.6 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word "Standard" in the title of this document means only that the document has been approved through the ASTM consensus process.

2. Referenced Documents

- 2.1 ASTM Standards:²
- D 653 Terminology Relating to Soil, Rock, and Contained Fluids
- D 1452 Practice for Soil Exploration and Sampling by Auger Borings
- D 1586 Test Method for Penetration Test (SPT) and Split-Barrel Sampling of Soils
- D 1587 Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes
- D 2113 Practice for Rock Core Drilling and Sampling of Rock for Site Investigation
- D 2487 Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
- D 3740 Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction
- D 4083 Practice for Description of Frozen Soils (Visual-Manual Procedure)

3. Terminology

3.1 *Definitions*—Except as listed below, all definitions are in accordance with Terminology D 653.

NOTE 2—For particles retained on a 3-in. (75-mm) US standard sieve, the following definitions are suggested:

Cobbles—particles of rock that will pass a 12-in. (300-mm) square opening and be retained on a 3-in. (75-mm) sieve, and

*A Summary of Changes section appears at the end of this standard.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

¹ This practice is under the jurisdiction of ASTM Committee D18 on Soil and Rock and is the direct responsibility of Subcommittee D18.07 on Identification and Classification of Soils.

Current edition approved June 15, 2009. Published July 2009. Originally approved in 1966. Last previous edition approved in 2009 as D 2488 - 09.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

Boulders—particles of rock that will not pass a 12-in. (300-mm) square opening.

3.1.1 *clay*—soil passing a No. 200 (75-µm) sieve that can be made to exhibit plasticity (putty-like properties) within a range of water contents, and that exhibits considerable strength when air-dry. For classification, a clay is a fine-grained soil, or the fine-grained portion of a soil, with a plasticity index equal to or greater than 4, and the plot of plasticity index versus liquid limit falls on or above the "A" line (see Fig. 3 of Test Method D 2487).

3.1.2 *gravel*—particles of rock that will pass a 3-in. (75-mm) sieve and be retained on a No. 4 (4.75-mm) sieve with the following subdivisions:

coarse—passes a 3-in. (75-mm) sieve and is retained on a $\frac{3}{4}$ -in. (19-mm) sieve.

fine—passes a ³/₄-in. (19-mm) sieve and is retained on a No. 4 (4.75-mm) sieve.

3.1.3 *organic clay*—a clay with sufficient organic content to influence the soil properties. For classification, an organic clay is a soil that would be classified as a clay, except that its liquid limit value after oven drying is less than 75 % of its liquid limit value before oven drying.

3.1.4 *organic silt*—a silt with sufficient organic content to influence the soil properties. For classification, an organic silt is a soil that would be classified as a silt except that its liquid limit value after oven drying is less than 75 % of its liquid limit value before oven drying.

3.1.5 *peat*—a soil composed primarily of vegetable tissue in various stages of decomposition usually with an organic odor, a dark brown to black color, a spongy consistency, and a texture ranging from fibrous to amorphous.

3.1.6 *sand*—particles of rock that will pass a No. 4 (4.75-mm) sieve and be retained on a No. 200 (75- μ m) sieve with the following subdivisions:

coarse—passes a No. 4 (4.75-mm) sieve and is retained on a No. 10 (2.00-mm) sieve.

medium—passes a No. 10 (2.00-mm) sieve and is retained on a No. 40 (425- μ m) sieve.

fine—passes a No. 40 (425- μ m) sieve and is retained on a No. 200 (75- μ m) sieve.

3.1.7 *silt*—soil passing a No. 200 (75-µm) sieve that is nonplastic or very slightly plastic and that exhibits little or no strength when air dry. For classification, a silt is a fine-grained soil, or the fine-grained portion of a soil, with a plasticity index less than 4, or the plot of plasticity index versus liquid limit falls below the "A" line (see Fig. 3 of Test Method D 2487).

4. Summary of Practice

4.1 Using visual examination and simple manual tests, this practice gives standardized criteria and procedures for describing and identifying soils.

4.2 The soil can be given an identification by assigning a group symbol(s) and name. The flow charts, Fig. 1a and Fig. 1b for fine-grained soils, and Fig. 2, for coarse-grained soils, can be used to assign the appropriate group symbol(s) and name. If the soil has properties which do not distinctly place it into a specific group, borderline symbols may be used, see Appendix X3.

NOTE 3—It is suggested that a distinction be made between *dual* symbols and *borderline symbols*.

Dual Symbol—A dual symbol is two symbols separated by a hyphen, for example, GP-GM, SW-SC, CL-ML used to indicate that the soil has been identified as having the properties of a classification in accordance with Test Method D 2487 where two symbols are required. Two symbols are required when the soil has between 5 and 12 % fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart.

Borderline Symbol—A borderline symbol is two symbols separated by a slash, for example, CL/CH, GM/SM, CL/ML. A borderline symbol should be used to indicate that the soil has been identified as having properties that do not distinctly place the soil into a specific group (see Appendix X3).

5. Significance and Use

5.1 The descriptive information required in this practice can be used to describe a soil to aid in the evaluation of its significant properties for engineering use.

5.2 The descriptive information required in this practice should be used to supplement the classification of a soil as determined by Test Method D 2487.

5.3 This practice may be used in identifying soils using the classification group symbols and names as prescribed in Test Method D 2487. Since the names and symbols used in this practice to identify the soils are the same as those used in Test Method D 2487, it shall be clearly stated in reports and all other appropriate documents, that the classification symbol and name are based on visual-manual procedures.

5.4 This practice is to be used not only for identification of soils in the field, but also in the office, laboratory, or wherever soil samples are inspected and described.

5.5 This practice has particular value in grouping similar soil samples so that only a minimum number of laboratory tests need be run for positive soil classification.

NOTE 4—The ability to describe and identify soils correctly is learned more readily under the guidance of experienced personnel, but it may also be acquired systematically by comparing numerical laboratory test results for typical soils of each type with their visual and manual characteristics.

5.6 When describing and identifying soil samples from a given boring, test pit, or group of borings or pits, it is not necessary to follow all of the procedures in this practice for every sample. Soils which appear to be similar can be grouped together; one sample completely described and identified with the others referred to as similar based on performing only a few of the descriptive and identification procedures described in this practice.

5.7 This practice may be used in combination with Practice D 4083 when working with frozen soils.

NOTE 5—Notwithstanding the statements on precision and bias contained in this standard: The precision of this test method is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D 3740 are generally considered capable of competent and objective testing. Users of this test method are cautioned that compliance with Practice D 3740 does not in itself assure reliable testing. Reliable testing depends on several factors; Practice D 3740 provides a means for evaluating some of those factors.
🖽 D 2488 – 09a

GROUP NAME

GROUP SYMBOL

NOTE 1-Percentages are based on estimating amounts of fines, sand, and gravel to the nearest 5 %.

6. Apparatus

- 6.1 Required Apparatus:
- 6.1.1 Pocket Knife or Small Spatula.
- 6.2 Useful Auxiliary Apparatus:
- 6.2.1 Test Tube and Stopper (or jar with a lid).
- 6.2.2 Hand Lens.

7. Reagents

7.1 *Purity of Water*—Unless otherwise indicated, references to water shall be understood to mean water from a city water supply or natural source, including non-potable water.

7.2 *Hydrochloric Acid*—A small bottle of dilute hydrochloric acid, HCl, one part HCl (10 N) to three parts water (This reagent is optional for use with this practice). See Section 8.

8. Safety Precautions

8.1 When preparing the dilute HCl solution of one part concentrated hydrochloric acid (10 N) to three parts of distilled

water, slowly add acid into water following necessary safety precautions. Handle with caution and store safely. If solution comes into contact with the skin, rinse thoroughly with water. 8.2 **Caution**—Do not add water to acid.

Gravelly organic soil with sand

► ≥15% sand

9. Sampling

9.1 The sample shall be considered to be representative of the stratum from which it was obtained by an appropriate, accepted, or standard procedure.

NOTE 6—Preferably, the sampling procedure should be identified as having been conducted in accordance with Practices D 1452, D 1587, or D 2113, or Test Method D 1586.

9.2 The sample shall be carefully identified as to origin.

NOTE 7—Remarks as to the origin may take the form of a boring number and sample number in conjunction with a job number, a geologic stratum, a pedologic horizon or a location description with respect to a permanent monument, a grid system or a station number and offset with respect to a stated centerline and a depth or elevation.

🕼 D 2488 – 09a

GROUP NAME

GROUP SYMBOL

Note 1—Percentages are based on estimating amounts of fines, sand, and gravel to the nearest 5 %. FIG. 2 Flow Chart for Identifying Coarse-Grained Soils (less than 50 % fines)

9.3 For accurate description and identification, the minimum amount of the specimen to be examined shall be in accordance with the following schedule:

Maximum Particle Size, Minimum Specim Sieve Opening Dry Weight	
4.75 mm (No. 4)	100 g (0.25 lb)
9.5 mm (% in.)	200 g (0.5 lb)
19.0 mm (% in.)	1.0 kg (2.2 lb)
38.1 mm (1½ in.)	8.0 kg (18 lb)
75.0 mm (3 in.)	60.0 kg (132 lb)

NOTE 8—If random isolated particles are encountered that are significantly larger than the particles in the soil matrix, the soil matrix can be accurately described and identified in accordance with the preceeding schedule.

9.4 If the field sample or specimen being examined is smaller than the minimum recommended amount, the report shall include an appropriate remark.

10. Descriptive Information for Soils

10.1 Angularity—Describe the angularity of the sand (coarse sizes only), gravel, cobbles, and boulders, as angular, subangular, subrounded, or rounded in accordance with the criteria in Table 1 and Fig. 3. A range of angularity may be stated, such as: subrounded to rounded.

10.2 *Shape*—Describe the shape of the gravel, cobbles, and boulders as flat, elongated, or flat and elongated if they meet the criteria in Table 2 and Fig. 4. Otherwise, do not mention the shape. Indicate the fraction of the particles that have the shape, such as: one-third of the gravel particles are flat.

TABLE 1 Criteria for Describing Angularity of Coarse-Grained Particles (see Fig. 3)

Description	Criteria
Angular	Particles have sharp edges and relatively plane sides with unpolished surfaces
Subangular	Particles are similar to angular description but have rounded edges
Subrounded	Particles have nearly plane sides but have well-rounded corners and edges
Rounded	Particles have smoothly curved sides and no edges

10.3 *Color*—Describe the color. Color is an important property in identifying organic soils, and within a given locality it may also be useful in identifying materials of similar geologic origin. If the sample contains layers or patches of varying colors, this shall be noted and all representative colors shall be described. The color shall be described for moist samples. If the color represents a dry condition, this shall be stated in the report.

10.4 *Odor*—Describe the odor if organic or unusual. Soils containing a significant amount of organic material usually have a distinctive odor of decaying vegetation. This is especially apparent in fresh samples, but if the samples are dried, the odor may often be revived by heating a moistened sample. If the odor is unusual (petroleum product, chemical, and the like), it shall be described.

10.5 *Moisture Condition*—Describe the moisture condition as dry, moist, or wet, in accordance with the criteria in Table 3.

10.6 *HCl Reaction*—Describe the reaction with HCl as none, weak, or strong, in accordance with the critera in Table

(a) Rounded

(b) Angular

(c) Subrounded

(d) Subangular

FIG. 3 Typical Angularity of Bulky Grains

TABLE 2 Criteria for Describing Particle Shape (see Fig. 4)

The particle shape shall be described as follows where length, width, and thickness refer to the greatest, intermediate, and least dimensions of a particle, respectively.

Flat	Particles with width/thickness > 3
Elongated	Particles with length/width > 3
Flat and elongated	Particles meet criteria for both flat and elongated

4. Since calcium carbonate is a common cementing agent, a report of its presence on the basis of the reaction with dilute hydrochloric acid is important.

10.7 *Consistency*—For intact fine-grained soil, describe the consistency as very soft, soft, firm, hard, or very hard, in accordance with the criteria in Table 5. This observation is inappropriate for soils with significant amounts of gravel.

10.8 *Cementation*—Describe the cementation of intact coarse-grained soils as weak, moderate, or strong, in accordance with the criteria in Table 6.

10.9 *Structure*—Describe the structure of intact soils in accordance with the criteria in Table 7.

10.10 *Range of Particle Sizes*—For gravel and sand components, describe the range of particle sizes within each component as defined in 3.1.2 and 3.1.6. For example, about 20 % fine to coarse gravel, about 40 % fine to coarse sand.

10.11 *Maximum Particle Size*—Describe the maximum particle size found in the sample in accordance with the following information:

10.11.1 *Sand Size*—If the maximum particle size is a sand size, describe as fine, medium, or coarse as defined in 3.1.6. For example: maximum particle size, medium sand.

10.11.2 *Gravel Size*—If the maximum particle size is a gravel size, describe the maximum particle size as the smallest sieve opening that the particle will pass. For example, maxi-

PARTICLE SHAPE

W = WIDTHT = THICKNESS L = LENGTH

FLAT: W/T > 3 ELONGATED: L/W > 3 FLAT AND ELONGATED: - meets both criteria

FIG. 4 Criteria for Particle Shape

TABLE 3 Criteria for Describing Moisture Condition

Description	Criteria
Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
Wet	Visible free water, usually soil is below water table

TABLE 4 Criteria for Describing the Reaction With HCI

Description	Criteria
None	No visible reaction
Weak	Some reaction, with bubbles forming slowly
Strong	Violent reaction, with bubbles forming immediately

TABLE 5 Criteria for Describing Consistency

Description	Criteria
Very soft	Thumb will penetrate soil more than 1 in. (25 mm)
Soft	Thumb will penetrate soil about 1 in. (25 mm)
Firm	Thumb will indent soil about 1/4 in. (6 mm)
Hard	Thumb will not indent soil but readily indented with thumbnail
Very hard	Thumbnail will not indent soil

TABLE 6 Criteria for Describing Cementation

Description	Criteria
Weak	Crumbles or breaks with handling or little finger pressure
Moderate	Crumbles or breaks with considerable finger pressure
Strong	Will not crumble or break with finger pressure

TABLE 7 Criteria for Describing Structure

Description	Criteria
Stratified	Alternating layers of varying material or color with layers at least 6 mm thick; note thickness
Laminated	Alternating layers of varying material or color with the layers less than 6 mm thick; note thickness
Fissured	Breaks along definite planes of fracture with little resistance to fracturing
Slickensided	Fracture planes appear polished or glossy, sometimes striated
Blocky	Cohesive soil that can be broken down into small angular lumps which resist further breakdown
Lensed	Inclusion of small pockets of different soils, such as small lenses of sand scattered through a mass of clay; note thickness
Homogeneous	Same color and appearance throughout

mum particle size, $1\frac{1}{2}$ in. (will pass a $1\frac{1}{2}$ -in. square opening but not a $\frac{3}{4}$ -in. square opening).

10.11.3 *Cobble or Boulder Size*—If the maximum particle size is a cobble or boulder size, describe the maximum dimension of the largest particle. For example: maximum dimension, 18 in. (450 mm).

10.12 *Hardness*—Describe the hardness of coarse sand and larger particles as hard, or state what happens when the particles are hit by a hammer, for example, gravel-size particles fracture with considerable hammer blow, some gravel-size particles crumble with hammer blow. "Hard" means particles do not crack, fracture, or crumble under a hammer blow.

10.13 Additional comments shall be noted, such as the presence of roots or root holes, difficulty in drilling or augering hole, caving of trench or hole, or the presence of mica.

10.14 A local or commercial name or a geologic interpretation of the soil, or both, may be added if identified as such.

10.15 A classification or identification of the soil in accordance with other classification systems may be added if identified as such.

11. Identification of Peat

11.1 A sample composed primarily of vegetable tissue in
various stages of decomposition that has a fibrous to amorphous texture, usually a dark brown to black color, and an organic odor, shall be designated as a highly organic soil and
shall be identified as peat, PT, and not subjected to the identification procedures described hereafter.

12. Preparation for Identification

12.1 The soil identification portion of this practice is based on the portion of the soil sample that will pass a 3-in. (75-mm) sieve. The larger than 3-in. (75-mm) particles must be removed, manually, for a loose sample, or mentally, for an intact sample before classifying the soil.

12.2 Estimate and note the percentage of cobbles and the percentage of boulders. Performed visually, these estimates will be on the basis of volume percentage.

Note 9—Since the percentages of the particle-size distribution in Test Method D 2487 are by dry weight, and the estimates of percentages for gravel, sand, and fines in this practice are by dry weight, it is recommended that the report state that the percentages of cobbles and boulders are by volume.

12.3 Of the fraction of the soil smaller than 3 in. (75 mm), estimate and note the percentage, by dry weight, of the gravel, sand, and fines (see Appendix X4 for suggested procedures).

NOTE 10—Since the particle-size components appear visually on the basis of volume, considerable experience is required to estimate the percentages on the basis of dry weight. Frequent comparisons with laboratory particle-size analyses should be made.

12.3.1 The percentages shall be estimated to the closest 5 %. The percentages of gravel, sand, and fines must add up to 100 %.

12.3.2 If one of the components is present but not in sufficient quantity to be considered 5 % of the smaller than 3-in. (75-mm) portion, indicate its presence by the term *trace*, for example, trace of fines. A trace is not to be considered in the total of 100 % for the components.

13. Preliminary Identification

13.1 The soil is *fine grained* if it contains 50 % or more fines. Follow the procedures for identifying fine-grained soils of Section 14.

13.2 The soil is *coarse grained* if it contains less than 50 % fines. Follow the procedures for identifying coarse-grained soils of Section 15.

14. Procedure for Identifying Fine-Grained Soils

14.1 Select a representative sample of the material for examination. Remove particles larger than the No. 40 sieve (medium sand and larger) until a specimen equivalent to about a handful of material is available. Use this specimen for performing the dry strength, dilatancy, and toughness tests.

14.2 Dry Strength:

14.2.1 From the specimen, select enough material to mold into a ball about 1 in. (25 mm) in diameter. Mold the material until it has the consistency of putty, adding water if necessary.

14.2.2 From the molded material, make at least three test specimens. A test specimen shall be a ball of material about $\frac{1}{2}$ in. (12 mm) in diameter. Allow the test specimens to dry in air, or sun, or by artificial means, as long as the temperature does not exceed 60°C.

14.2.3 If the test specimen contains natural dry lumps, those that are about $\frac{1}{2}$ in. (12 mm) in diameter may be used in place of the molded balls.

NOTE 11—The process of molding and drying usually produces higher strengths than are found in natural dry lumps of soil.

14.2.4 Test the strength of the dry balls or lumps by crushing between the fingers. Note the strength as none, low, medium, high, or very high in accorance with the criteria in Table 8. If natural dry lumps are used, do not use the results of any of the lumps that are found to contain particles of coarse sand.

14.2.5 The presence of high-strength water-soluble cementing materials, such as calcium carbonate, may cause exceptionally high dry strengths. The presence of calcium carbonate can usually be detected from the intensity of the reaction with dilute hydrochloric acid (see 10.6).

14.3 Dilatancy:

14.3.1 From the specimen, select enough material to mold into a ball about $\frac{1}{2}$ in. (12 mm) in diameter. Mold the material, adding water if necessary, until it has a soft, but not sticky, consistency.

14.3.2 Smooth the soil ball in the palm of one hand with the blade of a knife or small spatula. Shake horizontally, striking the side of the hand vigorously against the other hand several times. Note the reaction of water appearing on the surface of the soil. Squeeze the sample by closing the hand or pinching the soil between the fingers, and note the reaction as none, slow, or rapid in accordance with the criteria in Table 9. The reaction is the speed with which water appears while shaking, and disappears while squeezing.

14.4 Toughness:

Description

None

Low

High

Medium

Very high

14.4.1 Following the completion of the dilatancy test, the test specimen is shaped into an elongated pat and rolled by hand on a smooth surface or between the palms into a thread about ¹/₈ in. (3 mm) in diameter. (If the sample is too wet to roll easily, it should be spread into a thin layer and allowed to lose

TABLE 8 Criteria for Describing Dry Strength

of handling

pressure

surface

hard surface

considerable finger pressure

Criteria

The dry specimen crumbles into powder with mere pressure

The dry specimen crumbles into powder with some finger

The dry specimen cannot be broken with finger pressure. Specimen will break into pieces between thumb and a hard

The dry specimen cannot be broken between the thumb and a

The dry specimen breaks into pieces or crumbles with

TABLE 9 Criteria for Describing Dilatancy

Description	Criteria
None	No visible change in the specimen
Slow	Water appears slowly on the surface of the specimen during shaking and does not disappear or disappears slowly upon squeezing
Rapid	Water appears quickly on the surface of the specimen during shaking and disappears quickly upon squeezing

some water by evaporation.) Fold the sample threads and reroll repeatedly until the thread crumbles at a diameter of about ¹/₈ in. The thread will crumble at a diameter of ¹/₈ in. when the soil is near the plastic limit. Note the pressure required to roll the thread near the plastic limit. Also, note the strength of the thread. After the thread crumbles, the pieces should be lumped together and kneaded until the lump crumbles. Note the toughness of the material during kneading.

14.4.2 Describe the toughness of the thread and lump as low, medium, or high in accordance with the criteria in Table 10.

14.5 *Plasticity*—On the basis of observations made during the toughness test, describe the plasticity of the material in accordance with the criteria given in Table 11.

14.6 Decide whether the soil is an *inorganic* or an *organic* fine-grained soil (see 14.8). If inorganic, follow the steps given in 14.7.

14.7 Identification of Inorganic Fine-Grained Soils:

14.7.1 Identify the soil as a *lean clay*, CL, if the soil has medium to high dry strength, no or slow dilatancy, and medium toughness and plasticity (see Table 12).

14.7.2 Identify the soil as a *fat clay*, CH, if the soil has high to very high dry strength, no dilatancy, and high toughness and plasticity (see Table 12).

14.7.3 Identify the soil as a *silt*, ML, if the soil has no to low dry strength, slow to rapid dilatancy, and low toughness and plasticity, or is nonplastic (see Table 12).

14.7.4 Identify the soil as an *elastic silt*, MH, if the soil has low to medium dry strength, no to slow dilatancy, and low to medium toughness and plasticity (see Table 12).

Note 12—These properties are similar to those for a lean clay. However, the silt will dry quickly on the hand and have a smooth, silky feel when dry. Some soils that would classify as MH in accordance with the criteria in Test Method D 2487 are visually difficult to distinguish from lean clays, CL. It may be necessary to perform laboratory testing for proper identification.

14.8 Identification of Organic Fine-Grained Soils:

14.8.1 Identify the soil as an *organic soil*, OL/OH, if the soil contains enough organic particles to influence the soil properties. Organic soils usually have a dark brown to black color and

TABLE 10 Criteria for Describing Toughness
--

Description	Criteria
Low	Only slight pressure is required to roll the thread near the plastic limit. The thread and the lump are weak and soft
Medium	Medium pressure is required to roll the thread to near the plastic limit. The thread and the lump have medium stiffness
High	Considerable pressure is required to roll the thread to near the plastic limit. The thread and the lump have very high stiffness

Copyright by ASTM Int'l (all rights reserved); Mon Aug 3 11:53:14 EDT 2009 Downloaded/printed by Sarah Coll (Mactec Engineering AFFILIATION Cons Inc) pursuant to License Agreement. No further reproductions authorized. 🖽 D 2488 – 09a

TABLE 11 Criteria for Describing Plasticity

Description	Criteria
Nonplastic	A 1/8-in. (3-mm) thread cannot be rolled at any water content
Low	The thread can barely be rolled and the lump cannot be formed when drier than the plastic limit
Medium	The thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. The lump crumbles when drier than the plastic limit
High	It takes considerable time rolling and kneading to reach the plastic limit. The thread can be rerolled several times after reaching the plastic limit. The lump can be formed without crumbling when drier than the plastic limit

TABLE 12 Identification of Inorganic Fine-Grained Soils from Manual Tests

_				
	Soil Symbol	Dry Strength	Dilatancy	Toughness and Plasticity
	ML	None to low	Slow to rapid	Low or thread cannot be formed
	CL	Medium to high	None to slow	Medium
	MH	Low to medium	None to slow	Low to medium
	CH	High to very high	None	High

may have an organic odor. Often, organic soils will change color, for example, black to brown, when exposed to the air. Some organic soils will lighten in color significantly when air dried. Organic soils normally will not have a high toughness or plasticity. The thread for the toughness test will be spongy.

NOTE 13—In some cases, through practice and experience, it may be possible to further identify the organic soils as organic silts or organic clays, OL or OH. Correlations between the dilatancy, dry strength, toughness tests, and laboratory tests can be made to identify organic soils in certain deposits of similar materials of known geologic origin.

14.9 If the soil is estimated to have 15 to 25 % sand or gravel, or both, the words "with sand" or "with gravel" (whichever is more predominant) shall be added to the group name. For example: "lean clay with sand, CL" or "silt with gravel, ML" (see Fig. 1a and Fig. 1b). If the percentage of sand is equal to the percentage of gravel, use "with sand."

14.10 If the soil is estimated to have 30 % or more sand or gravel, or both, the words "sandy" or "gravelly" shall be added to the group name. Add the word "sandy" if there appears to be more sand than gravel. Add the word "gravelly" if there appears to be more gravel than sand. For example: "sandy lean clay, CL", "gravelly fat clay, CH", or "sandy silt, ML" (see Fig. 1a and Fig. 1b). If the percentage of sand is equal to the percent of gravel, use "sandy."

15. Procedure for Identifying Coarse-Grained Soils

(Contains less than 50 % fines)

15.1 The soil is a *gravel* if the percentage of gravel is estimated to be more than the percentage of sand.

15.2 The soil is a *sand* if the percentage of gravel is estimated to be equal to or less than the percentage of sand.

15.3 The soil is a *clean gravel* or *clean sand* if the percentage of fines is estimated to be 5 % or less.

15.3.1 Identify the soil as a *well-graded gravel*, GW, or as a *well-graded sand*, SW, if it has a wide range of particle sizes and substantial amounts of the intermediate particle sizes.

15.3.2 Identify the soil as a *poorly graded gravel*, GP, or as a *poorly graded sand*, SP, if it consists predominantly of one size (uniformly graded), or it has a wide range of sizes with some intermediate sizes obviously missing (gap or skip graded).

15.4 The soil is either a *gravel with fines* or a *sand with fines* if the percentage of fines is estimated to be 15 % or more.

15.4.1 Identify the soil as a *clayey gravel*, GC, or a *clayey sand*, SC, if the fines are clayey as determined by the procedures in Section 14.

15.4.2 Identify the soil as a *silty gravel*, GM, or a *silty sand*, SM, if the fines are silty as determined by the procedures in Section 14.

15.5 If the soil is estimated to contain 10 % fines, give the soil a dual identification using two group symbols.

15.5.1 The first group symbol shall correspond to a clean gravel or sand (GW, GP, SW, SP) and the second symbol shall correspond to a gravel or sand with fines (GC, GM, SC, SM).

15.5.2 The group name shall correspond to the first group symbol plus the words "with clay" or "with silt" to indicate the plasticity characteristics of the fines. For example: "well-graded gravel with clay, GW-GC" or "poorly graded sand with silt, SP-SM" (see Fig. 2).

15.6 If the specimen is predominantly sand or gravel but contains an estimated 15 % or more of the other coarse-grained constituent, the words "with gravel" or "with sand" shall be added to the group name. For example: "poorly graded gravel with sand, GP" or "clayey sand with gravel, SC" (see Fig. 2).

15.7 If the field sample contains any cobbles or boulders, or both, the words "with cobbles" or "with cobbles and boulders" shall be added to the group name. For example: "silty gravel with cobbles, GM."

16. Report

16.1 The report shall include the information as to origin, and the items indicated in Table 13.

NOTE 14—*Example: Clayey Gravel with Sand and Cobbles, GC*— About 50 % fine to coarse, subrounded to subangular gravel; about 30 % fine to coarse, subrounded sand; about 20 % fines with medium plasticity, high dry strength, no dilatancy, medium toughness; weak reaction with HCl; original field sample had about 5 % (by volume) subrounded cobbles, maximum dimension, 150 mm.

In-Place Conditions-Firm, homogeneous, dry, brown

Geologic Interpretation-Alluvial fan

NOTE 15—Other examples of soil descriptions and identification are given in Appendix X1 and Appendix X2.

NOTE 16—If desired, the percentages of gravel, sand, and fines may be stated in terms indicating a range of percentages, as follows:

Trace-Particles are present but estimated to be less than 5 %

Few—5 to 10 % *Little*—15 to 25 %

Some—30 to 45 %

Mostly-50 to 100 %

16.2 If, in the soil description, the soil is identified using a classification group symbol and name as described in Test Method D 2487, it must be distinctly and clearly stated in log forms, summary tables, reports, and the like, that the symbol and name are based on visual-manual procedures.

🖽 D 2488 – 09a

TABLE 13 Checklist for Description of Soils

1. Group name

- 2. Group symbol
- 3. Percent of cobbles or boulders, or both (by volume)
- 4. Percent of gravel, sand, or fines, or all three (by dry weight)
- 5. Particle-size range:

Gravel-fine, coarse

- Sand—fine, medium, coarse 6. Particle angularity: angular, subangular, subrounded, rounded
- 7. Particle shape: (if appropriate) flat, elongated, flat and elongated
- 8. Maximum particle size or dimension
- 9. Hardness of coarse sand and larger particles
- 10. Plasticity of fines: nonplastic, low, medium, high
- 11. Dry strength: none, low, medium, high, very high
- 12. Dilatancy: none, slow, rapid
- 13. Toughness: low, medium, high
- 14. Color (in moist condition)
- 15. Odor (mention only if organic or unusual)
- 16. Moisture: dry, moist, wet
- 17. Reaction with HCI: none, weak, strong
- For intact samples:
- 18. Consistency (fine-grained soils only): very soft, soft, firm, hard, very hard
- 19. Structure: stratified, laminated, fissured, slickensided, lensed, homogeneous
- 20. Cementation: weak, moderate, strong
- 21. Local name
- 22. Geologic interpretation
- Additional comments: presence of roots or root holes, presence of mica, gypsum, etc., surface coatings on coarse-grained particles, caving or sloughing of auger hole or trench sides, difficulty in augering or excavating, etc.

17. Precision and Bias

17.1 This practice provides qualitative information only, therefore, a precision and bias statement is not applicable.

18. Keywords

18.1 classification; clay; gravel; organic soils; sand; silt; soil classification; soil description; visual classification

APPENDIXES

(Nonmandatory Information)

X1. EXAMPLES OF VISUAL SOIL DESCRIPTIONS

X1.1 The following examples show how the information required in 16.1 can be reported. The information that is included in descriptions should be based on individual circumstances and need.

X1.1.1 *Well-Graded Gravel with Sand (GW)*—About 75 % fine to coarse, hard, subangular gravel; about 25 % fine to coarse, hard, subangular sand; trace of fines; maximum size, 75 mm, brown, dry; no reaction with HCl.

X1.1.2 Silty Sand with Gravel (SM)—About 60 % predominantly fine sand; about 25 % silty fines with low plasticity, low dry strength, rapid dilatancy, and low toughness; about 15 % fine, hard, subrounded gravel, a few gravel-size particles fractured with hammer blow; maximum size, 25 mm; no reaction with HCl (Note—Field sample size smaller than recommended).

In-Place Conditions—Firm, stratified and contains lenses of silt 1 to 2 in. (25 to 50 mm) thick, moist, brown to gray; in-place density 106 lb/ft³; in-place moisture 9 %.

X1.1.3 Organic Soil (OL/OH)—About 100 % fines with low plasticity, slow dilatancy, low dry strength, and low toughness; wet, dark brown, organic odor; weak reaction with HCl.

X1.1.4 Silty Sand with Organic Fines (SM)—About 75 % fine to coarse, hard, subangular reddish sand; about 25 % organic and silty dark brown nonplastic fines with no dry strength and slow dilatancy; wet; maximum size, coarse sand; weak reaction with HCl.

X1.1.5 Poorly Graded Gravel with Silt, Sand, Cobbles and Boulders (GP-GM)—About 75 % fine to coarse, hard, subrounded to subangular gravel; about 15 % fine, hard, subrounded to subangular sand; about 10 % silty nonplastic fines; moist, brown; no reaction with HCl; original field sample had about 5 % (by volume) hard, subrounded cobbles and a trace of hard, subrounded boulders, with a maximum dimension of 18 in. (450 mm).

X2. USING THE IDENTIFICATION PROCEDURE AS A DESCRIPTIVE SYSTEM FOR SHALE, CLAYSTONE, SHELLS, SLAG, CRUSHED ROCK, AND THE LIKE

X2.1 The identification procedure may be used as a descriptive system applied to materials that exist in-situ as shale, claystone, sandstone, siltstone, mudstone, etc., but convert to soils after field or laboratory processing (crushing, slaking, and the like).

X2.2 Materials such as shells, crushed rock, slag, and the like, should be identified as such. However, the procedures used in this practice for describing the particle size and plasticity characteristics may be used in the description of the material. If desired, an identification using a group name and symbol according to this practice may be assigned to aid in describing the material.

X2.3 The group symbol(s) and group names should be placed in quotation marks or noted with some type of distinguishing symbol. See examples.

X2.4 Examples of how group names and symbols can be incororated into a descriptive system for materials that are not naturally occurring soils are as follows:

X2.4.1 *Shale Chunks*—Retrieved as 2 to 4-in. (50 to 100mm) pieces of shale from power auger hole, dry, brown, no reaction with HCl. After slaking in water for 24 h, material identified as "Sandy Lean Clay (CL)"; about 60 % fines with medium plasticity, high dry strength, no dilatancy, and medium toughness; about 35 % fine to medium, hard sand; about 5 % gravel-size pieces of shale.

X2.4.2 *Crushed Sandstone*—Product of commercial crushing operation; "Poorly Graded Sand with Silt (SP-SM)"; about 90 % fine to medium sand; about 10 % nonplastic fines; dry, reddish-brown.

X2.4.3 *Broken Shells*—About 60 % uniformly graded gravel-size broken shells; about 30 % sand and sand-size shell pieces; about 10 % nonplastic fines; "Poorly Graded Gravel with Silt and Sand (GP-GM)."

X2.4.4 *Crushed Rock*—Processed from gravel and cobbles in Pit No. 7; "Poorly Graded Gravel (GP)"; about 90 % fine, hard, angular gravel-size particles; about 10 % coarse, hard, angular sand-size particles; dry, tan; no reaction with HCl.

X3. SUGGESTED PROCEDURE FOR USING A BORDERLINE SYMBOL FOR SOILS WITH TWO POSSIBLE IDENTIFICATIONS.

X3.1 Since this practice is based on estimates of particle size distribution and plasticity characteristics, it may be difficult to clearly identify the soil as belonging to one category. To indicate that the soil may fall into one of two possible basic groups, a borderline symbol may be used with the two symbols separated by a slash. For example: SC/CL or CL/CH.

X3.1.1 A borderline symbol may be used when the percentage of fines is estimated to be between 45 and 55 %. One symbol should be for a coarse-grained soil with fines and the other for a fine-grained soil. For example: GM/ML or CL/SC.

X3.1.2 A borderline symbol may be used when the percentage of sand and the percentage of gravel are estimated to be about the same. For example: GP/SP, SC/GC, GM/SM. It is practically impossible to have a soil that would have a borderline symbol of GW/SW.

X3.1.3 A borderline symbol may be used when the soil could be either well graded or poorly graded. For example: GW/GP, SW/SP.

X3.1.4 A borderline symbol may be used when the soil could either be a silt or a clay. For example: CL/ML, CH/MH, SC/SM.

X3.1.5 A borderline symbol may be used when a finegrained soil has properties that indicate that it is at the boundary between a soil of low compressibility and a soil of high compressibility. For example: CL/CH, MH/ML.

X3.2 The order of the borderline symbols should reflect similarity to surrounding or adjacent soils. For example: soils in a borrow area have been identified as CH. One sample is considered to have a borderline symbol of CL and CH. To show similarity, the borderline symbol should be CH/CL.

X3.3 The group name for a soil with a borderline symbol should be the group name for the first symbol, except for:

CL/CH lean to fat clay ML/CL clayey silt CL/ML silty clay

X3.4 The use of a borderline symbol should not be used indiscriminately. Every effort shall be made to first place the soil into a single group.

X4. SUGGESTED PROCEDURES FOR ESTIMATING THE PERCENTAGES OF GRAVEL, SAND, AND FINES IN A SOIL SAMPLE

X4.1 *Jar Method*—The relative percentage of coarse- and fine-grained material may be estimated by thoroughly shaking a mixture of soil and water in a test tube or jar, and then allowing the mixture to settle. The coarse particles will fall to the bottom and successively finer particles will be deposited with increasing time; the sand sizes will fall out of suspension in 20 to 30 s. The relative proportions can be estimated from the relative volume of each size separate. This method should be correlated to particle-size laboratory determinations.

X4.2 *Visual Method*—Mentally visualize the gravel size particles placed in a sack (or other container) or sacks. Then, do the same with the sand size particles and the fines. Then, mentally compare the number of sacks to estimate the percentage of plus No. 4 sieve size and minus No. 4 sieve size present.

The percentages of sand and fines in the minus sieve size No. 4 material can then be estimated from the wash test (X4.3).

X4.3 Wash Test (for relative percentages of sand and fines)—Select and moisten enough minus No. 4 sieve size material to form a 1-in (25-mm) cube of soil. Cut the cube in half, set one-half to the side, and place the other half in a small dish. Wash and decant the fines out of the material in the dish until the wash water is clear and then compare the two samples and estimate the percentage of sand and fines. Remember that the percentage is based on weight, not volume. However, the volume comparison will provide a reasonable indication of grain size percentages.

X4.3.1 While washing, it may be necessary to break down lumps of fines with the finger to get the correct percentages.

X5. ABBREVIATED SOIL CLASSIFICATION SYMBOLS

X5.1 In some cases, because of lack of space, an abbreviated system may be useful to indicate the soil classification symbol and name. Examples of such cases would be graphical logs, databases, tables, etc.

X5.2 This abbreviated system is not a substitute for the full name and descriptive information but can be used in supplementary presentations when the complete description is referenced.

X5.3 The abbreviated system should consist of the soil classification symbol based on this standard with appropriate lower case letter prefixes and suffixes as:

Prefix:	Suffix:
s = sandy g = gravelly	s = with sand g = with gravel c = with cobbles
	D = With Doulders

X5.4 The soil classification symbol is to be enclosed in parenthesis. Some examples would be:

Abbreviated

Group Symbol and Full Name

CL, Sandy lean clay	s(CL)
SP-SM, Poorly graded sand with silt and gravel	(SP-SM)g
GP, poorly graded gravel with sand, cobbles, and	(GP)scb
ML, gravelly silt with sand and cobbles	g(ML)sc

SUMMARY OF CHANGES

Committee D18 has identified the location of selected changes to this standard since the last issue (D 2488 – 09) that may impact the use of this standard. (Approved June 15, 2009.)

(1) Revised Section 1.2.3.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).

Penobscot River Mercury Study - Phase III Engineering Evaluation

wheeler			SE	DIMENT GF	RAB LOG					
Owner:	USDC, Dis	trict of Maine		Project No .:	3616166052		Logger:			
Sub:				WO: 3 - Geopl	hysical		Crew:			
Tablet #:			Date:		Time :		Vessel:			
Coordinates:	Lat			Long			Plan Volu	me:		
Sampling S	tation:						Sub-tidal Lo	ocation?	Y	N
Weather:		Winds:		Waters:		Traffic: Non	e	Water Te	emp: _	_°F
Me	asured Water	Depth [NAVD88]:			Total Nu	mber of De	ployments:			
Correction to	NAVD88 (+/- f	t. from NAVD88):			Conditions:					
Mudline	(Corrected De	epth) @ NAVD88:								
	Study E	epth (-NAVD88):			L					
		A	II Recover	ed Quantiti	es are in Pe	ercent				
Deploy	/ment	Recovery		Descri	ption			Sample	ID	
				Ť						
Number of	containers:					Sampler T	Grab Eq voe: Sta	Juipment andard P	onar	
Type of con	tainer:	bucket	liner bag	jar	other	Capacity	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		ornar	
Live Organis	sms present	ΥN			Com	ments				
Oil-Like	Present	Y N								
Odor P Debris I	resent Present	Y N Y N								
Photo Nu	nbers									

Penobscot River Mercury Study - Phase III Engineering Evaluation

wheeler			S	EDIMENT C	ORE LOG					
Owner:	USDC, Dis	strict of Ma	aine	Project No.:	3616166052		Logger:			
Sub:			WO:			Crew:				
Tablet #:			Date:		Time :		Vessel:			
Coordinates: Lat			Long			Plan Volume:				
Sampling	Station:			Deploy No.		Sub-tidal L	ocation?	Y	N	
Weather:		Winds:			Traffic:		Water Te	emp:		
Meas	ured Water Dep	th [NAVD88]:	Core P	enetration l	_ength (ft.):	:			
Corre	ection to NAVD8	38 (+/- ft. fror NAVD88	n)·	Recove	ered Core I	enath (ft)				
Mudline (C	Corrected Depth	@ NAVD88	<u>}.</u>	Sample	e Lenath Re	tained (ft.)	:			
	Study Dept	h (-NAVD88).		Acceptable	Core (80%	recoverv)	:		
	Required Peneti	ration Length	1:		Core V	olume Reta	ined (gal.):	:		
		A	Length M	easuremen	ts are in De	cimal Fe	et			
Sa	mple Interval	(ft.)	Sam	ple ld #		D	escription			
Тор										
■ Bottom										
	()))		<u> </u>		<u> </u>	1	Core V	olumes		
Number o	t containers:					Nominal c	ore-barrel	Τ		
Type of co	ntainer:	bucket	liner bag	jar	other	diameter		EST. Vo	olume	
Liner Type	e: Soft	Hard	Vibracorer: Push Corer		Slambar	4.0" 3.5"		.50gal/ft .33gal/ft		
	iomo procent	V N			Com	monte		looguin		
Oil-Like	e Present	Y N	-		Com	intento				
Odor	Present	ΥN								
Debris	Present	Y N	4							
Photo Nu	umbers									

Penobscot River Mercury Study - Phase III Engineering Evaluation

Sodimont Tra	n Forme

wheeler			113	
Date:	Logger	:		
Time:	Crew	:	Weather:	
Location:	Vessel	:	Winds:	
Lat:	Sub-tie	dal Location? Y N	Surface Waters:	
Long:	Tide	:	Open Waters:	
Retrieval Date:	10/15/2016	Station Na	ame: FF_TRAP	1
I. Description of Trap				
A. Trap Method	Outside Cover		[
	Uncovered			
Trap Types	Inside Cover		Trap Size	in Inches
(Circle)	<u>Ot</u> her (describe below)		Eel pot	9X11X24
			Lobster Pot	12X12X36
F	······································	Dualeas Calab		
Furthe	er description (if needed):	Burlap Sack		
B Sediment Recover	ed		Δhundant:	80-100%
D. Scament Recover	Twigs & Bark			00 100/0
			 Occasional:	50-70%
Chin Sizo	Shredded Mulch (1-2")		Scattered:	20-50%
	Source (1/4")		Scattered.	20-30%
	Darticle (grain)			0.5%
				0-5%
	Base Sediment			
Gra	base Sediment			
Gra	ivel Saliu Siit			
Sediment Des	scription			
Jeament De.				
Collection Me	ethod:		Photographed:	Y N
Comments:			Collected:	Y N
commentor				
Samples:				

Penobscot River Mercury Study - Phase III Engineering Evaluation VISUAL ASSESSMENT Tablet #: Date: Logger: Crew: Weather: Time: Location: Vessel: Winds: Sub-tidal Location? Ν **Surface Waters:** Lat: γ Tide: **Open Waters:** Long: I. Surf Line Abundant: A. Strata 1 Twigs & Bark 80-100% Leaves & Grass Occasional: 50-70% Chip Size Shredded Mulch (1-2") Scattered: 20-50% Some: Sawdust (1/4") 5-20% Particle (grain) Trace: 0-5% **Base Sediment** Intermingled Wood Chip Υ Ν % chip Sand Silt Munsel Color: Gravel Redox: Sediment Description: B. Strata 2 Twigs & Bark Abundant: 80-100% Leaves & Grass Occasional: 50-70% Chip Size Shredded Mulch (1-2") Scattered: 20-50% Sawdust (1/4") Some: 5-20% Particle (grain) Trace: 0-5% Base Sediment Intermingled Wood Chip γ Ν % chip Sand Gravel Munsel Color: Silt Redox: Sediment Description: **Collection Method:** Ponar Photographed: Υ Collected: Comments: Υ II. Mud Line A. WC Explosed above mudline Υ Ν Approx. Surface Thickness (in): Collection Method: Photographed: Υ Comments: Collected: Υ B. WC below mudline

Υ

Ν

Ν

Ν

Ν

Ν

Ν

Ν

Υ

Υ

Photographed:

Collected:

III. Edge Conditions Bulkhead (Circle) Rock (cliff) **Boulder Outcrops IV. Bank Conditions Sloping Mudflats** (Circle) **Slumped Mudflats**

Deposition band offset from surf line

Vegetated

Approx. Surface Thickness (in):

Collection Method:

Comments:

SOP No. S-10

AMEC FOSTER WHEELER ENVIRONMENT & INFRASTRUCTURE, INC. STANDARD OPERATING PROCEDURE

DUCK COLLECTION AND SAMPLING OF BREAST MUSCLE TISSUE AND BLOOD

DUCK COLLECTION AND SAMPLING OF BREAST MUSCLE TISSUE AND BLOOD

OBJECTIVE

This standard operating procedure (SOP) sets forth the field procedures used to collect duck tissue and blood samples. Project personnel will possess the appropriate scientific collection permits and training.

Pre-Collection Activities

Staff assigned the responsibility of duck sample collection will be provided the following:

- Work documents (data sheets, copies of permits)
- Target species information
- Blood and tissue sampling equipment
- Collection and processing procedures
- Special instructions (if any)

Sample Collection Procedures

The general procedures to be followed when sampling ducks are outlined below.

Materials

The following collection equipment and materials will be available, as appropriate:

- Health and safety equipment (as required by the health and safety plan)
- Identification Guide to North American Birds: Part I (Pyle 1997)
- The Tabular Pyle (Sakai and Ralph 2007)
- Wing ruler
- Tail ruler
- Leg gauge
- Weighing scale(s)
- Weighing bags
- Clean holding bags
- Net guns
- Wire traps (and bait)
- Alcohol wipes
- Antiseptic ointment
- Nitrile gloves
- Vacutainer tubes (royal blue) with EDTA
- 25-gauge needle syringes
- Sharps container

- Powdered styptic for clotting minor cuts or abrasions
- Scalpels with spare blades
- Tweezers
- Scissors
- Pens/Pencils/Sharpies
- Field Notebook
- Digital Camera
- Handheld GPS
- Ziploc bags
- Sample coolers (with ice)

Field Notes

Field notes will be recorded during sampling activities, and at a minimum, will include the following information:

- Names of field crew and additional personnel present on site
- General weather conditions
- Date, time, and location, including a general description and GPS coordinates
- Capture technique
- Sampling duration
- General observations
- Representative photographs
- Banding information (if applicable) and sample identification from blood and tissue collection

Blood and Tissue Collection Form

Blood and tissue collection forms must be filled out completely and include the following information:

- 4-Digit Alpha Species Code
- Sample identification number
- Month/Day/Year
- Location
- Time (24-Hour)
- Weight
- Number of vacutainer tubes
- Number of tissue samples
- Sampler initials

Field Forms

Field forms may include the electronic field data record and chain of custody forms. Forms will be filled out completely and include the below listed information.

Field Data Record

- Collector's initials and method of collection
- Date, time, and location
- Number and type of individual samples
- Coordinates
- Photo numbers (if taken)
- Notes

Chain of Custody

- Project name and number
- Date and time (24-hour)
- Sample identification numbers
- Analytical method requested
- Signature of recording personnel

Sample Capture Procedures

Wire Traps. Wire traps can be an effective collection procedure for trapping multiple ducks at a time. Trapping should be conducted following the hunting season closure. Collection sites should be baited to accustom the ducks to finding food at the site. Toward the end of the baiting period open wire traps should be constructed on the bait site, allowing free access into and out of the baited trap. After ducks begin to willingly enter the open traps to eat the bait, the traps should be rebaited and set. To set, the traps should be closed, leaving only narrow access chutes which allowed the ducks to enter, but not exit the trap.

Net Gun. A pneumatic net gun is a suitable capture technique for short-duration handling, generally less than 10 minutes, which enables rapid capture and release of target duck. Net guns should only be used to capture a single duck at a time, as attempts to capture two or more ducks within a single net are likely to result in injury, or possibly death. At least two capture guns with loaded nets, or a gun with detachable barrel and multiple nets, should be available to the gunner for each capture. This provides a back-up that can be used to reduce chase duration if the first net missed the target duck or to re-net a duck if the first net did not provide adequate restraint. Pursuit and capture must occur on smooth, open terrain with good footing. Final, close pursuit for the purpose of netting a duck should be kept short (less than 1 min of strenuous flying), and must always be terminated when the target duck show signs of fatigue. Ducks must be handled and released as quickly as possible following capture. Attempts to capture two ducks with separate nets prior to handling and sampling must not be done unless there is an additional handler present to attend to the first captured duck while the net gunner and second handler pursue a second duck. Where multiple individuals are to be captured from the same flock or group, the capture crew must avoid causing fatigue and stress in non-target ducks.

Sample Collecting Procedures

Blood Collection. Blood should be collected from the inner brachial artery at the base of the wing, or from the femoral vein in the leg, using a 25 gauge needle syringe. However, the leg veins are typically not as good for drawing blood, and it is recommended that draws are attempted from both wings prior to attempting to draw from a leg. Blood should be collected into a trace element vacutainer (royal blue) containing EDTA to prevent clotting.

Wear nitrile gloves during blood collection. To collect blood from the brachial artery on the inside of either wing, have one person hold the bird on its back on a flat work surface. Spread one wing out and pluck the feathers from the inside of the "elbow" and wipe the area with alcohol until the darker brachial artery going over the wing bone is visible.

Remove the cap and sleeve of the syringe, and twist and remove the needle cover. As the needle is threaded on the syringe, twist the needle cover clockwise so it is tightening the needle while removing the cover. Pull out the plunger of the syringe about $\frac{1}{2}$ and push it back in, this breaks the seal and makes it easier to pull gently on the plunger when drawing blood.

Use both hands on the syringe when collecting blood. One hand steadies the syringe and the other controls the plunger on the syringe. The needle should enter at a very slight angle (almost parallel) to the artery. Do not go all the way through artery as it is more difficult to find the center when the needle is pulled back through the artery. Once the needle is inserted into the skin, pull back very slightly on the plunger so that when the needle enters the artery, blood will immediately enter the syringe. Once good flow of blood is started, freeze needle movement, as any movement may remove the needle from the artery. Gradually pull back on the syringe plunger; do not pull back hard on the syringe plunger as the resulting suction may collapse the artery. The target collection is 1.5 cc (1.5 ml) of blood. Sometimes good blood flow is difficult and the needle must be removed to try the other wing.

Once sufficient blood is obtained, remove the needle, press briefly on the puncture spot and release the bird. Only rarely does the bird bleed enough to notice it on the feathers after its release. Transfer the blood from the syringe to a vacutainer tube (royal blue with EDTA). As the tubes have a slight vacuum, stick the needle into the tube and the blood will be sucked out of the syringe and into the tube. The 1.5 ml of blood should be gently mixed, appropriately labeled, and placed on ice for transport to the lab. Make sure that needles are disposed of in a sharps container.

Tissue Collection. Tissue collection from "taken" ducks may be conducted in the field or whole ducks may be shipped on ice to the laboratory. Both breasts are to be collected from each duck. Wear nitrile gloves during tissue collection. Insert a clean scalpel or a knife to make a midline incision through the skin of the breast (Figure 1A). Take care not to penetrate the body cavity, particularly in the abdominal region. Continue the skin incision to the vent and to the base of the neck, and reflect the skin away from the neck, breast, and abdominal areas (Figure 1B). Use the thumb and the first finger of each hand to reflect the skin, it is easiest to place the thumb and the first finger of each neck and peneing in the breast area and then push and gently pull the skin to the side. When an opening in the skin has been established, work towards the bill and then the vent.

Make a shallow transverse incision just below the breast muscles and sternum (Figure 1C). Insert the thumb of one gloved hand into the incision along the midpoint of the sternum and

apply a slight pressure upwards, then with a scissors in the other gloved hand, carefully cut through the ribs extending the cut on each side of the breast through the area of the wishbone (Figure aD). Gently separate the breastplate from the carcass, and use a scissors or a scalpel to sever any remaining connections (Figure 1E). The breastplate may be shipped to the laboratory for final processing, or the breasts may be removed by hand manually or with a scalpel in the field. Tissue should be double-bagged in Ziploc bags, labeled, and shipped on ice to the laboratory under the appropriate chain of custody procedures.

Figure 1. Duck Breast Tissue Removal

- END OF PROCEDURE -

AMEC FOSTER WHEELER ENVIRONMENT & INFRASTRUCTURE, INC. STANDARD OPERATING PROCEDURE

DECONTAMINATION PROCEDURES

Decontamination Procedures

PURPOSE

This Standard Operating Procedure (SOP) describes the methods to be used for the decontamination of all field equipment and sample processing equipment which becomes potentially contaminated during sampling tasks. The equipment may include coring devices, dredgers, hand-augers, biota collection devices, trowels, shovels, or any other type of equipment used during field activities.

Decontamination is performed as a quality assurance measure and a safety precaution. It prevents cross- contamination between samples and also helps to maintain a clean working environment for the safety of field personnel.

Decontamination is mainly achieved by rinsing with liquids which include: tap-water (potable water), Formula 409 cleaner solution (50 % Formula and 50% potable water), and deionized (DI) water. Equipment will be allowed to air dry after being cleaned or may be wiped dry paper towels if immediate re-use is needed. The frequency of equipment use dictates that most decontamination be accomplished at each sampling site, between collection points.

This same decontamination procedure will be used for sediment, soil, biota, or any other sampling where non-dedicated equipment is being used and the potential for cross contamination exists.

RESPONSIBILITIES

It is the primary responsibility of the project Field Operations Leader and field samplers to assure that the proper decontamination procedures are followed and that all waste materials produced by decontamination are properly stored and disposed of.

It is the responsibility of the project safety officer to draft and enforce safety measures which provide the best protection for all persons involved directly with sampling and/or decontamination.

It is the responsibility of any subcontractors to follow the proper designated decontamination procedures that are stated in their contracts and outlined in the Project Health and Safety Plan.

It is the responsibility of all personnel involved with sample collection or decontamination to maintain a clean working environment and to ensure that any contaminants are not negligently introduced to the environment.

EQUIPMENT AND MATERIALS

- <u>Squeeze bottles or stainless steel sprayers</u>– labeled squeeze bottles for dispensing decontamination fluids used in the rinsing process.
- <u>Paper Towels</u> used for drying equipment after final rinse.

- <u>Cleaning containers</u> plastic or stainless steel buckets to place equipment in during the decontamination procedure
- <u>Cleaning Liquids</u> potable water, DI water, and Formula 409 cleaner solution
- <u>Cleaning Brushes</u> to be used in conjunction with decontamination fluids to facilitate removal of stuck on sample media.
- <u>Gloves</u> for personal protection and to prevent cross-contamination of samples. May be plastic or latex, disposable, powderless.
- <u>Field Clothing and Personal Protective Equipment</u> as specified in the Health and Safety Plan.
- <u>Trash bags</u> used to dispose of gloves and any other non-hazardous waste generated during sampling.

PROCEDURE

All non-dedicated equipment that comes in contact with the media that is sampled should be included in the decontamination process. Dedicated equipment does not require decontamination. Include equipment that is used for sample processing (e.g., stainless steel bowls and spoons) as well as equipment used for sample collection.

Sample collection equipment should be decontaminated between sampling locations. Sample processing equipment should be decontaminated between samples.

The standard procedures listed in the following section can be considered the procedure for full field decontamination. If different or more elaborate procedures are required for a specific task, they will be spelled out in the Field Sampling Plan (FSP). Such variations in decontamination may include following all, just part, or an expanded scope of the decontamination procedure stated herein. Any variation in the decontamination procedure should be documented in the log book and or, electronic field data record.

- Remove any solid particles (soil or sediment) from the equipment or material by brushing and then rinsing with clean water. This can be accomplished with a squeeze bottle and brush, or the equipment can be soaked in a bucket of potable water and bushed in place. This initial step is performed to remove gross contamination. Repeat the procedure until visibly free of gross contamination
- Rinse with potable water.
- Rinse with Formula 409 cleaner solution (50 % Formula and 50% potable water). This can be accomplished with a squeeze bottle and brush, or the equipment can be soaked and scrubbed in a bucket with solution.
- Thorough DI water rinse.
- Air dry or if needed for re use, dry with paper towels.

- If sampling equipment is not to be used immediately at another location, wrap the equipment in aluminum foil or place in a clean plastic bag and store in a clean safe place.
- If rinsate equipment blanks are specified in the FSP, collect rinsate by pouring DI water over sampling equipment and into sample containers.

REFERENCES

U.S. Environmental Protection Agency (USEPA), January, 1986. "Decontamination Techniques for Mobile Response Equipment Used at Waste Sites (State-of-the-Art Survey)." EPA/600/52-85/105.

- END OF PROCEDURE -

AMEC FOSTER WHEELER ENVIRONMENT & INFRASTRUCTURE, INC. STANDARD OPERATING PROCEDURE

SAMPLE CHAIN OF CUSTODY PROCEDURES

SAMPLE CHAIN OF CUSTODY PROCEDURE

INTRODUCTION

This SOP describes chain of custody procedures to be followed whenever collecting environmental samples.

CROSS-REFERENCES

- ASTM D4840-95: Guide for Sampling Chain-of-Custody Procedures
- U.S. EPA Region 4 "Environmental Investigations Standard Operating Procedures and Quality Assurance Manual," May 1996 Including 1997 Revisions
- Site-specific Health and Safety Plan

MATERIALS

DOCUMENTATION

- Work Plan
- Field Data Records (FDR)
- Chain-of-custody forms
- Sample labels
- Field logbook
- Permanent marker
- Lab contact information
- Chain-of-Custody Form

PREPARATION

Review Work Plan/Work Order to identify samples to be collected, analyses to be performed, laboratory performing the analyses, and any other project specific-objectives of the sampling program. Review sample collection SOPs for media being sampled.

SAMPLE LABELING

Enter in the log book and label each sample container with the following information: a) Project number b) Date and time of collection c) Sample location d) Sample number e) Analysis to be performed f) Sampler's initials g) Preservative If using field sample tracking system labels will be generated and printed by the field sample coordinator.

CHAIN OF CUSTODY

Definition

EPA provides the following definition of chain-of-custody:

"A sample is considered to be in your custody if any of the following criteria are met:

• The sample is in your possession or is in your view after being in your possession;

- The sample was in your possession and then locked up or sealed to prevent tampering; or
- You have placed the sample in a secured area."

Purpose

"The chain-of-custody form is functionally similar to a packing slip that accompanies a shipment of goods. The chain-of-custody form includes a chain-of-custody record located at the bottom of the form. The form is used as physical evidence of sample custody. EPA guidelines specify that official custody of samples must be maintained and documented from the time of collection until the time the samples are introduced as evidence in the event of litigation. The sampler is responsible for the care and custody of the sample until sample shipment."

Documentation

After samples are collected and labeled, fill out the chain-of-custody form. Examples of computer generated COC forms and hand written laboratory COC forms that may be used are presented in Attachment A of this SOP. The sampler becomes the initial sample custodian.

Chain-of-custody forms must be completed for every shipment of samples to an analytical laboratory.

Use indelible ink only, no pencil (a ball point pen is best). Make corrections by drawing a line through and initialing and dating the error, then enter the correct information. Erasures are not allowed.

A separate chain-of-custody form must accompany each cooler for each shipment. Place the original COC form in a zipper-type plastic bag in the cooler with the samples. The chain-of-custody forms must address all samples in that sample shipment. If multiple coolers are shipped a copy of the COC should accompany each cooler. This practice maintains the chain-of-custody for all samples in case of mis-shipment.

Transfer of Custody

When transferring the possession of samples, the individuals relinquishing and receiving custody will sign, date, and note the time on the record. Persons receiving the custody of a sample group are responsible for confirming the accuracy of the COC with regard to the number and type of sample containers for which they are accepting responsibility.

When samples are to be shipped to an analytical facility by commercial delivery service, the samples will be relinquished to the courier in sealed containers, and, if practicable, the shipment number will be noted on the COC form. When samples are transferred by commercial delivery service, a copy of the shipping documentation will serve as the COC record for the delivery service's role in the chain of custody.

The sample custodian relinquishing custody to a facility or agency will request the signature of a representative of the appropriate party acknowledging receipt of the samples. If a representative is unavailable or refuses to sign, this will be noted in the "Received by" space on the COC. When appropriate, the custody record will contain a statement that the samples were delivered to the designated location at the designated time.

Attachment A Examples Of Chain Of Custody And Hand Written Laboratory Chain Of Custody Forms

- Sant	TECE&C					I	ab.							
Sample #	Sample Date	Sample Itme	Field Sample ID	Qıy Tota	Qt Ea	y Bottle ich Materi	Size and fai	Preservative	e Med	ia Metho	al .			Fraction
56	10/35/3207	10:20	2TMA01200803XX	- 3										
					2	1 Uner	Arther Glass	it deg C	G#	POD: 0002	8			3
					1	500 mL	Poly	11800,4 deg.C	Ġ₩	TAL Versio	+ Mo (10	000.1747	6.0	τ
					2	10 mL	Giass Vial	ICL, 4 deg C	G#/	VOC# 8270	0 + TICs	6		π
50	10/35/2207	16:30	λτιγκοισκατικ											
					2	t Diter	Anther Glass	4 deg C	GW	51006-523	NOC + TIC	55		т
_					2	(0m),	Gizes Vial	TEL, 4 deg C	G#	YOC# 537	O + TICa	¢.		1
P. eller a	and a de		Data	,		Dest	Prest			Dates			Trues	
Renng	uisnes:			-	5	_ Inne:_	Kacelva	na:		Date:		-	Thee:	
Reimq	013/07/01		Dates	<u>6</u>	·	Dime:	Receive	002		Duter	1	¢	inne:	
Reituq Relinq	utshed: utshed:		Date: Date:	1	<u></u>	Thue: Time:	Rocetor Receive	nd: rd:		Date: Date:	<u></u>		fime: Time:	

- END OF PROCEDURE -

AMEC FOSTER WHEELER ENVIRONMENT AND INFRASTRUCTURE, INC. STANDARD OPERATING PROCEDURE

SAMPLE PACKAGING AND SHIPMENT

SAMPLE PACKAGING AND SHIPMENT

SCOPE AND APPLICATION

This Standard Operating Procedure (SOP) establishes methodologies for shipping samples collected during environmental field investigation/remediation activities. This SOP applies to all environmental samples including drinking water, groundwater, surface water samples, soil, and sediment samples, and treatment plant samples.

DEFINITIONS

Shipper's Declaration – A paper document describing the contents of a shipment.

HEALTH AND SAFETY WARNINGS

Shippers of dangerous goods should take all precautions to eliminate any hazards associated with the goods being shipped. The shipper should consult the most-recent version of the International Air Transportation Association (IATA) regulations regarding shipment of dangerous goods.

PERSONNEL QUALIFICATIONS

Any person designated as a shipper of dangerous goods shall be trained in the U.S. Department of Transportation Hazardous Materials Regulations, which must be renewed every two years. Shipment of environmental samples does not require specialized training; however, a familiarity with the regulations and the materials being shipped is considered beneficial.

EQUIPMENT AND SUPPLIES

Consult the most-recent version of the IATA regulations for a listing of proper shipping materials.

- Cooler -Samples -Labels -Ink pen
- Packing materials (bubble wrap) to prevent breakage, absorb leakage, and insulate samples.
- Polyethylene zip-type baggies large enough to contain the largest sample bottles.
- Custody seals if shipped through Federal Express (FEDEX) or similar shipping vendor.
- Large plastic trash bag to act as containment for the packing materials.

PROCEDURES

- Be certain that all containers are sufficiently tight, preserved, and labeled correctly. Sediment samples should be allowed to settle for a minimum of 2 hrs prior to shipping to the laboratory. The sample manger should look closely at all sediment samples to see if a clear water layer forms above the sediment. Any water layer should be decanted from the sample jar prior to shipping to the laboratory.
- 2. Clean the exterior of each sample container such that no gross contamination remains.
- 3. Complete the Chain of Custody (COC) as described SOP S-19. When the COC form is completed, verify that bottle labels, analytical fractions, and bottle numbers match what is written on the COC form.

- 4. Wrap sample containers in bubble wrap. Zip-type plastic baggies may be used as additional containment.
- 5. Line the cooler with the trash bag and add a layer of packing material. If the cooler has a drain, close and seal to prevent leakage of water from melting ice.
- 6. Place sample containers into the cooler, and pack them sufficiently to prevent them from shifting during shipment.
- 7. Place ice-filled zip-type bags on samples such that all samples are contacted by the ice. Place sufficient ice to retain the sample temperature between 2 and 6 degrees C. Place a temperature blank in with the samples.
- 8. Fill the remaining space in the cooler with packing material and close and secure the top of the trash bag.
- 9. On the chain of custody, sign in the relinquished by box and add in the subsequent received by box the name of the courier/carrier and the air bill No. (if applicable).
- 10. Place the COC into a plastic bag and tape it to the inside top of the cooler.
- 11. Close the cooler and tape the cooler shut with strapping tape or similar high-strength shipping tape.
- 12. If more than one cooler is being shipped under the same COC, copies of the COC should be placed into each additional cooler in the same manner as the original COC.
- 13. If shipped through FEDEX or other shipping vendor, apply custody seals to the cooler such that the seals must be broken in order to open the cooler.
- 14. Apply "UP Arrows" in the appropriate direction on at least opposing sides of the cooler exterior, or indicate on top "this side up".
- 15. Add the appropriate shipping address labels to the cooler along with a return address to the cooler. If more than one cooler is being shipped, add "one of " to the label so that the recipient is aware that more than one cooler should be received.

DATA AND RECORDS MANAGEMENT

A copy of the COC shall be retained by the shipper until the completed laboratory data package is received. In addition, a copy of the air bill shall also be retained for validation/custody purposes and also for payment.

REFERENCES

AMEC Environment and Infrastructure, Inc. Standard Operating Procedure for Chain of Custody S-9 Code of Federal Regulations 40 CFR Part 261.4(d) Samples. Dangerous Goods Regulations, IATA, Most-Current Version.

-END OF PROCEDURE -

SOP No. S-23

WOOD ENVIRONMENT & INFRASTRUCTURE SOLUTIONS, INC. STANDARD OPERATING PROCEDURE

SEDIMENT PROCESSING - EXTRUSION & SAMPLING

DEFINITIONS

FDR	Field Daily Record
FOL	Field Operation Lead
FSP	Field Sampling Plan
HASP	Health and Safety Plan
PM	Project Manager
PPE	Personal Protective Equipment
QAPP	Quality Assurance Project Plan
SOP	Standard Operating Procedure
Wood	Wood Environment & Infrastructure Solutions, Inc. (formerly Amec Foster Wheeler)

SEDIMENT PROCESSING – EXTRUSION & SAMPLING

PURPOSE

The purpose of this Standard Operating Procedure (SOP) is to provide a standardized method for processing a collected sediment core using incremental and mass extrusion. This SOP may be used by employees of Wood, or its subcontractors supporting the Penobscot River Estuary Project. Deviations from the procedures outlined in this document are to approved by the Project Manager (PM), Technical Lead, or Field Operation Lead prior to initiation of the sampling activity.

This SOP is a companion document to SOP-6, which outlines the sediment collection.

The methodologies and general procedures discussed in this SOP are applicable to the processing of collected sediment cores by extrusion methods in the field.

Analysis of sediment may be biological, chemical, or physical in nature and may be used to determine the following:

- toxicity
- biological availability and effects of contaminants
- benthic biota
- extent and magnitude of contamination
- contaminant migration pathway and potential source
- fate of contaminants
- physical characteristics

RESPONSIBILITIES

Project Manager – responsible for work execution in accordance with scope of work, budget, and corporate policies and procedures.

Technical Lead – designated personnel with the requisite knowledge, skills, and abilities to develop scope, provide instruction, and resolve field conditions encountered to achieve the task objectives.

Field Operation Leader - may be a Wood employee or contractor who is responsible for overseeing the sediment sampling activities. The FOL is also responsible for checking work performed and verifying that the work satisfies the specific tasks outlined by this SOP and the Field Sampling Plan (FSP). It is the responsibility of the FOL to communicate with the field personnel regarding specific collection objectives and anticipated situations that require deviation from the FSP. It is also the responsibility of the FOL to communicate the need for any deviations from the Field Sampling Plan with the appropriate personnel (Project Manager or Technical Leader).

Field Crew Member / Field Personnel - performing sediment sampling are responsible for adhering to the applicable tasks outlined in this procedure while collecting samples.

EQUIPMENT

The following list of equipment shall be maintained by the field personnel and equipped on the vessel or in the field while performing sample processing.

- <u>Aluminum foil</u> cover decontaminated equipment or used to lay sampling equipment or sample upon as a clean surface (as a separation barrier)
- <u>Brush</u> for clearing debris and contamination from sampling equipment prior to decontamination. Also, for scrubbing sampling equipment in decontamination detergent prior to rinse.
- <u>Bucket</u> 2 to 5-gallon bucket, minimum of two, one for mixing decontamination detergent, one for rinse water for equipment decontamination.
- <u>Camera device</u> for photographic documentation of each core or grab collected. Device should be a standalone camera, not a tablet, phone or other device.
- <u>Collection containers</u> glass or plastic jars or bottles, commonly supplied by the analytical laboratory, with lids.
- <u>Clear Packing Tape</u> for placing over the sample label on sampling containers once the label has been completed filled out. This will prevent label degradation from field conditions.
- <u>Decontamination Detergent</u> Alconox or equivalent detergent to perform equipment decontamination.
- <u>FDR</u> Enough copies of the FDR paperwork to fill out in the field at each sampling location that is planned to be visited during the workday. Ensure enough copies are provided each day in case multiple are needed at a given sampling location.
- Field Clothing and Personal Protective Equipment (PPE) as specified in the HASP.
- <u>Field notebook</u> a bound book used to record progress of sampling effort and record any problems and field observations during sampling. Alternatively, an electronic tablet device with pre-loaded forms for electronic data entry may be used.
- <u>Gloves</u> for personal protection and to prevent cross-contamination of samples. May be nitrile or latex, disposable, powderless.
- <u>Tablet</u> to store necessary forms used to record and track samples collected at the site. iPads, or equivalent, will contain the necessary field forms and maps for field personnel reference.
- <u>Mass Extraction Tool</u> used for pushing sediment out of the liner into a tray for processing.
- <u>Permanent marking pen</u> used to mark sample jars/lids, coring tubes, and for documentation of field logbooks and data sheets.
- <u>Plastic tray</u> tray or gutter section for placing mass extruded core for processing

- Ruler wooden preferred
- <u>Sample Extruder</u> Device used to extrude sample from liner.
- <u>Sample Labels</u> –sample labels to affix to collection containers for each sampling location to be visited during the workday, as appropriate pre-printed.
- <u>Stainless steel bowls or bucket</u> used for compositing samples; sized appropriate for sample volume capacity.
- <u>Stainless steel lab spoon</u> or equivalent. Used for homogenizing sediment samples.
- <u>Trash bags</u> used to dispose of gloves and any other non-hazardous waste generated during sampling.
- <u>White Board</u> used for documentation project name, project number, sampling station, core ID, date and time sampled while photo documenting sampling efforts. Place behind or under a core when taking photograph.

TERMINOLOGY

- Sampling Station or Location
- Sediment Collection retrieval of bulk sediment
- Sediment Sample aliquot of the bulk sediment to be subjected to laboratory analyses
- Deployment individual use of sampling device to recover sediment
- Penetration depth of the sampling device beneath the mudline
- Recovered Sediment sediment removed and contained within sampling device
- Percent Recovery amount of recovered sediment divided by penetration or capacity of sampling device
- Interval a measured amount or increment, often measured where zero is surface of recovered sediment within the sampling device
- Strata a layer of physically-similar material such as a 3-inch gravel layer or 2 foot sand layer
- Homogenization blending of the recovered sediment often performed by designated interval
- Composing combining homogenized recovered sediment often performed to add like strata or like intervals from multiple deployments (or across multiple stations) to achieve laboratory-required sample volume or mass

METHOD SUMMARY

Sediment cores can be processed using several different methodologies. Incremental extrusion or mass extrusion of a sediment core are commonly used methods allowing for discrete sampling of specified intervals. The extrusion method allows for a single increment of sediment to be removed from the liner at a time. Once extruded, the interval is placed in a clean bowl, homogenized and aliquot placed into the analytical laboratory-specified sample container. The mass extrusion method involves removing an entire sediment core from the liner into a tray, and incrementally processing the core by removing a defined interval from the tray into clean bowl, homogenizing, and an aliquot placed into the analytical laboratory-specified sample container. Each of the processes are repeated until the required laboratory samples have been collected.

Procedures on how to complete each method are detailed in the following sections.

SAMPLE PROCESSING - EXTRUSION

Before processing a sample by either incremental or mass extrusion, the following procedures shall be performed:

- Processing equipment shall be decontaminated prior to use. If the sampling station is the first to be visited that day, decontamination of equipment shall be performed before use. At the completion of sample collection at a given station, the equipment shall be decontaminated prior to moving to the next sampling location so as to not track contaminated materials or equipment to the next location. Decontamination shall be performed in accordance with SOP S-17.
- 2. Personnel performing the processing shall review the FDR completed for the collection. If the processing is not performed sequential to the collection, the FDR will be annotated to indicate the date, time, location, and crew members for the processing.
- 3. The individual FDR for the recovered sediment deployment to be processed will be supplemented with completion of the logging and incremental sampling. The FDR serves to record station information, conditions, deployment sequence, work conditions and crew, collection details, recovered sediment characteristics, and incremental sample identification and handling.
- 4. The processing crew will confirm that the top and bottom of the liner to be processed are known. If there is uncertainty as to the location of the mudline within the liner, the liner will not be processed.
- 5. When handling the recovered sediment and its incremental samples, a new pair of nitrile gloves shall be donned.
Incremental Extrusion

There are several types of coring devices that facilitate incremental extrusion. There are nuances specific to each device as the extrusion apparatus is commonly customized to the coring device. Field crews will review the manufacturer instruction manual prior to device use and tailor the means and methods outlined in this SOP to the device obtained. It is recommended that the processing crew perform one or two "practice cores" after reviewing the manufacturer instructions prior to performing incremental extrusion on a station-specific collected core.

The incremental extruder is a sample processing device that allows for the removal of a discrete interval of sediment from a liner in centimeter lengths. When the core is collected, a plug/stopper or extruding plug is inserted into the bottom of the core liner. This plug allows for the sample to be pressed out of the liner without impacting the sediment.

Prior to leaving the field station, ensure all required parts of the incremental extruder are properly functioning and the equipment is ready for use per the following:

- 1. Inspect extruder disks to ensure rubber seals are in good condition. If damage is noted, replace plug/puck or rubber seal.
- 2. Inspect threaded rod for any wear or damage. Ensure the threaded plugs/puck will properly thread onto the rod.
- 3. Ensure a sufficient quantity of plastic spacers are equipped for the proposed sampling.

The following steps shall be followed when using the incremental extruder to interval a core:

- 1. Mount the core barrel atop the barrel stabilizer disk.
- 2. Adjust the threaded disk on the threaded rod such that the gap between the threaded disk and barrel stabilizer disk can be filled with the plastic spacers. Adjust this gap to be equal to the total thickness of sample that will be aliquoted (i.e., 6 inches or 15 cm).
- 3. Place the core extruder funnel on the top of the liner section.
- 4. Remove the plastic spacers that coincide with the thickness of the sediment interval to be aliquoted (i.e., for a 0.0-0.1ft interval (2cm) remove 2 plastic spacers).
- 5. Push the liner tube down so that the bottom of the tube rests on the next in-place plastic spacer. This will push the sediment out of the liner and onto the extruder funnel.
- 6. Scrape the displaced sediment in the extruding funnel into a stainless-steel bowl, or cleaned equivalent (e.g, ziplock bag). Classify the material as it is placed into the bowl and record on the FDR specific to the interval.
- 7. Photograph the extruded interval. Include the white board within the photo view where the white board has clearly written the station identification, core deployment, interval extruded, and date and time.
- 8. Homogenize the extruded interval in the bowl by manually mixing 50 strokes or greater if additional blending is necessary. If encountered, remove pieces of gravel or wood greater than 1 inch in any one direction and record the type and dimensions of removed material on the FDR specific to the interval extruded.
- 9. Aliquot sufficient volume/mass to support the laboratory analyses, commonly outlined in the Field Sampling Plan or instructions from the laboratory, and place into the sample container.
- 10. Label the sample container by fully completing labels and place clear tape over the sample label for protection. Write the sample ID on the lid of the sample container.

- 11. Place sample container in cooler or equivalent to maintain analytical requirements for sample preservation commonly outlined in the Field Sampling Plan or instructions from the laboratory.
- 12. Remove the extruding funnel from the top of the liner and decontaminate and reinstall before continuing.
- 13. Repeat steps 1 11 until the required intervals have been extruded.
- 14. Log the entire core, including the material that is not being collected for analysis. Record pertinent data on the FDR as the core is aliquoted and samples are collected in the sample containers.

Mass Extrusion

Mass extrusion of a sediment core involves pushing the material out of the liner tube into a tray using a mass extraction tool, like a plunger. The entire length of a collected sediment core is placed in a plastic tray, intervals extracted, and materials mixed and processed consistent with the interval extrusion method.

Prior to leaving the field station, ensure all required equipment for mass extraction is ready for use per the following:

- 1. Inspect the mass extraction tool for damage or wear. Ensure the plastic disk at the end of the rod is securely fastened.
- 2. Inspect the plastic tray for any cracks or sharp edges. Remove from use if damaged.

The following steps shall be followed when using the mass extrusion method is used to interval a core:

- 1. Lay the sediment core in the plastic tray with the top approximately 1 foot from the end of the tray.
- 2. Using the mass extraction tool, push the sediment core out of the liner and into the tray.
- 3. Take a photo of the sediment using a whiteboard to identify the station location, date and time of collection, project number and name. The view should include the ruler positioned to measure from the mudline.
- 4. Remove the material within the measured interval (e.g., 0.1 to 0.3 ft) placing sediment in into a stainless-steel bowl, or cleaned equivalent (e.g., ziplock bag). Classify the material as it is placed into the bowl and record on the FDR specific to the interval.
- 5. Homogenize the extruded interval in the bowl by manually mixing 50 strokes or greater if additional blending is necessary. If encountered, remove pieces of gravel or wood greater than 1 inch in any one direction and record the type and dimensions of removed material on the FDR specific to the interval extruded.
- 6. Aliquot sufficient volume/mass to support the laboratory analyses, commonly outlined in the Field Sampling Plan or instructions from the laboratory, and place into the sample container.
- 7. Label the sample container by fully completing labels and place clear tape over the sample label for protection. Write the sample ID on the lid of the sample container.
- 8. Place sample container in cooler or equivalent to maintain analytical requirements for sample preservation commonly outlined in the Field Sampling Plan or instructions from the laboratory.

- 9. Decontaminate bowls and mixing tools before continuing.
- 10. Repeat steps 4 to 9 until the required intervals have been removed.
- 11. Log the entire core, including the material that is not being collected for analysis. Record pertinent data on the FDR as the core is aliquoted and samples are collected in the sample containers.

HEALTH AND SAFETY

All field personnel must wear protective clothing and equipment as specified in the HASP.

SAMPLE CONTAINERS AND LABELING

Sample labeling will occur as prescribed in the Field Sampling Plan.

All samples will be stored temperature controlled as outlined in the Field Sampling Plan, Quality Assurance Project Plan, or analytical laboratory instructions.

Labeled sample containers may be stored in the field station and subsequently shipped to the analytical laboratory. Samples will be shipped under chain-of-custody, protected with suitable resilient packing material to reduce shock, vibration, and disturbance.

SITE CLEAN-UP

Excess sediment not included in the sample shall be returned into the waterbody from which it was collected.

Throw all used wipes and gloves into the trash bags and take with you to dispose of at the field office.

RECORD KEEPING AND QUALITY CONTROL

Each field crew will carry and complete at the time or work field data sheets, site diagrams, and sample labels. In addition, a field notebook shall be maintained by each individual or team that is collecting samples, as described in the QAPP. Each sample shall have an ID number affixed to the outside of the collection container. Deviations from the SOP shall be noted in the field notebook, as necessary.

Samples taken from waters with visible color abnormalities, foaming, unusual odor, iridescent film, or other indications of non-homogeneous conditions shall also be noted. Field personnel will collect the proper type and quantity of quality control samples as prescribed in the QAPP.

DECONTAMINATION

Because decontamination procedures are time consuming, having a quantity of pre-cleaned sampling tools available is recommended. All sampling equipment must be decontaminated prior to reuse as prescribed in the FSP and detailed in the QAPP SOP No. S-17, Decontamination of Field Equipment.

The general procedure for equipment decontamination is as follows:

- 1. Brush off any loose soil/sediment
- 2. Detergent Wash
- 3. River water rinse
- 4. Deionized water rinse
- 5. Air Dry

REFERENCES

- Wood, 2020a. Field Sampling Plan; Penobscot River Phase III Engineering Study Penobscot River, Maine. July 2016.
- Wood, 2020b. Quality Assurance Project Plan; Penobscot River Phase III Engineering Study Penobscot River, Maine. July 2016.

- END OF PROCEDURE -

APPENDIX D LABORATORY ANALYTICAL RESULTS

APPENDIX D-1 SEDIMENT LARS

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

15 March 2021

Denise King Wood - MA 271 Mill Road Chelmsford, MA 01824 RE: Penobscot

Enclosed are the analytical results for samples received by Eurofins Frontier Global Sciences. All quality control measurements are within established control limits and there were no analytical difficulties encountered with the exception of those listed in the case narrative section of this report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Patrik Stulla

Patrick Garcia-Strickland Business Unit Manager

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Reported:
5-Mar-21 11:14

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MMBKD-01_012521_SED_00-01	1A00115-01	Soil/Sediment	25-Jan-21 15:25	29-Jan-21 09:40
MMBKD-01_012521_SED_01-03	1A00115-02	Soil/Sediment	25-Jan-21 15:35	29-Jan-21 09:40
MMBKD-01_012521_SED_03-05	1A00115-03	Soil/Sediment	25-Jan-21 15:40	29-Jan-21 09:40
MMBKD-01_012521_SED_01-03_DUP	1A00115-04	Soil/Sediment	25-Jan-21 12:00	29-Jan-21 09:40
FRB-02_012621_SED_00-01	1A00115-05	Soil/Sediment	26-Jan-21 15:00	29-Jan-21 09:40
FRB-02_012621_SED_01-03	1A00115-06	Soil/Sediment	26-Jan-21 15:15	29-Jan-21 09:40
FRB-02_012621_SED_03-05	1A00115-07	Soil/Sediment	26-Jan-21 15:30	29-Jan-21 09:40
ES-13_012621_SED_00-01	1A00115-08	Soil/Sediment	26-Jan-21 18:45	29-Jan-21 09:40
ES-13_012621_SED_01-03	1A00115-10	Soil/Sediment	26-Jan-21 18:55	29-Jan-21 09:40
ES-13_012621_SED_03-05	1A00115-11	Soil/Sediment	26-Jan-21 19:05	29-Jan-21 09:40

Eurofins Frontier Global Sciences, LLC

atuk Stullind

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Wood - MA	Project: Penobscot	
271 Mill Road	Project Number: Penobscot Sediments Hg	Reported:
Chelmsford MA, 01824	Project Manager: Denise King	15-Mar-21 11:14

SAMPLE RECEIPT

Samples were received at Eurofins Frontier Global Sciences (EFGS) on 29-Jan-21 09:40. The samples were received intact, on-ice within a sealed cooler at

Cooler	Temp C°
Default Cooler	-27.3

SAMPLE PREPARATION AND ANALYSIS

Total solids analysis was performed in accordance with method SM2540B. Total solids are prepared at the same time as the preparation for the analyte(s) of interest in order to provide the most accurate dry mass correction which may be outside of the method recommended holding time of 7 days from sample collection.

Total mercury preparation and analysis was performed by flow injection atomic fluorescence spectrometry (FI-AFS) in accordance with EPA 7474/1631B.

Samples were prepared and analyzed for methyl mercury by cold vapor gas chromatography atomic fluorescence spectrometry (CV-GC-AFS) in accordance with EPA 1630 (EFGS SOP2808).

ANALYTICAL AND QUALITY CONTROL ISSUES

Method blanks were prepared for every preparation to assess possible blank contribution from the sample preparation procedure. The method blanks were carried through the entire analytical procedure. All blanks fell within the established acceptance criteria with the exception of any items narrated above or flagged and described in the notes and definitions section of the report.

Liquid spikes, certified reference material (CRM) or a quality control samples (QCS) were prepared for every preparation as a measure of accuracy. All liquid spikes, CRMs and/or QCS samples fell within the established acceptance criteria with the exception of any items narrated above or flagged and described in the notes and definitions section of the report.

As an additional measure of the accuracy of the methods used and to check for matrix interference, matrix spikes (MS) and matrix spike duplicates (MSD) were digested and analyzed. All of the matrix spike recoveries fell within the established acceptance criteria with the

Eurofins Frontier Global Sciences, LLC

atuk Stulla

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Wood - MA	Project: Penobscot	
271 Mill Road	Project Number: Penobscot Sediments Hg	Reported:
Chelmsford MA, 01824	Project Manager: Denise King	15-Mar-21 11:14

exception of any items flagged and described in the notes and definitions section of the report.

A reasonable measure of the precision of the analytical methods is the relative percent difference (RPD) between a matrix spike recovery and a matrix spike duplicate recovery and between laboratory control sample recovery and laboratory control sample duplicate recoveries. All of the relative percent differences fell within established acceptance criteria with the exception of any items flagged and described in the notes and definitions section of the report.

Eurofins Frontier Global Sciences, LLC

stuk Stulled

Seurofins | Frontier Global Sciences

Sample Receipt Checklist

Client: Wad	, A		Date & Time Received:	<u></u> Date Labele	ed: 1 24 Rabeled By:
Matrix: Scd	, <u>, , , , , , , , , , , , , , , , , , </u>	Receive	ed By: 12	Label Verified By:	153 1/29/21
# of Coolers Receive	ed: Sample	es Arrived By: 🚬 Shippi	ng Service Courier	_ Hand Other (Specify)
Coolant: 🔲 None	e/Ambient 🛛 Loose Ice	Gel Ice	Coolant Required Y N	Temp Blank Used: Y/N	for Cooler(s):
Notify Project Mana	ager if packages/coolers and	re received without coolant	or with thawed coolant and at	a temperature in excess of 6	°C. PM notified; Y/N
Samples from Wisco	onsin have special require	ments. Shipment received i	ncludes samples from Wisconsi	n: Y/N	,

Cooler Information:	Y/N/NA	Comments	TID: 50197	81 ° CI	F: -0/3 °C	Dat	e/time: 🛝	70 71	8:00 Bu	n
The coolers do not appear to be tampered with:	Y		Cooler 1: -7	7.0	w/ CF: -7	7.°C	Cooler 4:	°C	w/ CE:	· ·
Custody Seals are present and intact:	Y		Cooler 2:	°C	w/ CF:	°C	Cooler 5:	°C	w/ CF:	
Custody seals signed:	Y		Cooler 3:	°C	w/ CF:	*C	Cooler 6:	°C	w/ CF:	°C

Chain of Custody:	Y/N/NA	Comments	Sample Condition/Integrity:	Y/N/NA	Comments
Sample ID/Description:	Ч		Sample containers intact/present:	Y	
Date and time of collection:	Y		Sample labels are present and legible:		
Sampled by:	N		Sample ID on container/bag matches COC:	Y	
Preservation type:	NO		Correct sample containers used:	7	
Requested analyses:	Y		Samples received within holding times:	Y	
Required signatures:	Ý I		Sample volume sufficient for requested analyses:	Y	
Internal COC required:	NO		Correct preservative used for requested analyses:	Y	

Anomalies/Non-conformances (attach additional pages if needed):

1A00115

Page 5 of 173

wood.	Wood E&IS 511 Congress Street Portland, ME 04101 (207) 828-3367			SHIP Eurof 5755 Tacor Atten: Lab P	TO: ins WA 8th St E na, WA, 98424 P. Garcia-Strickland hone# 206-351-9522)F)Y	DATE: COC #: PAGE:1		1/2	28/202	1
Project Name:	Penobscot River 2020	Project Cor	itact:	Denis	e King	Bill To: Denise King	Wood E&IS	Disposal Instruction	ons:	LAE	3	
Project Number:	3617207486.03.****	Phone Nurr	iber:	508-7	89-1738	271 Mill Rd		Shipment Method		FEC	DEX	
Project Manager:	Rod Pendelton	Project Pha	se:	Sedim	ent Monitoring	Chelmsford,	MA 01824	Waybill Number:		N/A		
Sample Information						Methods for Ana	lysis		RI	JSH		
No. Sample ID 1 MMBKD-01_012521_SED_00-01 2 MMBKD-01_012521_SED_01-03 3 MMBKD-01_012521_SED_03-05 4 MMBKD-01_012521_SED_01-03_DUP 5 FRB-02_012621_SED_00-01 6 FRB-02_012621_SED_01-03 7 FRB-02_012621_SED_03-05 8 ES-13_012621_SED_00-01 9 ES-13_012621_SED_01-03 10 ES-13_012621_SED_01-03	Date & Time Sampled 01/25/2021, 1525 01/25/2021, 1535 01/25/2021, 1540 01/25/2021, 1500 01/26/2021, 1500 01/26/2021, 1515 01/26/2021, 1530 01/26/2021, 1845 01/26/2021, 1855 01/26/2021, 1905	Matrix SED SED SED SED SED SED SED SED SED SED	Sample Type N N N N N N N N N N N N N N N N N N N		H H H H X X X <th>of hold and analyze 02/02.</th> <th>/2021 DMK</th> <th></th> <th>AB Hour</th> <th>72 Hour</th> <th>5 Days</th> <th>I I</th>	of hold and analyze 02/02.	/2021 DMK		AB Hour	72 Hour	5 Days	I I
11			1	17				16				
12 Sampler's Signature:		Date:	Time: 10.2	101	Fo	r Lab Use		TO Y			_	-
Relinquished By/Affiliation: Ton Geruhra, WICS E-15 Received By: France		Date: 01/20/21 Date: Date:	Time: 030)	Does COC match s Broken Container: COC seal intact: Other problems:	amples: YorN YorN YorN YorN YorN	Comments: K=Analyze H= PO # C01290	-Hold Analysis Re	ques	t		
lelinquished By/Affiliation:		Date:	Time:		WSDOT contacted: Date contacted:	Y or N	otal and Methy	I Hg Frozen until Shi	pment			
eceived By:	Date:	Time:		Cooler Temperature	e at receipt°C	°C			47. 1			
elinquished By/Affiliation:		Date:	Time:	-				COULEND DENT.				
Received By (LAB):		Date:	Time:	-								

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

٦

Wood - MA			1	Project: P	enobscot						
271 Mill Road			Project N	umber: P	enobscot	Sediments	Hg			Reported	l:
Chelmsford MA, 01824			Project M	anager: I	Denise Kin	ıg				15-Mar-21 1	1:14
		Μ	MBKD-	01_0125	521_SEI	D_00-01					
				IAUUII	5-01						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1630 Mod											
Methyl Mercury (as Mercury)	ND	1.9	14.9	ng/g dry	500	F102324	19-Feb-21	1C04009	03-Mar-21	EPA 1630 Mod	U
Sample Preparation: EPA 1631B											
Mercury	360	34.6	153	ng/g dry	100	F102335	19-Feb-21	1B25007	24-Feb-21	EPA 1631B	
Sample Preparation: SM 2540B											
% Solids	25.0	0.1	0.1	% by Weight	1	F103409	04-Mar-21		05-Mar-21	SM 2540B	O-04, O-09

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Г

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Frontier	Global	Sciences	

Wood - MA 271 Mill Road Chelmsford MA, 01824	Project: Penobscot Project Number: Penobscot Sediments Hg Project Manager: Denise King									Reported: 15-Mar-21 11:14		
MMBKD-01_012521_SED_01-03												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes	
Sample Preparation: EPA 1630 Mod												
Methyl Mercury (as Mercury)	ND	1.2	9.5	ng/g dry	500	F102324	19-Feb-21	1C04009	03-Mar-21	EPA 1630 Mod	U	
Sample Preparation: EPA 1631B												
Mercury	149	10.6	46.8	ng/g dry	50	F102335	19-Feb-21	1B25007	24-Feb-21	EPA 1631B		
Sample Preparation: SM 2540B												
% Solids	41.1	0.1	0.1	% by Weight	1	F103409	04-Mar-21		05-Mar-21	SM 2540B	O-04, O-09	

Eurofins Frontier Global Sciences, LLC

atuk Atulla

Wood - MA]	Project: I	Penobscot						
271 Mill Road			Project N	lumber: I	Penobscot	Sediments	Hg			Reporte	d:
Chelmsford MA, 01824			Project M	anager: I	Denise Kir	ng				15-Mar-21	11:14
		М	MBKD-	01_012	521_SE	D_03-05					
				1A0011	5-03						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	28.7	8.58	37.9	ng/g dry	50	F102335	19-Feb-21	1B25007	24-Feb-21	EPA 1631B	J
Sample Preparation: SM 2540B											
% Solids	52.4	0.1	0.1	% by Weight	1	F103409	04-Mar-21		05-Mar-21	SM 2540B	O-04, O-09

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Patrick Garcia-Strickland, Business Unit Manager

Г

Frontier Global Sciences

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Wood - MA 271 Mill Road Chelmsford MA, 01824			l Project N Project M		Reported: 15-Mar-21 11:14						
		MMI	3KD-01_	012521	_SED_0	1-03_DI	JP				
				1A0011	5-04						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1630 Mod											
Methyl Mercury (as Mercury)	ND	1.3	10.2	ng/g dry	500	F102324	19-Feb-21	1C04009	03-Mar-21	EPA 1630 Mod	U
Sample Preparation: EPA 1631B											
Mercury	142	11.5	50.6	ng/g dry	50	F102335	19-Feb-21	1B25007	24-Feb-21	EPA 1631B	
Sample Preparation: SM 2540B											
% Solids	38.5	0.1	0.1	% by Weight	1	F103409	04-Mar-21		05-Mar-21	SM 2540B	O-04, O-09

Eurofins Frontier Global Sciences, LLC

atuk Atulhad

Wood - MA]	Project: I	Penobscot						
271 Mill Road			Project N	umber: 1	Penobscot	Sediments	Hg			Reported	1:
Chelmsford MA, 01824			Project M	anager: I	Denise Kir	ng				15-Mar-21 1	11:14
			FRB-02	01262	1_SED_	00-01					
				1A0011	5-05						
		Detection	Reporting								
Analyte	Result	Limit	Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1630 Mod											
Methyl Mercury (as Mercury)	ND	1.0	7.8	ng/g dry	500	F102324	19-Feb-21	1C04009	03-Mar-21	EPA 1630 Mod	τ
Sample Preparation: EPA 1631B											
Mercury	8.94	8.57	37.9	ng/g dry	50	F102335	19-Feb-21	1B25007	24-Feb-21	EPA 1631B	
Sample Preparation: SM 2540B											
% Solids	50.1	0.1	0.1	% by Weight	1	F103409	04-Mar-21		05-Mar-21	SM 2540B	O-04, O-09

Frontier Global Sciences

Eurofins Frontier Global Sciences, LLC

atuk Stullind

Wood - MA]	Project: F	Penobscot						
271 Mill Road			Project N	umber: F	Penobscot	Sediments	Hg			Reported	l:
Chelmsford MA, 01824			Project M	anager: I	Denise Kin	ıg				15-Mar-21 1	1:14
			FRB-02	_012621	I_SED_	01-03					
				1A0011	5-06						
		Detection	Reporting								
Analyte	Result	Limit	Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1630 Mod											
Methyl Mercury (as Mercury)	ND	0.9	7.4	ng/g dry	500	F102324	19-Feb-21	1C04009	03-Mar-21	EPA 1630 Mod	U
Sample Preparation: EPA 1631B											
Mercury	16.9	8.42	37.2	ng/g dry	50	F102335	19-Feb-21	1B25007	24-Feb-21	EPA 1631B	J
Sample Preparation: SM 2540B											
% Solids	50.9	0.1	0.1	% by Weight	1	F103409	04-Mar-21		05-Mar-21	SM 2540B	O-04, O-09

Eurofins Frontier Global Sciences, LLC

atuk Atulla

Wood - MA 271 Mill Road Chelmsford MA, 01824		Reporte 15-Mar-21	ed: 11:14								
			FRB-02	_012621 1A0011	1_SED_\ \5-07	03-05					
Analyte Sample Preparation: EPA 1631B	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Mercury	14.2	7.78	34.4	ng/g dry	50	F102335	19-Feb-21	1B25007	24-Feb-21	EPA 1631B	J
Sample Preparation: SM 2540B											
% Solids	54.9	0.1	0.1	% by Weight	1	F103409	04-Mar-21		05-Mar-21	SM 2540B	O-04, O-09

Frontier Global Sciences

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Wood - MA 271 Mill Road Chelmsford MA, 01824			Project N Project M ES-13_	Project: H lumber: H anager: I 012621	Penobscot Penobscot Denise Kin _SED_0	Hg			Reported 15-Mar-21	1: 11:14	
				1A0011	5-08						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1630 Mod											
Methyl Mercury (as Mercury)	12.3	1.2	9.8	ng/g dry	500	F102324	19-Feb-21	1C04009	03-Mar-21	EPA 1630 Mod	
Sample Preparation: EPA 1631B											
Mercury	253	11.1	49.1	ng/g dry	50	F102335	19-Feb-21	1B25007	24-Feb-21	EPA 1631B	
Sample Preparation: SM 2540B											
% Solids	40.0	0.1	0.1	% by Weight	1	F103412	05-Mar-21		08-Mar-21	SM 2540B	O-04, O-09

Frontier Global Sciences

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Wood - MA 271 Mill Road Chelmsford MA, 01824			Project N Project M ES-13_	Project: I lumber: I anager: I 012621	Penobscot Penobscot Denise Kin 	Sediments ng 1-03	Hg		Reported: 15-Mar-21 11:14		
				1A0011	5-10						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1630 Mod											
Methyl Mercury (as Mercury)	8.6	1.2	9.3	ng/g dry	500	F102324	19-Feb-21	1C04009	03-Mar-21	EPA 1630 Mod	J
Sample Preparation: EPA 1631B											
Mercury	239	10.8	47.8	ng/g dry	50	F102335	19-Feb-21	1B25007	24-Feb-21	EPA 1631B	
Sample Preparation: SM 2540B											
% Solids	40.7	0.1	0.1	% by Weight	1	F103409	04-Mar-21		05-Mar-21	SM 2540B	O-04, O-09

Frontier Global Sciences

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Wood - MA 271 Mill Road Chelmsford MA, 01824		Reporte 15-Mar-21	d: 11:14								
				1A0011	15-11						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Mercury	32.1	6.23	27.5	ng/g dry	50	F102335	19-Feb-21	1B25007	24-Feb-21	EPA 1631B	
Sample Preparation: SM 2540B											
% Solids	72.6	0.1	0.1	% by Weight	1	F103409	04-Mar-21		05-Mar-21	SM 2540B	O-04, O-09

Frontier Global Sciences

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Patrick Garcia-Strickland, Business Unit Manager

Wood - MA	Project: Penobscot	
271 Mill Road	Project Number: Penobscot Sediments Hg	Reported:
Chelmsford MA, 01824	Project Manager: Denise King	15-Mar-21 11:14

Quality Control Data

		Detection	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1C04009 - F102324											
Cal Standard (1C04009-CAL1)					Prepared &	Analyzed:	03-Mar-21				
Methyl Mercury (as Mercury)	0.05	-		ng/L	0.050000		98.6				
Cal Standard (1C04009-CAL2)					Prepared &	Analyzed:	03-Mar-21				
Methyl Mercury (as Mercury)	0.2	-		ng/L	0.20000		106				
Cal Standard (1C04009-CAL3)					Prepared &	Analyzed:	03-Mar-21				
Methyl Mercury (as Mercury)	0.9	-		ng/L	1.0000		93.8				
Cal Standard (1C04009-CAL4)					Prepared &	Analyzed:	03-Mar-21				
Methyl Mercury (as Mercury)	2.0	-		ng/L	2.0000		99.1				
Cal Standard (1C04009-CAL5)					Prepared &	Analyzed:	03-Mar-21				
Methyl Mercury (as Mercury)	4.1	-		ng/L	4.0000		103				
Calibration Blank (1C04009-CCB1)					Prepared &	Analyzed:	03-Mar-21				
Methyl Mercury (as Mercury)	0.04	-		ng/L							
Calibration Blank (1C04009-CCB2)					Prepared &	Analyzed:	03-Mar-21				
Methyl Mercury (as Mercury)	0.03	-		ng/L							
Calibration Blank (1C04009-CCB3)					Prepared &	Analyzed:	03-Mar-21				
Methyl Mercury (as Mercury)	0.03	-		ng/L							
Calibration Check (1C04009-CCV1)					Prepared &	Analyzed:	03-Mar-21				
Methyl Mercury (as Mercury)	0.6	-		ng/L	0.50368		122	67-133			
Calibration Check (1C04009-CCV2)					Prepared &	Analyzed:	03-Mar-21				
Methyl Mercury (as Mercury)	0.6	-		ng/L	0.50368		115	67-133			

Eurofins Frontier Global Sciences, LLC

atuk Stullind

Wood - MA 271 Mill Road Chelmsford MA, 01824]	Reported: 15-Mar-21 11:14								
			Quality	y Cont	rol Data						
Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1C04009 - F102324											
Calibration Check (1C04009-CCV3)					Prepared &	Analyzed:	03-Mar-21				
Methyl Mercury (as Mercury)	0.6	-		ng/L	0.50368		125	67-133			
Instrument Blank (1C04009-IBL1)					Prepared &	analyzed:	03-Mar-21				
Methyl Mercury (as Mercury)	ND	0.001	0.008	ng/L						U	
Initial Cal Blank (1C04009-ICB2)					Prepared &	Analyzed:	03-Mar-21				
Methyl Mercury (as Mercury)	0.03	-		ng/L	1						
Initial Cal Check (1C04009-ICV2)					Prepared &	Analyzed:	03-Mar-21				
Methyl Mercury (as Mercury)	0.6	-		ng/L	0.50368		111	69-131			
Initial Cal Check (1C04009-ICV3)					Prepared &	z Analyzed:	03-Mar-21				
Methyl Mercury (as Mercury)	0.6	-		ng/L	0.50368		114	69-131			
Batch 1C05008 - F102324											
Cal Standard (1C05008-CAL1)					Prepared 8	z Analyzed:	04-Mar-21				
Methyl Mercury (as Mercury)	0.05	-		ng/L	0.050000		93.1				
Cal Standard (1C05008-CAL2)					Prepared &	Analyzed:	04-Mar-21				
Methyl Mercury (as Mercury)	0.2	-		ng/L	0.20000		94.2				
Cal Standard (1C05008-CAL3)					Prepared &	Analyzed:	04-Mar-21				
Methyl Mercury (as Mercury)	0.9	-		ng/L	1.0000		91.8				
Cal Standard (1C05008-CAL4)					Prepared 8	Analyzed:	04-Mar-21				
Methyl Mercury (as Mercury)	2.1	-		ng/L	2.0000		103				

Frontier Global Sciences

Eurofins Frontier Global Sciences, LLC

atuk Atulhad

Wood - MA			Pro	ject: Per	nobscot								
271 Mill Road					Report	ed:							
Chelmsford MA, 01824		1	Project Mana	ager: De	nise King					15-Mar-21 11:14			
			Quality	y Cont	rol Data								
Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 1C05008 - F102324													
Cal Standard (1C05008-CAL5)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	4.7	-		ng/L	4.0000		118						
Calibration Blank (1C05008-CCB1)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	-0.005	-		ng/L							U		
Calibration Blank (1C05008-CCB2)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	-0.008	-		ng/L							U		
Calibration Blank (1C05008-CCB3)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	-0.004	-		ng/L							U		
Calibration Blank (1C05008-CCB4)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	-0.002	-		ng/L		· ·					U		
Calibration Blank (1C05008-CCB5)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	0.0007	-		ng/L	1	5							
Calibration Blank (1C05008-CCB6)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	-0.003	-		ng/L	1						U		
Calibration Blank (1C05008-CCB7)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	-0.01	-		ng/L	1						U		
Calibration Blank (1C05008-CCB8)					Prepared &	& Analvzed:	04-Mar-21						
Methyl Mercury (as Mercury)	-0.02	-		ng/L	1	-5-24					U		
Calibration Check (1C05008-CCV1)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	0.5	-		ng/L	0.50368	-,	98.5	67-133					

Frontier Global Sciences

Eurofins Frontier Global Sciences, LLC

atuk Stullind

Frontier Global Sciences

Wood - MA	Project: Penobscot												
271 Mill Road				Report	ed:								
Chelmsford MA, 01824		1	Project Mana	ager: De	nise King					15-Mar-21 11:14			
			Qualit	y Cont	rol Data								
Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 1C05008 - F102324													
Calibration Check (1C05008-CCV2)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	0.5	-		ng/L	0.50368		102	67-133					
Calibration Check (1C05008-CCV3)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	0.5	-		ng/L	0.50368		103	67-133					
Calibration Check (1C05008-CCV4)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	0.6	-		ng/L	0.50368		116	67-133					
Calibration Check (1C05008-CCV5)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	0.6	-		ng/L	0.50368		128	67-133					
Calibration Check (1C05008-CCV6)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	0.5	-		ng/L	0.50368		97.2	67-133					
Calibration Check (1C05008-CCV7)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	0.4	-		ng/L	0.50368		77.3	67-133					
Calibration Check (1C05008-CCV8)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	0.4	-		ng/L	0.50368		73.5	67-133					
Instrument Blank (1C05008-IBL1)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	ND	0.001	0.004	ng/L							U		
Initial Cal Blank (1C05008-ICB1)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	0.01	-		ng/L		2							
Initial Cal Check (1C05008-ICV1)					Prepared &	& Analyzed:	04-Mar-21						
Methyl Mercury (as Mercury)	0.5	-		ng/L	0.50368		109	69-131					

Eurofins Frontier Global Sciences, LLC

atuk Stullind

٦

Frontier Global Sciences

Wood - MA			Pro	oject: Pen	obscot						
271 Mill Road			Project Nur	nber: Pen	obscot Sed	liments Hg				Report	ed:
Chelmsford MA, 01824]	Project Man	ager: Der	nise King					15-Mar-21	11:14
			Qualit	y Contr	ol Data						
		Detection	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch F102324 - EFGS SOP2986 KO	H/Methano	l Digestion	for Methy	l Hg							
Blank (F102324-BLK1)					Prepared:	19-Feb-21	Analyzed:	03-Mar-21			
Methyl Mercury (as Mercury)	3.2	0.5	4.0	ng/g wet							J
Blank (F102324-BLK2)					Prepared:	19-Feb-21	Analyzed:	03-Mar-21			
Methyl Mercury (as Mercury)	1.6	0.5	4.0	ng/g wet							J
Blank (F102324-BLK3)					Prepared:	19-Feb-21	Analyzed:	03-Mar-21			
Methyl Mercury (as Mercury)	1.6	0.5	4.0	ng/g wet							J
Blank (F102324-BLK4)					Prepared:	19-Feb-21	Analyzed:	04-Mar-21			
Methyl Mercury (as Mercury)	ND	0.5	2.0	ng/g wet							U
LCS (F102324-BS1)					Prepared:	19-Feb-21	Analyzed:	03-Mar-21			
Methyl Mercury (as Mercury)	409.3	2.0	15.6	ng/g wet	355.00		115	50-150			
LCS Dup (F102324-BSD1)					Prepared:	19-Feb-21	Analyzed:	03-Mar-21			
Methyl Mercury (as Mercury)	401.7	2.0	15.8	ng/g wet	355.00		113	50-150	1.87	35	
Matrix Spike (F102324-MS1)		Source:	1B00035-0)1	Prepared:	19-Feb-21	Analyzed:	03-Mar-21			
Methyl Mercury (as Mercury)	435.0	2.4	18.7	ng/g wet	0.37467	458.1	-6170	50-150			QM-07
Matrix Snike (F102324-MS2)		Source:	1B00083-0	2	Prepared:	19-Feb-21	Analyzed:	03-Mar-21			
Methyl Mercury (as Mercury)	1.7	1.0	7.6	ng/g wet	0.38037	ND	453	50-150			QM-07, J
Matrix Snike Dun (F102324_MSD1)		Source	1B00035_0)1	Prepared	19-Feh-21	Analyzed	03-Mar-21			
Methyl Mercury (as Mercury)	373.0	2.4	19.4	ng/g wet	0.38745	458.1	-22000	50-150	-112	35	QM-07
Matrix Snike Dun (F107374_MSD7)		Sourco	1800083.0	2	Prenared	19-Feb-21	Analyzed	03-Mar-21			
Methyl Mercury (as Mercury)	ND	1.0	7.6	ng/g wet	0.37750	ND	i maryzed.	50-150		35	QM-07, U
· · · · · · · · · · · · · · · · · · ·											

Eurofins Frontier Global Sciences, LLC

stuk Stullind

Wood - MA 271 Mill Road Chelmsford MA, 01824	Project: Penobscot Project Number: Penobscot Sediments Hg Project Manager: Denise King									Reported: 15-Mar-21 11:14		
			Qualit	y Cont	rol Data							
Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 1B25007 - F101423												
Cal Standard (1B25007-CAL1)					Prepared &	analyzed:	24-Feb-21					
Mercury	0.61	-		ng/L	0.50000		123					
Cal Standard (1B25007-CAL2)					Prepared &	Analyzed:	24-Feb-21					
Mercury	1.05	-		ng/L	1.0000		105					
Cal Standard (1B25007-CAL3)					Prepared &	Analyzed:	24-Feb-21					
Mercury	4.54	-		ng/L	5.0000		90.7					
Cal Standard (1B25007-CAL4)	Prepared & Analyzed: 24-Feb-21											
Mercury	18.08	-		ng/L	20.000		90.4					
Cal Standard (1B25007-CAL5)					Prepared &	Analyzed:	24-Feb-21					
Mercury	36.46	-		ng/L	40.000		91.1					
Calibration Blank (1B25007-CCB1)					Prepared &	Analyzed:	24-Feb-21					
Mercury	0.20	-		ng/L	1	2						
Calibration Blank (1B25007-CCB2)					Prepared &	Analyzed:	24-Feb-21					
Mercury	0.25	-		ng/L	1							
Calibration Blank (1B25007-CCB3)					Prepared &	Analyzed:	24-Feb-21					
Mercury	0.03	-		ng/L	1	2						
Calibration Blank (1B25007-CCB4)					Prepared &	Analyzed:	24-Feb-21					
Mercury	0.002	-		ng/L	1	j						
Calibration Blank (1B25007-CCB5)					Prepared &	Analvzed:	24-Feb-21					
Mercury	0.009	-		ng/L	1							

Frontier Global Sciences

Eurofins Frontier Global Sciences, LLC

atuk Stullind

Wood - MA 271 Mill Road Chelmsford MA, 01824	Project: Penobscot Project Number: Penobscot Sediments Hg Project Manager: Denise King									Reported: 15-Mar-21 11:14		
			Qualit	y Cont	rol Data							
Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch 1B25007 - F101423												
Calibration Blank (1B25007-CCB6)					Prepared &	analyzed:	24-Feb-21					
Mercury	0.19	-		ng/L								
Calibration Blank (1B25007-CCB7)					Prepared &	د Analyzed	24-Feb-21					
Mercury	-0.05	-		ng/L							U	
Calibration Check (1B25007-CCV1)					Prepared &	analyzed:	24-Feb-21					
Mercury	4.41	-		ng/L	4.9950		88.3	77-123				
Calibration Check (1B25007-CCV2)					Prepared &	analyzed:	24-Feb-21					
Mercury	4.47	-		ng/L	4.9950		89.4	77-123				
Calibration Check (1B25007-CCV3)					Prepared &	analyzed:	24-Feb-21					
Mercury	4.27	-		ng/L	4.9950		85.6	77-123				
Calibration Check (1B25007-CCV4)					Prepared &	2 Analyzed:	: 24-Feb-21					
Mercury	4.15	-		ng/L	4.9950		83.1	77-123				
Calibration Check (1B25007-CCV5)					Prepared &	2 Analyzed:	: 24-Feb-21					
Mercury	4.12	-		ng/L	4.9950		82.4	77-123				
Calibration Check (1B25007-CCV6)					Prenared &	z Analyzed:	24-Feb-21					
Mercury	3.90	-		ng/L	4.9950		78.0	77-123				
Calibration Check (1R25007-CCV7)					Prepared &	b Analyzed	24-Feb-21					
Mercury	4.03	-		ng/L	4.9950	<i>c i</i> maryzed.	80.7	77-123				
Instrument Blank (1875007 IBI 1)					Prepared &	b Analuzed	24_Feb-21					
Mercury	ND	0.09	0.40	ng/L	i repared o	<i>c i</i> maryzed.	27100-21				U	

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Wood - MA 271 Mill Road Chelmsford MA, 01824	Project: Penobscot Project Number: Penobscot Sediments Hg Project Manager: Denise King										Reported: 15-Mar-21 11:14		
			Qualit	ty Contr	ol Data								
Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 1B25007 - F101423													
Instrument Blank (1B25007-IBL2)					Prepared &	& Analyzed:	24-Feb-21						
Mercury	ND	0.09	0.40	ng/L							U		
Instrument Blank (1B25007-IBL3)					Prepared &	& Analyzed:	24-Feb-21						
Mercury	ND	0.09	0.40	ng/L							U		
Initial Cal Blank (1B25007-ICB1)					Prepared &	& Analyzed:	24-Feb-21						
Mercury	0.24	-		ng/L									
Initial Cal Check (1B25007-ICV1)					Prepared &	& Analyzed:	24-Feb-21						
Mercury	4.80	-		ng/L	4.9950		96.2	79-121					
Batch F102335 - EFGS SOP14801 E	CPA 7474 Pre	paration											
Blank (F102335-BLK1)					Prepared:	19-Feb-21 A	Analyzed: 2	4-Feb-21					
Mercury	1.75	0.91	4.00	ng/g wet							J		
Blank (F102335-BLK2)					Prepared:	19-Feb-21 A	Analyzed: 2	4-Feb-21					
Mercury	1.08	0.91	4.00	ng/g wet							J		
Blank (F102335-BLK3)					Prepared:	19-Feb-21 A	Analyzed: 2	4-Feb-21					
Mercury	0.98	0.91	4.00	ng/g wet							J		
LCS (F102335-BS1)					Prepared:	19-Feb-21 A	Analyzed: 2	4-Feb-21					
Mercury	33.82	1.81	8.00	ng/g wet	39.960		84.6	75-125					
LCS Dup (F102335-BSD1)					Prepared:	19-Feb-21 A	Analyzed: 2	4-Feb-21					
Mercury	37.23	1.81	8.00	ng/g wet	39.960		93.2	75-125	9.58	24			

Eurofins Frontier Global Sciences, LLC

atuk Atulhad

Г

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

٦

Frontier Global Sciences

Wood - MA			Pr	oject: Pen	obscot							
271 Mill Road			Project Nu	nber: Pen	obscot Sedi	ments Hg			Reported:			
Chelmsford MA, 01824	Project Manager: Denise King								15-Mar-21	11:14		
			Quali	ty Contr	ol Data							
		Detection	Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch F102335 - EFGS SOP14801 E	PA 7474 Pre	paration										
Matrix Spike (F102335-MS1)		Source:	1A00115-0)1	Prepared:	19-Feb-21 A	Analyzed: 2	4-Feb-21				
Mercury	2372	144	636	ng/g dry	1986.9	359.5	101	71-125				
Matrix Spike Dup (F102335-MSD1)		Source:	1A00115-)1	Prepared:	19-Feb-21 A	Analyzed: 2	4-Feb-21				
Mercury	2070	143	630	ng/g dry	1968.9	359.5	86.9	71-125	15.3	24		

Eurofins Frontier Global Sciences, LLC

atuk Stullia

Wood - MA			Pro	niect: Per	nobscot							
271 Mill Pond			Droiget Num	nhar Da	abcost Sadi	mente Ha			Doportoda			
		_	r toject inun	nber: Pei	iouscot sear	menus rig			Reporteu:			
Chelmsford MA, 01824		I	Project Man	ager: De	nise King					15-Mar-21 11:14		
			Qualit	y Conti	rol Data							
Analyte	Decult	Detection	Reporting	Unite	Spike	Source	%PEC	%REC	RDD	RPD Limit	Notes	
Tildiyte	Result	Liiiit	Linit	ento	Lever	Result	, iiie	Linits		Liiiit	110105	
Batch F103409 - EFGS SOP5133	Solids Analysis											
Duplicate (F103409-DUP1)		Source:	1A00115-0	6	Prepared:	04-Mar-21	Analyzed: 0	5-Mar-21				
% Solids	51.5	0.1	0.1	% by Weight		50.9			1.17	10		
Duplicate (F103409-DUP2)		Source:	1B00120-0	1	Prepared: (04-Mar-21	Analyzed: 0	5-Mar-21				
% Solids	81.9	0.1	0.1	% by Weight		82.1			0.244	10		
Batch F103412 - EFGS SOP5133	Solids Analysis											
Duplicate (F103412-DUP1)		Source:	1A00115-0	8	Prepared: (05-Mar-21	Analyzed: 0	8-Mar-21				
% Solids	41.5	0.1	0.1	% by		40.0			3.68	10		

Weight

Frontier Global Sciences

Eurofins Frontier Global Sciences, LLC

atuk Atulhad

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Wood - MA 271 Mill Re	A Project:	Penobscot Penobscot Sediments Ha	B onorted:					
Chelmsford	d MA, 01824 Project Manager:	Denise King	15-Mar-21 11:14					
	Notes and Defi	initions						
U	Analyte was not detected and is reported as less than the LOD or as defined by the client. The LOD has been adjusted for any dilution or concentration of the sample.							
QM-07	17 The spike recovery was outside control limits for the MS and/or MSD. The batch was accepted based on LCS and LCSD recoveries within control limits and, when analysis permits, acceptable AS/ASD.							
O-09	Total Solids are prepared at the same time as the preparation for the analyte(s) of interest in order to provide the most accurate dry mass correction.							
O-04	This sample was analyzed outside of the recommended holding time.							
J	The result is an estimated concentration.							
DET	Analyte DETECTED							
ND	Analyte NOT DETECTED at or above the method detection limit reported to the MRL.	t if reported to the MDL or above the reporting limit if						
NR	Not Reported							
dry	Sample results reported on a dry weight basis							
RPD	Relative Percent Difference							

Eurofins Frontier Global Sciences, LLC

atuk Atulhad

ANALYSIS SEQUENCE

B25008 Attached

Analyzed: 2/24/2021

1B25007

Instrument: Hg2600-3

Calibration ID: UNASSIGNED

Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
1B25007-IBL1	QC	1			
1B25007-IBL2	QC	2			
1B25007-IBL3	QC	3			
1B25007-CAL1	QC	4	2100111		UDALITY RESUMANCE
1B25007-CAL2	QC	5	2100112		AFED PEVICMED
1B25007-CAL3	QC	6	2100344		Leve X Leve 2.4
1B25007-CAL4	QC	7	2100345		INITTIALS PLS
1B25007-CAL5	QC	8	2100346		
1B25007-ICV1	QC	9	2002777		
1B25007-ICB1	QC	10			
F102335-BS1	QC	11			
F102335-BSD1	QC	12			
F102335-BLK1	QC	13			
F102335-BLK2	QC	14			
F102335-BLK3	QC	15			
1A00115-01	Hg-CVAFS-S-7474	16			
1B25007-CCV1	QC	17	2002777		
1B25007-CCB1	QC	18			
F102335-MS1	QC	19			
F102335-MSD1	QC	20		_	
1A00115-02	Hg-CVAFS-S-7474	21			
1A00115-03	Hg-CVAFS-S-7474	22			
1A00115-04	Hg-CVAFS-S-7474	23			
1A00115-05	Hg-CVAFS-S-7474	24			
1A00115-06	Hg-CVAFS-S-7474	25			
1A00115-07	Hg-CVAFS-S-7474	26			
1A00115-08	Hg-CVAFS-S-7474	27			
1A00115-10	Hg-CVAFS-S-7474	28			
1B25007-CCV2	QC	29	2002777		
1B25007-CCB2	QC	30			
1A00115-11	Hg-CVAFS-S-7474	31			
F102333-BS1	QC	32			
F102333-BSD1	QC	33			
F102333-BLK1	QC	34			
F102333-BLK2	QC	35			
F102333-BLK3	QC	36			

Page 28 of 173
1B25007

Instrument: Hg2600-3

Calibration ID: UNASSIGNED

Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
1A00104-01	Hg-CVAFS-S-AR	37			
1A00105-01	Hg-CVAFS-S-AR	38			
1B00048-01	Hg-CVAFS-S-AR	39			
F102333-MS1	QC	40			
1B25007-CCV3	QC	41	2002777		
1B25007-CCB3	QC	42			
F102333-MSD1	QC	43			
1B25007-CCV4	QC	44	2002777		
1B25007-CCB4	QC	45			
1B25007-CCV5	QC	46	2002777		
1B25007-CCB5	QC	47			
1A00105-01RE1	Hg-CVAFS-S-AR	48			Added 2/25/2021 by MV2
1B00048-01RE1	Hg-CVAFS-S-AR	49			Added 2/25/2021 by MV2
1A00021-02RE1	Hg-CVAFS-S-SSE-F4	50			Added 2/19/2021 by MV2
1B25007-CCV6	QC	51	2002777		
1B25007-CCB6	QC	52			
1A00021-03RE1	Hg-CVAFS-S-SSE-F4	53			Added 2/19/2021 by MV2
1A00021-04RE1	Hg-CVAFS-S-SSE-F4	54			Added 2/19/2021 by MV2
1A00021-05RE1	Hg-CVAFS-S-SSE-F4	55			Added 2/19/2021 by MV2
1A00021-06RE1	Hg-CVAFS-S-SSE-F4	56			Added 2/19/2021 by MV2
1A00021-07RE1	Hg-CVAFS-S-SSE-F4	57			Added 2/19/2021 by MV2
1A00021-08RE1	Hg-CVAFS-S-SSE-F4	58			Added 2/19/2021 by MV2
1A00021-09RE1	Hg-CVAFS-S-SSE-F4	59			Added 2/19/2021 by MV2
1A00021-10RE1	Hg-CVAFS-S-SSE-F4	60			Added 2/19/2021 by MV2
1A00021-11RE1	Hg-CVAFS-S-SSE-F4	61			Added 2/19/2021 by MV2
1A00021-12RE1	Hg-CVAFS-S-SSE-F4	62			Added 2/19/2021 by MV2
1B25007-CCV7	QC	63	2002777		
1B25007-CCB7	QC	64			
1A00021-13RE1	Hg-CVAFS-S-SSE-F4	65			Added 2/19/2021 by MV2
1B25007-CCV8	QC	66	2002777		
1B25007-CCB8	QC	67			

Leven Hesty 2/25/21 Date Data Processed By E

Samples Loaded By

25/21 Date

Analyzed: 2/24/2021

Peer Review Check List for THg by 2600 CV-AFS (SOP2822) 2016 Rev 1 (04/1/2016)

Analyst:	AH/MV2(DE)	_Sequence(s) #:	1B25007	
Reviewer:		Dataset ID(s):	THg26003-210224-2	
Date:	2/25/2021	WO (s) #:	Multiple	<u> </u>
Batch #(s):	F102335, F101423, F10233			

• Select the correct preparation method.

Analyte	Prep Method		Matrix
П тна	EFAFS-T-AFS-SOP2985	FSTM Trap 70:30 Digest	Air/Gas
🗌 ТНg	EFAFS-T-AFS-SOP2807	Modified Cold Aqua Regia	Sed/Soil
THg	EFAFS-T-AFS-SOP2821	Shared Bomb- HF/HNO3/HCI Digest	Sed/Soil
THg	EFTM-T-TM-SOP2825	Nitric Acid Oven Bomb	Sed/Soil
🗹 тнд	EFAFS-T-AFS-SOP2795	70:30 Digest	Tissue
🗌 тнд	EFAFS-T-AFS-SOP2800	KCI Trap BrCI Oxidation	Air/Gas
THg	EFTM-T-TM-SOP2837	Shared Nitric	Tissue
THg	EFSR-P-SP-SOP2796	BrCt Oxidation	Water
Hg0	NA	NA	Water
Inorg Hg	SSE NA	NA	Water

	Analyst Initials:	Reviewe	r	<u> </u>	
1. Compare SampleID with Benchsheet/Sequence/Raw Data	a (Have all samples been imported?)	YES	NO NO		
2. Check for transcription errors from Excel spreadsheet (or	Prep Benchsheet)/Raw data	🗹 YES	ПNO		
(a) On raw data (instrument print-out), does correct file (da	ataset ID#) name appear in description?	L YES	🗌 NO		
Naming convention: THg26001-yymmdd-1 or THg2600	02-yymmdd-1				
(b) Check 5% of transcription from Instrument print-out an	d Excel file				
Compare the "Dilute" and "Peak (raw)" columns to "Dilu	ution" and "Uncorrected Result" in Excel				
(c) Check standards & reagents in sequence & bench she	et for correct usage (expiries).	YES		□ N/A	
(d) Check and compare masses (review prep benchsheet)	YES	NO NO	□ N/A	
(e) Check & compare initial & final volumes		YES	🗌 NO	►N/A	
(f) Do aliquots and dilutions written on benchsheet match	those in Excel?	YES		□ N/A	
50 ml / aliquot = Excel dilution value					
(g) Is the sequence #, analyst, date, and instrument # on t	the QC page?	YES			
(h) is the analysis status correct? (analyzed/initial review/r	reviewed)	YES YES	🗋 NO		
(i) Original prep bench sheet added to data package?		YES 🗹	🗌 NO		
(j) Benchsheet prep date MUST match actual prep date (c	heck if re-shot vs re-extract)	YES			
3. High QA? WO#(s)/Client(s):		TES	NO NO		
4. Client specific QC? (if Yes, refer to Project Notes/LIMS)		YES			
(a) Have the QC requirements been met for all WO#s?		🗹 YES	NO NO		
(b) Prep blanks corrections/assigned properly		TYES	NO NO		
5a. 20 or fewer samples in batch?		YES	NO NO		
(i) 3 PBs, 1 LCS(or BS), 1 LCSD(or BSD), 1 DUP/Batch 1	MS/MSD (or AS/ASD)/10 samples?	T YES	🗌 NO		
(ii) 1 CCV and 1 CCB every 10 analytical runs?		YES	🗌 NO		

Peer Review Check List for THg	by 2600 CV-AFS (SOP2822) 2016 Rev 1 (04/1/2016)
--------------------------------	-------------------------	--------------------------

Analyst:	AH/MV2(DE)	Sequence(s) #: _1B2	:5007				
Reviewer:		Dataset ID(s):	<u>j26003-210224-2</u>				
Date:	2/25/2021	WO (s) #: <u>Mul</u>	tiple				
Batch #(s):	F 102335, F 101423, F 10233						
		Analyst Initials	m	Reviewe	P6.	5	_
5b. Has the B	VC section data been uploaded?			YES		N/A	
QA/QC Data	Checked						
6. RSD CF (≤	15%)			PASS	🗌 FAIL		
Comment	s:						
7. The calibra	tion curve included a minimum of 5 Standards		· · · _	YES			
Comments	:						
8. 1st Calibrat	ion Standard % Recoveries EPA 1631E (75-12	25%)		PASS	FAIL		
9. ICV and CC	V % Recoveries EPA 1631E (77-123%)			PASS	FAIL		
Comments:							
10. Do ali calit	pration points pass acceptance criteria?			YES	О ОЛ		
Comments:							
11.Are qualifie	rs consistant with the data review flowcharts?			YES	□ NO	N/A	
Comments	: <u></u>						
12. Explain an	y items on the failed data report from Element						
Comments:							
13. Are the indi	vidual Preparation Blanks < PQL or <2.2xMDL for W	/I (refer to appropriate prep method P	QL list)	PASS	FAIL		
(a) if not < F	PQL or <2.2xMDL for WI, note which PB(s) are	above control limit:		,			
(b) is the me	ean PB < PQL or <2.2xMDL for WI (for appropr	iate qualification)?		YES	D NO		
(c) Was a B	rCl Blank analyzed for each preservation level?	,		YES		N/A	
(d) Are Prep	aration Blanks summarized on QC page?			YES			
14. Filtration B	lank Prepared (if yes, use FB qualifier)			YES	NO		
(a) Filtration	Blank prep date same as associated samples'	prep date		YES	NO	₽́n/a	
(b) Filtration	Blank absolute value < PQL or <2.2xMDL for V	WI		YES	NO	N/A	
15. IBLs (3 min	imum) individually < 0.50 ng/L, mean < 0.25 r	ng/L and STD of 0.10 ng/L?		PASS	FAIL		
Comments:				<u> </u>			
L6. CCBs individ	dually < 0.50 ng/L or 2.2 x MDL for WI?			PASS			
Comments:							
17. Have Total	Solids been applied? (If NO, please ensure that	t they are done or nearly done)		YES		N/A	
8. Is the corre	ct 'Source' designated for MD/MS/MSD?			🗹 YES	оя 🗌		
9. For digeste	d preps: was there a spike witness signature &	date on the prep bench sheet?		YES			

Peer Review Check List for THg by 2600 CV-AFS (SOP2822) 2016 Rev 1 (04/1/2016)

Analyst:	AH/MV2(DE)	Sequence(s) #:	1B25007				-
Date:	2/25/2021		1Hg20003-210224-2				
Batch #(s):	F102335, F101423, F10233	_ WO (S) #:					
		Analyst Initials	r	Reviewer Initials	PC	-5	
20. MS/MSD :	Spiked at least 1-5 X ambient or 5x MRL (whichever is h	igher) ?		L <u>u</u> ries			
21 Are ell con				PASE			
Comments		n allution size)		L] FA33			
22 Are the sa	mples run at the correct dilution level for the method?			I YES			
Comments:							
23. Dissolved	< Total (if applicable)			YES			
Comments:				_	_		_
24. Effluent <	Influent (visually confirm if needed)			YES			
Comments:	· · · · · · · · · · · · · · · · · · ·						
25. Are re-runs	s noted with reason?			YES		N/A	
Comments:							
26. FSTM Data the FSTM A (in	asets: Check to ensure the 'Response' & 'Initial Result' c a sequence) & B/C (in batch) traps?	olumns match in bo	th the Excel dataset & LIMS for	YES	NO NO	N/A	
Comments	·						
27. Is the B tra	ap <5% A Traps			YES	NO	G ∙N/A	
Comments:							
28. Are spiked	trap recoveries75-125% of true value?			VES	LI NO	N/A	
Comments:							
29.Have non-n	eportable samples been imported into LIMS and clicked	to non-reportable?		YES		□ N/A	
Comments:							
30. Have re-ext	racts been created for non-reportable samples?			L YES		∐ N/A	
31. Are there an office before sc	ny HIGH QA projects within the data? If so, place data p anning.	ackage in QA		L_ 1E5		[⊻ /N/A	
32. Does the da	ata set need scanning?			YES		` _∕N/A	
33. Does the da	itaset have an LOQ/LOQ or DOC?			YES	_	⊡ •N/A	
34. Water samp	les: has the preservation log been included in dataset fo	r final volume verifi	cation?	U YES	∐ NO	LIN/A	
35. Water samp	ples-is the final volume correct in the sequence?			YES	NO	⊡ N/A	
Files located a	at: \\Cuprum\gen_admin\Quality Assurance\Training	Master\DOCs		1			_
36. Date of ana	lyst IDOC/CDOC:	2/17/21 IDOG	C/CDOC within last 12 months?	YES			
37. Date of anal	yst's SOP reading for method:		Current SOP revision read?	TES TES			
38. Date of LOD):		LOD within last 3 months?	∐ YES	LI NO		
39. Date of LOG	a :		LOQ within last 3 months?	L_YES	NO NO		
Data can not be	e reported without a current IDOC/CDOC, LOD or LO	Q.					

Peer Review Check List for THg by 2600 CV-AFS (SOP2822) 2016 Rev 1 (04/1/2016)

r			
Analyst:	AH/MV2(DE)	Sequence(s) #:	1B <u>25</u> 007
Revlewer:		Dataset ID(s):	THg26003-210224-2
Date:	2/25/2021	WO (s) #:	Multiple
Batch #(s):	F102335, F101423, F10233	_	

40. Peer Reviewer's comments (use Peer Review Checklist Additional Comments form if necessary):

I

Additional Page (s)?

1 B25007
Report -
Data
Failing

971	. îo ∑ e	Pagi	Ţ								
	Qualifie	QR-06	QR-06								
	Failure	FAIL-BS	FAIL-BSD (Rec.)	FAIL-MS	FAIL-MSD (Rec.)	FAIL-CCV	PASS	FAIL-CCV	FAIL-CCV	FAIL-CCV	
	Over Cal	PASS-OVER	PASS-OVER	PASS-OVER	PASS-OVER	PASS-OVER	FAIL-OVER	PASS-OVER	PASS-OVER	PASS-OVER	
	RPD Limit		24.00		24.00						
	RPD		9.58		15.3						
	Rec. UCL	125.00	125.00	125.00	125.00	123.00		123.00	123.00	125.00	
	Rec. LCL	75.00	75.00	71.00	71.00	77.00		77.00	77.00	75.00	
	% Rec.	42.3	46.6	50.6	43.4	70.8		70.8	70.8	70.8	
	Units	3/gr	g/gr	3/3u	₿/ðu	ng/L	3/gu	ng/L	ng/L	ng/L	<
	True Value	79.920	79.920	993.44	984.45	4.9950		4.9950	4.9950	4.9950	
	Source Result			89.88578	89.88578						
	Dup Result		33.82125		592.9647						
	MRL	8.00	8.00	159	158	2.000	247	1.250	1.250	2.496	
	Result	33.82	37.23	593.0	517.5	3.54	19800	3.54	3.54	3.54	
a Report - 1B25007	Analysis	Hg-CVAFS-S-7474	Hg-CVAFS-S-7474	Hg-CVAFS-S-7474	Hg-CVAFS-S-7474	Hg-CVAFS-S-7474	Hg-CVAFS-S-AR	Hg-CVAFS-S-AR	Hg-CVAFS-S-AR DOD	Hg-CVAFS-S-SSE-F4	
Failing Data	Sample ID	F102335-BS1	F102335-BSD1	F102335-MS1	F102335-MSD1	1B25007-CCV8	1A00105-01	1B25007-CCV8	1B25007-CCV8	1B25007-CCV8	

Analyst Reviewed By

Date

Date Peer Reviewed By

Page 1 of 1

PREPARATION BENCH SHEET

F102335

Eurofins Frontier Global Sciences, LLC

Prepared using: Trace Metals - EFGS SOP14801 EPA 7474 Preparation

Matrix: Soil/Sediment

Prepared: 2/19/2021

Lab Number	Sample ID and Source Sample	Initial (g)	Final (mL)	Spikel ID	μl Spikel	Spike2 ID	μl Spike2	Extraction Comments
F102335-BLK1	Blank	0.5	200					
F102335-BLK2	Blank	0.5	200					
F102335-BLK3	Blank	0.5	200					
F102335-BS1	LCS	0.5	200	2002758	20			
F102335-BSD1	LCS Dup	0.5	200	2002758	20			
F102335-MS1	Matrix Spike [1A00115-01]	0.5033	200	2002756	25			
F102335-MSD1	Matrix Spike Dup [1A00115-01]	0.5079	200	2002756	25			

Expiration:	04-May-22 00:00	17-Jun-23 00:00	26-Feb-21 00:00
Description:	Fisher Nitric Acid, Tracemetal Grade	TraceMetal Grade Hydrochloric Acid	7474 Potassium Bromate/Bromide Reagent
Reagent ID(s):	2002416	2100331	2100365
Expiration:	04-May-21 00:00	04-May-21 00:00	
Description:	THg 10,000ng/mL Primary Spiking Standard	THg 1,000ng/mL Secondary Spiking Standard	
Standard ID(s):	2002756	2002758	

PREPARATION BENCH SHEET

F102335

Eurofins Frontier Global Sciences, LLC

Matrix: Soil/Sediment

Prepared using: Trace Metals - EFGS SOP14801 EPA 7474 Preparation

Prepared: 2/19/2021

Lab Number	Sample ID	Initial (g)	Final (mL)	QC Sample	Sample Specs.	Location	Sample Comments	Analysis Comments
1A00115-01	MMBKD-01_012521_SED_00-01	0.5227	200	•		010203		
1A00115-02	MMBKD-01_012521_SED_01-03	0.5201	200	'	'	010203		
1A00115-03	MMBKD-01_012521_SED_03-05	0.5035	200	۰	,	010203		
1A00115-04	MMBKD-01_012521_SED_01-03_DUP	0.5129	200	•	'	010203		
IA00115-05	FRB-02_012621_SED_00-01	0.5271	200	'	'	010203		
1A00115-06	FRB-02_012621_SED_01-03	0.5282	200	,	,	010203		
1A00115-07	FRB-02_012621_SED_03-05	0.5298	200	,		010203		
1A00115-08	ES-13_012621_SED_00-01	0.5094	200	'	1	010203		
1A00115-10	ES-13_012621_SED_01-03	0.5137	200	,		010203		
1A00115-11	ES-13_012621_SED_03-05	0.5001	200	'	'	010203		

			Samp	le Prepara	tion Rev	iew C	hecklis	t			Revis Effec	sion: 4 tive: Dec. 11, 2017
Technicia	n/Date: MV2		2/19/2021		Samples	to lab:	-0:00	1 10.ki	Batch	#: F102333		
Uploa	d/Date: MV2		2/19/21		Reviewe	r/Date:	Val	3-20	(-3)			
-												
		EFGS Pr	eparation M	ethod	-	-			Initials	SOP Date	DO	C Date
	Vien Digest	Ion (Total Rec	overable Me	etais)			S		m	<u>2/11/21</u>	(10.	5.3020
SOP2840	Modified Ag	Digestion			LICPMS	LICA	AFS					
SOP2820	RP	10 I Co Sito									-	
SOP2821	HF Bomb Dig	estion				Πcv	AFS		Comments:			
30P2825	Nitric Bomb	Digestion				CV	AFS					
SOP2993	Oven Digesti	on (As , Se Sp	eciation)						Conditionally for	rmatted trainin	a files locat	ted at:
SOP5145	Microwave D	igestion (Nutr	aceuticals)						\\us34fila\General a	nd Admin/Quality	Assurance\Tr	aining\Training Master
SOP5145	Microwave D	igestion (3051	1)						(Contact QA for any	problems regard	ling these train	ning files.)
NA NA	Other: Sop	2807	Cold	AR								
Analytes:		Ha							Reviewer Initials	VAL	Tertiary Review	
1. Is any SOF	P/DOC expiring	within one w	veek of Sub	mission Date	?		VES	_	⊡ ∕NO			
Data ca	annot be repo	rted without	a current	IDOC/CDOC.			lf YES, n	notify su	pervisor and te	chnician imr	nediately.	
2. Check prej	p method						YES					
(a) For Ceut	ticals: Is correc	t Hg code be	ing used in	LIMS?	L IC	PMS	CV-AFS	70:3	30 🛄 N/A			
3. Compare s	ample ID & co	ntainer ID wit	th benchshe	eet & in LIMS			YES		🗌 N/A			
4. Check for t	ranscription er	rors from ber	nchsheet				YES			2		
(a) Check ar	nd compare ini	tial and final v	volumes			l	YES		N/A			
(b) Check ar	nd compare ma	3 55				l	YES		. □ N/A			
(c) Has the r	number of pills	been docum	ented (Spe	cial Info 5 in b	enchsheet	t)? [YES		[⊿́N/A			
(d) Have ass	say logbook co	pies been att	ached & av	g masses ent	ered?	. [YES					
(e) For re-dig	gests, have e-r	nails been at	tached and	verified?		[YES		□ N/A			
(f) Benchshe	eet prep date N	UST match	actual prep	date	Mai		YES					
5. Samples pe	er Batch? Che	ck QC Requi	rements			20 [✓< 10			R		
(a) PBs per	batch?	-			3 P	Bs [2 PBs	🗌 1 PB	is			Π
(b) Are pre	and post homo	genization bl	lanks in bat	tch?		0	YES		N/A			
(c) BS, BS/	BSD or CRM ir	h batch?			ВS		BS/BSD					
(d) MS/MS) in batch?					Ľ	YES		N/A			
(e) MD in ba	atch?					Г	YES					
(f) is there a	at least one du	plicate QC so	ource in bat	ch?		[YES					
(a) Are then	e anv client sp	ecific request	s. OC requ	ests etc?		Г	TYES					
Document:	· ··· , ·······			0010, 010.		_						
(h) Correct	LIMS spike ID	included for E	3S, BS/BSE	and/or MS/N	ISD?		YES		N/A	1		
(i) Correct 's	source' designa	ated for MD/M	IS/MSD?			- -	- TYES			E C		
(i) For EFGS	S-filtered samp	les, was a filt	ration blan	k included ?		Г	_] YES					
6. Special pres	o requirements	?				Г	- Tyes					
(a) For 1638	3: Have sample	es sat for 48 h	ours after i	nreservation?		г Г	- Tyes					
(b) For 200.	8: Have sample	es sat for 16	hours after	nreservation?	•	Г	YES					
(c) For DOD	have pipettes	been calibrat	ted day of r	ren?		Г Г	TYES					
7. Are the sam	ples appropria	tely spiked?				- -	YES					
(a) is the spi	ike and amoun	t used approx	oriate and e	entered into Li	MS2	- -	IYES					
(b) For all so	piking was then	e a witness?	(Initials mu	st be in loobo	ok)		YES					
(c) Spikes a	dded:	- contraction of		<u></u>			YES			-		
NOTE	E: Due to LIMS	software con	istraints, ne	w LIMS IDs n	eed to be	created	when mu	ultiple/ su	upplemental			_
College 1 19 14	spikes are i	used. Enter r	new LIMS I	D below and u	ise table to	o list all	spikes in	cluded ir	1 it.			_
эріке LIM: Г	SID:							7				
	Spike Name)µL	Spike Nam	e LI	MS ID	μĹ					
	ato History	0100104	ide			\rightarrow						
	1Hg100m/ml	2002728	100									
					and the second		_					
		m	2/ tery		2-21	122						

		E.	REPARAT	JON BEN	CH SHEET				
				F102333					
		Euro	fins Front	ier Global	Sciences, L	TC			
Matrix: Soil/S	ediment Prepared using: 1	Trace Metals	- EFGS SO	P2807 Cold	l Aqua Regia	I Digestion	for Hg		Prepared: 2/18/2021
Lab Number	Sample ID and Source Sample	Initial (g)	Final (mL)	Snikel ID	μl Snike1	Snike? ID	Iц Салінг	Rates retires O commende	
F102333-BLK1	Blank	0.5	, 20				Town		
F102333-BLK2	Blank	0.5	20						
F102333-BLK3	Blank	0.5	20						
F102333-BS1	LCS	0.5	20	2100109	20				
F102333-BSD1	LCS Dup	0.5	20	2100109	20				
F102333-MS1	Matrix Spike [1B00048-01]	0.2567	20	2002758	100				
F102333-MSD1	Matrix Spike Dup [1B00048-01]	0.2634	20	2002758	100				
<u>Standard JD(s):</u> 2002758 2100109	<u>Description:</u> THg 1,000ng/mL Secondary Spiking Standard THg 100ng/mL Primary Spiking Standard	Expiration: 04-May-21 00 12-Apr-21 00:	8.8		Reagent D(s): 2002416 2003665 2100331 2100331 2100342	Descri Desscri Fisher Boilin Tracel 5% Bi	iption: Nitric Acid, T g Chips for Tr Metal Grade H Cl	tacemetal Grade ace Metals ydrochloric Acid	<u>Expiration:</u> 04-May-22 00:00 29-Jun-21 00:00 17-Jun-23 00:00 06-Jul-21 00:00

06-Jul-21 00:00

5% BrCl

Page 11 of 146

Page 1 of 2

SHEET	
BENCH	
PREPARATION	

F102333	1

Eurofins Frontier Global Sciences, LLC

Matrix: Soil/Sediment

Prepared using: Trace Metals - EFGS SOP2807 Cold Aqua Regia Digestion for Hg

Prepared: 2/18/2021

Sample ID (ml.) Location Sample Soil/Hazardous Soil/Hazardous Waste PT study 0.2539 20 S&R Metals in Soil (cat#620) 0.2526 20 S&R
00 701010 07 +0C70 170710 07 170710 07

2/19/21	S	t temperature is reached	ARU18335			ID Sample Size CRM LIMS ID			Farmanate	210											200/101	+ + +
Batch Color ID: 18/924 Date:	ot plate 75±5°C for 2-4 hours. 5±5°C for two hours. at Block 45°C (nitrogen purge for 30 minute: r over four hours.	Calass Teflon Calibrated? C Yes No C * Jipp ig can't begin before target	L: <u>26</u> µL (LIMS ID: 2/ <i>fe</i> /09) : vol.: <i>100</i> µL (LIMS ID: <u>260275</u>)	(20589 Calibration Date: 11/24/20 910 1296 Calibration Date: <u>Ca(17/20</u> Calibrated? □ Yes □ No	*Hotblock Position: N/2	al # Sample ID Number Container II		20	21 *	23	24	25	27	28	59	8	31	32	33	34	35	26 2/18/A
atch#: F162339	Aethyl Mercury - KOH/Methanol: Ho otal Mercury - 70:30: Hot plate 7 - Methyl Mercury - KBr/CH ₂ Cl ₂ : He tal Mercury - Cold AR: 18-25°C fo	Pierrow Vial Type: Pierrow: No Therrow: Pierrow: 0C w/ CF:	<u> ((nitial and date)</u> BS Spike vol (initial and date) MS Spike	Pipette SN#: 1/ Pipette SN#: 1/ Dispenser #:	ing Chip lot # 2005 66	Container ID Sample Size Vi	A 03215	4 0.3269	A 0,2699	A 12574	D 0,2564	0,3567	1 0,0634 2 1,759	A 12520								
hnician: Thu Bi	EFAFS-T-AFS-SOP2986 Tissues - h EFAFS-T-AFS-SOP2795 Tissues - 7 EFAFS-T-AFS-SOP5134 Sediments EFAFS-T-AFS-SOP2807 Solids - To	her: alance#: 33 Calibrated fime, in: 1644 21160 Actual Tem me out: 216 2116 DI	pike Witness: <u>MYS 3/13/12:</u>	CI LIMS ID: 2160331 No3 LIMS ID: 2003410 0/30 LIMS ID: 2003410	urer Acid Linns ID: 44 Boil	Vial # Sample ID Number	1 Fle2333-BUR 1	2 Fla2333-BLK2	4 121-2335-11LK3	5 FIR233-RUDI	6 1Bacc48-01	P162337-MS1	9 12colotter	~ 10 1 Hoel 05-01	H H	12	13	14 w	15	16	17	18 Z

Revision: 4 Effective: Dec. 11, 2017

	Sample Prep	aration Review Che	ecklist	
<u> </u>	2/22/2021	Samples to lab:	0:00	Batch #: F102336

Technician/Date: LEL	2/22/2021	Samples to la	ab: <u>0:00</u>	Batch	#: F102336		
Upload/Date: MV2	2/22/21	Reviewer/Dat	te:				
EFOO D.	an analysis Mathead			8			
CF03 Fr	eparation Method				SOP Date	DOC Date	
SOP2837 Tissue Nitric Digestion	overable metals)		CVAER	UPUC.	1-00-3		
SOP2840 Modified Aqua Regia			CVAFS				
SOP2820 RP				Comments:			
SOP2821 HF Bomb Digestion			CVAFS	Comments.			
SOP2825 Nitric Bomb Digestion			CVAFS				
SOP2993 Oven Digestion (As , Se Sp	peclation)			Conditionally fo	matted training	files located at:	
SOP5145 Microwave Digestion (Nutr	aceuticals)			\\us34fila\General	and Admin\Quality A	ssurance\Training\Training	Master
SOP5145 Microwave Digestion (3051	1)			(Contact QA for an	ıy problems regardir	g these training files.)	
NA Other: 2795							
Appleton Lin				Reviewe	r	Tertiary	
Analytes: Hg				_ Initials		Review	
1. Is any SOP/DOC expiring within one w	veek of Submission Dat	te?	L YES	NO			
2 Check prop method	a current IDOC/CDOC	<i>.</i>	IT YES, N	othy supervisor and t	echnician imm	ediately.	
(a) For Coutingle, is apprentiate and be	ing used in LIMC2			70.20			
(a) For Ceuticals: Is correct Hg code be	ang used in LIMS?						
3. Compare sample ID & container ID with	IN DENCISINEET & IN LIM	8	TES VED	L] N/A			
4. Check for transcription errors from ber	nchsheet		YES	— .			
(a) Check and compare initial and final	volumes		YES				
(b) Check and compare mass			YES	∐ N/A			
(c) Has the number of pills been docum	ented (Special Info 5 in	benchsheet)?	VES	N/A			
(d) Have assay logbook copies been at	tached & avg masses e	ntered?	YES	☑ N/A			
(e) For re-digests, have e-mails been at	tached and verified?		YES	⊡ N/A			
(f) Benchsheet prep date MUST match	actual prep date		YES				
5. Samples per Batch? Check QC Requi	irements	✓ ≤ 20	<u> </u>				
(a) PBs per batch?		📑 3 PBs	2 PBs	1 PBs			
(b) Are pre and post homogenization b	anks in batch?		YES	🗹 N/A			
(c) BS, BS/BSD or CRM in batch?		BS	BS/BSD	CRM			
(d) MS/MSD in batch?			YES	🗌 N/A			
(e) MD in batch?			YES	⊡ ∕N/A			
(f) is there at least one duplicate QC so	ource in batch?		YES	N/A		П	
(g) Are there any client specific reques	ts. QC requests. etc?		YES	N/A			
Document:							
(h) Correct LIMS spike ID included for	BS, BS/BSD and/or MS	MSD?	YE\$	□ N/A			
(i) Correct 'source' designated for MD/	MS/MSD?		YES				
(i) For EFGS-filtered samples, was a fil	tration blank included ?	1					
6. Special prep requirements?			☐ YES	I ∕∧/A			
(a) For 1638: Have samples sat for 48	hours after preservation	22		N/A			
(b) For 200 8: Have samples set for 16	hours after preservation	n2					
(c) For DOD have pipettes boon calibr	tod dou of prop2						
7 Are the samples appropriately epiked?	ned day of prep :						
(a) to the anily and amount used areas							
(a) is the spike and amount used appro							
(c) For all spiking was there a withess?	(mittais must be in logi	DOOK)					
NOTE: Due to LIMS software co	nstraints, new LIMS IDs	need to be crea	ted when m	Iltiple/ supplemental			
spikes are used. Enter	new LIMS ID below and	use table to list	all spikes in	cluded in it.			
Spike LIMS ID :							
Spike Name LIMS I) µL Spike Na	me LIMS	ID μL				
THelewiston 200275	7 50						
Theanyne 2100109	2						

SHEET	
BENCH	
PREPARATION	

Eurofins Frontier Global Sciences, LLC

Matrix: Tissue

Prepared using: Trace Metals - EFGS SOP2795 Nitric/Sulfuric Hg Digestion

Prepared: 2/22/2021

Lah Numher	Samula ID and Course Courses	Initial	Final		E		Ξ	
	Siduade Source Statistic	(g)	(mL)	Spikel ID	Spike1	Spike2 ID	Spike2	Extraction Comments
F102336-BLK1	Blank	0.25	20					
F102336-BLK2	Blank	0.25	20					
F102336-BLK3	Blank	0.25	20					
F102336-BS1	LCS	0.25	20	2100109	20			
F102336-BSD1	LCS Dup	0.25	20	2100109	20			
F102336-MS1	Matrix Spike [1B00003-31]	0.0853	10	2002758	50			
F102336-MS2	Matrix Spike [1B00003-34]	0.048	10	2002758	50			
F102336-MSD1	Matrix Spike Dup [1B00003-31]	0.0603	10	2002758	50			
F102336-MSD2	Matrix Spike Dup [1B00003-34]	0.0531	01	2002758	50			

Reagent ID(2003665	2100342	2100386
Expiration:	04-May-21 00:00	12-Apr-21 00:00	
Description:	THg 1,000 ng/mL Secondary Spiking Standard	trig toong/mile Frimary Spiking Standard	
Standard ID(s):	2002/28	6010017	

Expiration:	29-Jun-21 00:00	06-Jul-21 00:00	21-Aug-21 00:00
Description:	Boiling Chips for Trace Metals	5% BrCI	70/30 Digestion Acid
(s):			

Page 15 of 146

Matrix: Tissue	Prepared using:	Trace Meta	als - EFGS	SOP279	5 Nitrie	c/Sulfur	ic Hg Digestion	Prepared: 2/22/2021
I ah Niimher	Connector ID	Initial	Final	QC Sample	Sample Specs.	Location		
1B00003-20	ES-13_013021_ABD_05_BL	(g) 0.1446	10 1	•	•	eezer 23	sample Comments	Analysis Comments
1B00003-21	ES-13_013021_ABD_06_BL	0.1051	10	,		eezer 23		
1B00003-22	ES-13_013021_ABD_07_BL	0.1112	10	•	ŀ	eezer 23		
1B00003-23	ES-13_013021_ABD_08_BL	0.0854	10	'		ecer 23		
1B00003-24	ES-13_013021_ABD_09_BL	0.0859	10	,		eczer 23		
1B00003-25	ES-13_013021_ABD_10_BL	0.1558	10	'	•	eccer 23		
1B00003-26	ES-13_013021_ABD_11_BL	0.109	10	1		eccer 23		
1B00003-27	ES-13_013021_ABD_12_BL	0.1129	10	•		cezer 23		
1B00003-28	ES-13_013021_ABD_13_BL	0.0774	10	'	•	bezer 23		
1B00003-29	ES-13_013021_ABD_14_BL	0.1405	10	•	,	cezer 23		
1B00003-30	ES-13_013021_ABD_15_BL	0.0978	10	•	•	eezer 23		
1B00003-31	FRB-02_012621_ABD_01_BL	0.0735	10	Ş	•	eezer 23	CSW/SW	
1B00003-32	FRB-02_012621_ABD_02_BL	0.1756	10	•	1	eezer 23		
1B00003-33	FRB-02_012721_ABD_03_BL	0.124	10	'		eezer 23		
1B00003-34	FRB-02_012721_ABD_04_BL	0.063	10	•	•	eezer 23		
1B00003-35	FRB-02_012721_ABD_05_BL	0.0534	10	ł		cezer 23		
1B00003-36	EB_CAPILLARY_013021_ABD_QC	0.1251	10	1		S&R	Add DI at lab to make blank	
Page 43 c								
Le Date: 3	3/2/2021							Page 2 of 3

PREPARATION BENCH SHEET

F102336

Eurofins Frontier Global Sciences, LLC

Page 16 of 146

	F102336 Eurofins Frontier Global Sciences, LLC	
Matrix: Tissue	Prepared using: Trace Metals - EFGS SOP2795 Nitric/Sulfuric Hg Digestion	Prepared: 2/22/2021

Page 3 of 3

PREPARATION BENCH SHEET

941	- 10 81 905 -	ached			15-10-10-10 pr	CRM LINID	a) Limited Udur			Line Comments	10-00-124-30-21										2		ited By Man 28%
10-61-		mperature is re			14 weighe	Sample Size	0,1090	0.1129	0.0774	0.1705	0.1756	04010	0.0534								いたし、後		ok Veri
Date: 2	for 30 minutes).	es □ No in before target te	009)	0-16-31-C		Container ID	t	V	4	4<	A	A	A										cated in back of logbo
Batch Color ID: 200	ot plate 75±5°C for 2-4 hours. '5±5°C for two hours. at Block 45°C (nitrogen purge f or over four hours.	Contraction Contracted? November 2015 Contracted? November 2015 Contracted? November 2015 Contracted Structure in carve begins	a vol.: <u>30 u</u> l (LIMS ID: <u>2(0</u> 2 vol.: <u>30 u</u> l (LIMS ID: <u>2</u>	UN 18325 Calibration Date: US3325 Calibration Date: [QL 81607 Calibrated? [3476	*Hotblock Position: ΛA	ial # Sample ID Number	19 - 13 0000 3. 26	20 eg (30003-27	21 00 13000 3-28	22 13 acros 3-39	24 1(3002)3- 32	25a) [[Scoco3-33	26 A 13 0003 - 35	27 -	28	\$ ®	R	32	33	34	34	æ	QA2021-001 *Hotblock diagram lov Page 12 of 59
atch#: <	<pre>4ethyl Mercury - KOH/Methanol: H fotal Mercury - 70:30: Hot plate 7 : - Methyl Mercury - KBr/CH₂Cl₂: He tal Mercury - Cold AR: 18-25°C fc</pre>	7 <u>5</u> Yes □ No Vial Type: p. (raw): つりいい でw/ CF p. (raw): つ0.0 ℃ w/ CF	212542) BS Spike vo (initial and date) MS Spike	Pipette SN#R Pipette SN#:] Dispenser #:]	ling Chip lot # 3 03 0000	Container ID Sample Size V	C 03657	C 0.3189	0:3030	0.7807	×	À 6.0735	A 0.0853	A 0.0603	A 0.0630	0.040 0.042	A 10.1446	A 0.1051	~ 0.1113	A 0.0654	4 0.0657	A 6.1550	igestions / LOG-HG-013 / Effective 6/26/2020 /
Technician: MB	EFAFS-T-AFS-SOP2986 Tissues - 1 EFAFS-T-AFS-SOP2986 Tissues - 1 EFAFS-T-AFS-SOP2134 Sediments EFAFS-T-AFS-SOP2807 Solids - Tc	Other: AA Balance#: 23 Calibrated *Time in: 1130 Actual Tem Time out: 1426 Actual Tem	Final vol.: <u>20,10 mL (LIMS ID:</u> Spike Witness: <u>、」 セゼイス</u>	HCI LIMS ID: 100 386	Other Acid LIMS ID: んよ Glass Vial # <i>00076594</i> Boli	Vial # Sample ID Number	1. [F10333-BISI	2 FI07336-131K2	3 F103336-BIKS	4 F10336-BS1	6 1 R000 3.36	a) 130003 31	(8 F103336-MS	9 FI0336 MSD	2) 10 = (Good 3 - 34	622/0220012 11	13 1, 13 00 3- 90	16-500031 H (20	E) 15 (30000 3-22	*) 16 = 13000 3-33	4) 17 11 SOOV03- 94	18 1300003-25	Eurofins Frontier Global Sciences / Mercury Sample D

Page 45 of 173

					er F	lec dec	(ec	Lec.																
210224-2				rected tes Factor Of Decrement	17.85 1.23 0 %B	85.56 104.8 %R	50.66 90.7 %Re	51.43 91.1 %Re																
ТН926003-		Ę		orrected Peak Cor Hainht Beenvir	108.92 units 7:	185.56 units 1	803.28 units 10 3201 62 units 14	6457.06 units 1						td Dev (ng/L)	±0.04									
		Analyst: Units ng/		Uncorrected Response C	331.45	242.36	172.02	162.85						Mean (ng/L) S	0.27 ng/L		Std Dev	±1.042	±0.387	±3.630				
	ces			Area	165.72 units	242.36 units	860.08 units 3758 47 unite	6513.86 units			Uncorr. Mean RF	214.32		Std Dev	±8.30		Mean	3.180 ng/L	3.060 ng/L	3.645 ng/L	0.000 ng/L	0.000 ng/L	0.000 ng/L	
	r Global Scien	February 24, 2021 1g2600-3 825007, 1825008		True Val	0.50 ng/L	1.00 ng/L	5.00 ng/L 20.00 ng/L	40.00 ng/L			Corr. RSD CF	14.2% RSD		Mean	56.80 units		E	З	m	m	0	0	0	
y C	Frontie	<i>br Total Mercury</i> Date of Analysis: Instrument #: Hi LIMS Sequence #: 16	stics:					. –	00	00	Corr. St Dev RF	+/- 25.19			m		Batch ID	- 1	7		4	S	9	
🍰 eurofir		Analysis Datasheet fi	Calibration Stati:	LabNumber	SEQ-CAL1	SEQ-CAL2	SEO-CAL4	SEQ-CAL5	SEQ-CAL6 SEQ-CAL7	SEQ-CAL8 SEQ-CAL9	Corr. Mean RF	177.11	Blanks:	LabNumber	SEQ-IBL	Preparation Blanks	Sample Type	BLK	BLK		BLK	BLK	BLK	

Page 46 of 173

File: THg26003-210224-2

Page 3 of 3

Traches innamb		Sample		:			Uncorrected	Satch No PB					
Ha2600-3	00	2	SEC.IRI 1	uogniig	Analyzed File(D	RunEnd	Response	ID Correction?	RESP	InitialResult	FinalResult	InitialUnits	Commente
Hu2600-3	3 8	5 3			2/24/2021 11:40:38 15803-1.RAW	11:40:38	62.20		5.4	0:030	0.030	1/14	
Hu2600-2	3 8	3 3			2/24/2021 11:44:46 15804-1.RAW	11:44:46	60.96		4.2	0.073	0.023		
Hotena -	3 8	5 2			2/24/2021 11:48:55 15805-1.RAW	11:48:55	47.25		-9.6	-0.054	-0.054		
Ho7600-3	3 8	3 3			2/24/2021 11:53:04 15806-1.RAW	11:53:04	165.72		108.9	0.615	0.615		
Ha2600-3	8 8	5	SEC.CA13		2/24/2021 11:57:13 15807-1.RAW	11:57:13	242.36		185.6	1.048	1.048		
Ha2600-3	8 8	5	SEC CALA		2/24/2021 12:01:21 15808-1.RAW	12:01:21	860.08		803.3	4.535	4 535		
Ha2600-3	38	5 2	SEO CALA		2/24/2021 12:05:30 15809-1.RAW	12:05:30	3258.42		3201.6	18.077	18.077	no/l	
Ha2600-3	88	52	SECTOV		2/24/2021 12:09:39 15810-1.RAW	12:09:39	6513.86		6457.1	36.457	36.457		
Ha2600-3	8 8	5	SECLICE	-	2/24/2021 12:13:50 15811-1.RAW	12:13:50	907.74		850.9	4.804	4.804		
Ha2600-3	8 8	AN	ETAD235 DC1	- 5	2/24/2021 12:17:59 15812-1.RAW	12:17:59	99.13		42.3	0.239	0.239		
Ha2600-3	8 8	WY	E102225 DCh4	50	2/24/2021 12:22:08 15813-1.RAW	12:22:08	833.74	-	776.9	4.228	84.553		F10235
Hu260n-3	3 8	A Id	E400955 BI M4	7	2/24/2021 12:26:17 15814-1.RAW	12:26:17	909.10	-	852.3	4.653	93.064	1/00	E10235
Hu7600-3	3 8			2	2/24/2021 12:30:26 15815-1.RAW	12:30:26	134.27	-	77.5	0.437	4 374		E1023E
Hr 2600-3	3 8		F102330-BLK2	2	2/24/2021 12:34:35 15816-1.RAW	12:34:35	104.80	-	48.0	0.271	2.710	1/50	E10225
C DOOTAL	3 8		F1U2330-BLK3	2	2/24/2021 12:38:44 15817-1.RAW	12:38:44	100.28		43.5	0.746	2.0 2.0	1	E40099E
C DOOD AL	3 8		INCLIDED IN	100	2/24/2021 12:42:54 15818-1.RAW	12:42:54	478.50	-	421.7	7 349	734 017	2/1	E10000E
C-000761	3 8	MAC	SW .		2/24/2021 12:47:03 15819-1.RAW	12:47:03	40.11	-	-16.7	#DN/DI	IU/NU(#		T102335
C-Onozhu	3	N N	WS.		2/24/2021 12:51:12 15820-1.RAW	12:51:12	37.45		-10.3	#DIV/01	in/Atra#		F102335
C-00261	3 8	E S	MS		2/24/2021 12:55:21 15821-1.RAW	12:55:21	37.21		-19.6	EPON			F102335
Hg2buu-3	3	SAM	MS		2/24/2021 12:59:30 15822-1.RAW	12:59:30	31.51		55.2	EII0	#VALUE:		
Hg2600-3	8	B	SEQ-CCV1	-	2/24/2021 13:03:39 15823-1.RAW	13:03:39	837 AG		1 102		#VALUE!	- ng/t	
Hg2600-3	8	3	SEQ-CCB1	-	2/24/2021 13:07:48 15824-1.RAW	13:07:48	02.03		1.10/	4.41U	4,410	1/6u	
Hg2bUU-3	B	SAM	F102335-MS1	400	2/24/2021 13:11:58 15825-1.RAW	13:11:58	718.93		1.022	0000 0	102.0	ug/L	
Hg2600-3	8	SAM	F102336-MSD1	400	2/24/2021 13:16:07 15826-1.RAW	13:16:07	840.08		11700	10/10 10/10	1492.190	ng/L	F102335
Hg2600-3	8	SAM	1A00115-02	50	2/24/2021 13:20:17 15827-1.RAW	13:20:17	633.36		202.2	C07*C	111-9151	1/6	F102335
Hg2bUU-3	8	SAM	1A00115-03	20	2/24/2021 13:24:26 15828-1.RAW	13:24:26	202.00		145.2	0.752	190'ACT	1/60	F102335
192000-3 1407600-3	3 8	SAM	1A00115-04	33	2/24/2021 13:28:35 15829-1.RAW	13:28:35	563.42	-	506.6	707 0	010010	1/01	F102335
6-00070H	3 8	MAN	1400115-05	3	2/24/2021 13:32:45 15830-1.RAW	13:32:45	109.88	-	1.1.1	0 736	11 DUC	U/L	F102335
5-002CP	3 8	WYS I	BLANKTEST	-	2/24/2021 13:36:54 15831-1.RAW	13:36:54	79.01 HG	3 STANDARD DROPE	22.2	France	#VALLEL	1/6u	PTU2335
C-00026H	3 8	WWX	1A00115-06	8	2/24/2021 13:41:04 15832-1.RAW	13:41:04	148.49	-	91.7	0.454	207704		E10005
Ha2600-3	3 8	CAM	1400115-07	8	2/24/2021 13:45:13 15833-1.RAW	13:45:13	141.39	~	84.6	0.414	20.700	1/00	F10235
Hn2600-3	3 8	CAM	1400115-00	3 8	2/24/2021 13:49:23 15834-1.RAW	13:49:23	960.BG	1	924.1	5.154	257,685	1/00	F102355
Hd2600-3	8 8		SECTIVE	3 1	2/24/2021 13:53:32 15835-1.RAW	13:53:32	954.75	-	897.9	5.006	250.315	ua/l	F102335
Hg2600-3	8 8	3	SEO-CCB2	- -	2/24/2021 13:57:41 15836-1.RAW	13:57:41	847.81		791.0	4.466	4.466	ng/L	
Ha2600-3	8	SAM	1A00115-11	5	WAN-1-/2021 10:10:41 12024702	14:01:51	101.16		44.4	0.250	0.250	ng/L	
Hg2600-3	8	SAM	F102333-BS1	8 8	ZZ4/ZUZ1 14:U0:00 15636-1.RAW	14:06:00	274.70	-	217.9	1.167	58.333	ng/L	F102335
Hg2600-3	8	SAM	F102333-BSD1	8	227/2021 14:10:10 12025-1:04W	14:10:10	639.94		783.1	4.269	85.374	1/6u	F102333
Hg2600-3	8	BLK	F102333-BLK1	8	VOAPOCI 14-18-18-18-18-18-18-18-18-18-18-18-18-18-	21.41.41	887.44	2	830.5	4.536	90.726	1/6u	F102333
Hg2600-3	8	BLK	F102333-BLK2	8	2/24/2021 14-22-38 15842-1 RAW	07:01:14	80.5H	2	28.8	0.163	3.251	ng/L	F102333
Hg2600-3	8	BLK	F102333-BLK3	ম	2/24/2021 14-26:47 15843-1 RAW	14-30-47	08-90 98-90	2	23.2	0.131	2.614	ng/L	F102333
Hg2600-3	8	SAM	1A00104-01	12500	2/24/2021 14:30:57 15844-1 RAW	14-20-57	2440.04	2	29.4	0.166	3.315	ng/L	F102333
Hg2600-3	8	SAM	1A00105-01	5000	2/24/2021 14:35:06 15845-1.RAW	14:35:06)	8026 27	v c	9323.4	18.933	236667.520	ng/L	F102333
Hg2600-3	8	SAM	1B00048-01	20	2/24/2021 14:39:16 15846-1.RAW	14:39:16	658 BD	4 6	1 000	1/0.06	106.485042	ng/L	F102333
Hg2600-3	8	SAM	F102333-MS1	400	2/24/2021 14:43:25 15847-1.RAW	14:43:25	2647.87	6	7501 1	04770	04.930	LIG/L	F102333
Hg2bU0-3	B	3	SEQ-CCV3	-	2/24/2021 14:47:35 15848-1.RAW	14:47:35	813.94		757 1	A 375	2010./02	1/6	
102000-3	B	3	SEQ-CCB3	-	2/24/2021 14:51:45 15849-1.RAW	14:51:45	61.89		5.1	0000	0000		
5-0026U	8 8	MAN	F102333-MSD1	400	2/24/2021 14:55:54 15850-1.RAW	14:55:54	2568.11	2	2511.3	14.171	CEGR EAT	1/54	
C-0026H	3 8	MWS	F102336-BS1	20	2/24/2021 15:00:04 15851-1.RAW	15:00:04	899.53	3	842.7	4.576	91 517	1/6	E107338
LUXCOL	3 8	NAV Di V	F102330-BSUT	20	2/24/2021 15:04:14 15852-1.RAW	15:04:14	860.90	8	804.1	4.358	87.155	1/5	E119228
Habenta	3 8			8	2/24/2021 15:08:23 15853-1.RAW	15:08:23	126.05	0	69.2	0.391	7.819	1/2	E10236
Ho7600-2	3 8		F 102330-BLK2	ର ।	2/24/2021 15:12:33 15854-1.RAW	15:12:33	67.70	en	10.9	0.062	1.230	1/00	E10236
Hazena	3 8	CAM	1 02330-BLN3	20	2/24/2021 15:16:43 15855-1.RAW	15:16:43	73.51	3	16.7	0.094	1.886	DO/L	F102336
Hn2600-3	3 8	CAM	E107226 MC4	2500	2/24/2021 15:20:52 15856-1.RAW	15:20:52	109.03	3	52.2	0.293	733.626	DO/L	F102336
Ho2600-3	3 8	SAM	F10238-MSD1	2500	2/24/2021 15:25:02 15857-1.RAW	15:25:02	418.65	8	361.8	2.042	5103.695	ng/L	F102336
Ha2600-3	8	SAM	180003-34	2500	VVAN.1-00011 11:82.01 12:24212	15:23:11	244.21	3	187.4	1.057	2641.655	ng/L	F102336
				1222	AVVI'I-80001 17:00:01 1707/HZ/Z	15(35/21)	88.06	3	31.3	0.175	437.567	na/L	F102336

Page 20 of 146

Page 1 of 3

Printed: 2/25/2021

Page 47 of 173

Holicol Inc. Sector 1 Sector	Instrument	Analyst	Type	LabNumber	Dilution	Analyzed	FlieID	RunFad	Uncorrected	Batch	No PB					
Questional Questio	Hg2600-3	8	5	SEO-CCV4	Ŧ	PINAMON 4E-07.04	4 2 4 0 4 10 4 14					RESP	InitialResult	FinalResult	InitialUnits	Commen
Quencio Des System System System Des Dist Dist <thdist< th=""> <thdist< th=""> <thdist< th=""></thdist<></thdist<></thdist<>	lg2600-3	8	ชี	SEO-CCB4		10.10.01 12021-212	12000-1.NAVY	10:31:01	11.7RJ			735.4	4.152	4,152	i ng/L	
Quanto D System Control D System	lq2600-3	8	SAM	F102336-MS2	2500	1414101 12024-272	MAN	15:12:12:12:12:12:12:12:12:12:12:12:12:12:	57.20			0.4	0.002	0.002	ng/L	
QX0003 0.0 544.0 0.0 0.00003 0.0	la2600-3	8	SAM	F102346-MSD2	2500	00:04:01 1707/47/7	WAN.1-20001	15:45:50	248.20	33		191.4	1.079	2698.005	ng/L	F102336
000000 00000000 000000000 000000000 000000000 00000000000000 000000000000000000000000000000000000	la2600-3	00	CAM	1B0003-00	7500	00:00:01 1202/42/2	WAN.1-60861	15:50:00	344.92	e		288.1	1.625	4063.257	na/L	F102336
0000 000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 0000	107600-3	8 8	CAM	100000 01	0002	2/24/2021 15:54:10	15864-1.RAW	15:54:10	241.86	ŝ		185.1	1.043	2608.519	no/i	F102336
00000 000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000000 000000 00000000000000 <td>0.0600-2</td> <td>38</td> <td>NVU</td> <td>1200000</td> <td>0002</td> <td>2/24/2021 15:58:20</td> <td>15865-1.RAW</td> <td>15:58:20</td> <td>324.81</td> <td>e</td> <td></td> <td>268.0</td> <td>1.512</td> <td>3779.427</td> <td>l/ou</td> <td>E102336</td>	0.0600-2	38	NVU	1200000	0002	2/24/2021 15:58:20	15865-1.RAW	15:58:20	324.81	e		268.0	1.512	3779.427	l/ou	E102336
0000 000 00000 0000 0000 <th< td=""><td>00000</td><td>38</td><td></td><td>100000 00</td><td>0092</td><td>2/24/2021 16:02:30</td><td>15866-1.RAW</td><td>16:02:30</td><td>345.44</td><td>e</td><td></td><td>288.6</td><td>1.628</td><td>4070.566</td><td></td><td>F107938</td></th<>	00000	38		100000 00	0092	2/24/2021 16:02:30	15866-1.RAW	16:02:30	345.44	e		288.6	1.628	4070.566		F107938
000000 0000000 000000000 0000000000 000000000000000000000000000000000000	C-0026	38	MMC	1800003-23	2500	2/24/2021 16:06:39	15867-1.RAW	16:06:39	233.04	3	+	176.2	0.994	7483 070		E102220
Mono Mono <th< td=""><td>5-00-5</td><td>38</td><td>AMA A</td><td>1800003-24</td><td>2500</td><td>2/24/2021 16:10:49</td><td>15868-1.RAW</td><td>16:10:49</td><td>163.98</td><td>6</td><td></td><td>107.2</td><td>0 604</td><td>1500 240</td><td>100</td><td>E400990</td></th<>	5-00-5	38	AMA A	1800003-24	2500	2/24/2021 16:10:49	15868-1.RAW	16:10:49	163.98	6		107.2	0 604	1500 240	100	E400990
Rem Sem Sem <td>5-0026</td> <td>3</td> <td>MAX I</td> <td>1800003-25</td> <td>2500</td> <td>2/24/2021 16:14:59</td> <td>15869-1.RAW</td> <td>16:14:59</td> <td>295.92</td> <td>0</td> <td></td> <td>739.1</td> <td>1 340</td> <td>2271 504</td> <td></td> <td>F102300</td>	5-0026	3	MAX I	1800003-25	2500	2/24/2021 16:14:59	15869-1.RAW	16:14:59	295.92	0		739.1	1 340	2271 504		F102300
00 04 FROND-3 00 04 797 044 797 044 112 <td>5-002C+</td> <td>3</td> <td></td> <td>1800003-26</td> <td>2500</td> <td>2/24/2021 16:19:09</td> <td>15870-1.RAW</td> <td>16:19:09</td> <td>189.77</td> <td>6</td> <td></td> <td>133.0</td> <td>0.740</td> <td>1873 207</td> <td>1/1</td> <td>F102330</td>	5-002C+	3		1800003-26	2500	2/24/2021 16:19:09	15870-1.RAW	16:19:09	189.77	6		133.0	0.740	1873 207	1/1	F102330
Columnation Columnation Sectors 1 Zakazari Holi Field Zakazari Holi Holi <t< td=""><td>c-0020+</td><td>3</td><td>3</td><td>1B00003-27</td><td>2500</td><td>2/24/2021 16:23:19</td><td>15871-1.RAW</td><td>16:23:19</td><td>136.53</td><td>6</td><td></td><td>7.67</td><td>0 440</td><td>1171 687</td><td></td><td>F10200</td></t<>	c-0020+	3	3	1B00003-27	2500	2/24/2021 16:23:19	15871-1.RAW	16:23:19	136.53	6		7.67	0 440	1171 687		F10200
ADMORD Display State	5-0026	3	3	seq-ccV5	-	2/24/2021 16:27:29	15872-1.RAW	16:27:29	786.19			779.4	4 119	0117		LIVESOD
Ability 3 0.0 SMM Bolonosas 25000 226/2021 R53-61 S74-71 Mon S74-70 S74	92000-3	8	5	SEQ-CCB5	-	2/24/2021 16:31:38	15873-1.RAW	16:31:38	58.38	t		1.621	01111	011.1	- Mar	
20003 00 SM Honors-as 200 224/2021 (15-61) 65/610 65/610 200 205/61 1.30 205/61 1.30 200/21 1.30 200/21 1.30 200/21 1.30 200/21 200/21 200/21 1.30 200/21 1.30 200/21 1.30 200/21 1.30 200/21 1.30 200/21 1.30 200/21 1.30 200/21 1.30 200/21 1.30 200/21 1.30 200/21 1.30 200/21 <	g2600-3	8	SAM	1B00003-28	2500	2/24/2021 16:35:48	15874-1.RAW	16:35:48	145.56	ø		0 00	600.0	500.0	1/Du	
20003 00 SM 100003-30 2500 224/2021 164/10 272.9 0.137 272.9 0.143 224/401 10003-35 20003 00 SM 160003-30 224/2021 166440 176561 3 20.3 0.143 224/302 1703 10003-35 20.3 0.143 224/302 1703 10003-35 20.3 0.143 20.3 0.143 20.3 0.143 20.3 0.143 20.3 0.143 20.3 20.3 10003-35 20.3 10.3 10.3 20.3 10.3 20.3 20.4 10.3 20.3 20.4 10.3 20.3 20.4 10.3 20.3 20.3 10.3 20.3 20.3 10.3 10.3 20.3	g2600-3	8	SAM	1B00003-29	2500	2/24/2021 16:39:58	15875-1.RAW	16:39-58	202 61	0	+-	101.0	000.	047'647	Dg/L	F102336
26003 00 SM 160003-32 226/2021 16.410 16.2.30 27.24 17.10 17.10 17.11	32600-3	8	SAM	1B00003-30	2500	2/24/2021 16:44:09	15876-1.RAW	16:44:09	256.96	0 0	+-	0.000	DCC+T	108-4-201	- 1/G	F102336
2003 00 SM 180000333 2500 274/2071 175/671 <td>12600-3</td> <td>8</td> <td>SAM</td> <td>1B00003-32</td> <td>2500</td> <td>2/24/2021 16:48:19</td> <td>15877-1.RAW</td> <td>16-48-10</td> <td>120.70</td> <td></td> <td></td> <td>2007</td> <td>671.1</td> <td>7901797</td> <td>ng/L</td> <td>F102336</td>	12600-3	8	SAM	1B00003-32	2500	2/24/2021 16:48:19	15877-1.RAW	16-48-10	120.70			2007	671.1	7901797	ng/L	F102336
2003 00 SMI Biologo 35 224/2021 15637-1 157-0 127 461 193 0.051 127 461 193 0.051 127 461 193 0.051 127 127 127 127 103 127 103 127 103 127 103 127 103 127 103 127 103 127 103 127 103 127 113 127 113 127 113 127 113 127 113 127 113 127 113 122 127 127 127 127 127 127 123<	2600-3	8	SAM	1B00003-33	2500	2/24/2021 16:52:29	15878-1.RAW	16:52:29	123.66	> 0		12.3	0T+'0	425.4201	ng/L	F102336
2003 00 SMM 100005018E1 2500 224/2021 (17:06:1) 1003 0.0.10 0.0.11 0.0.10 0.0.11 0.0.10 0.0.11 0.0.10 0.0.11 0.0.10 0.0.11 0.0.10 0.0.11 0.0	2600-3	8	SAM	1B00003-35	2500	2/24/2021 16:56:40	15879-1.RAW	16-58-40	00 2F	0 0		2.00 X 55	0/5'D	940.032	ng/L	F102336
2003 00 Sam 100006-01RE1 10000 224/027 17/1261 17/1261 23 35 0 0031 100 1331 1331064/55 100 2003 00 Sam 100006407RE1 100000 224/027 17/151 192.00 22 1331 1331064/56 193 2003 00 CuL SEC+COV6 1 224/027 17/151 192.00 22 1331 1331064/56 193 2003 00 CuL SEC+COV6 1 224/027 17/151 192.00 24.00 23.405 199 2003 00 CuL SEC+COV6 1 224/027 17/151 1460 1331064/56 199 2003 00 Sam 1/00021-05FE 1000000 224/027 17/251 16864 17/2551 16864 199 166 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 1	2600-3	8	SAM	1B00003-36	2500	2/24/2021 17:00:51	15880-1.RAW	17-00-51	66 10	» «		+'??	/91-0	408.484	ng/L	F102336
2600-3 00 Sim Honora-offer 20 224/2021 77.30 17.30 235.7 1.31 1.331024.856 1.90 90 50.1 50.0 50.	2600-3	8	SAM	1A00105-01RE1	10000	2/24/2021 17:05:01	15881-1.RAW	17:05:01	4024.81			3069.0	TCDV CC	170./71		F102336
300.3 00 SAM 1.00001-02Re1 100000 224/2021 17:1321 15685-11.RAW 17:1321 242/20 17:1321 133.024.85 1331 133.024.85 1031 2600.3 00 Cul SEC-CEB8 1 2224/2021 17:2341 15685-1.RAW 17:17:31 744,79 4 255.7 1.131 133.024.85 199 2600.3 00 Cul SEC-CEB8 1 2224/2021 17:2341 15686-1.RAW 17:7251 744,79 4 255.7 1.131 133.024.85 199 2600.3 00 SAM 1.00001-0FRE1 2000000 224/2021 17:2441 17:365:1 1568-1.RAW 17:365:7 1460 1660.02 3.995 7:4333.586 199 2600.3 00 SAM 1.000001-0FRE1 1000000 224/2021 17:34:1 17:385:1 1586-1.RAW 17:45:33 1586-1.RAW 17:45:33 1586-1.RAW 17:45:33 1586-1.RAW 17:45:4:33 1596-1.RAW 17:45:4:4 250.1 131.6 14:6013.056 13357.5 133761	2000-3	8	SAM	1B00048-01RE1	20	2/24/2021 17:09:11	15882-1.RAW	17:09:11	192 03	6		126.0	111	CUU-FU-22	- ud/r	F102333, E
2600-3 00 Cut SECCOVB 1 22/4/2021 (7.71:4) 1588-11 RAW 17.17.31 1588-11 RAW 17.17.31 1588-11 RAW 17.17.31 1588-11 RAW 17.31.41 BB.67 3.29 0.186 1.305 1.306 1.3	2600-3	8	SAM	1A00021-02RE1	100000	2/24/2021 17:13:21	15883-1.RAW	17:13:21	292.54	4		736.7	1000	12'77 PLOTECT		F102333,E-01
2600-3 00 CAL SEC-CBB 1 224/2021 17/25/51 316.45 4 32.9 0.186 1.160 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.1	2600-3	8	র	SEQ-CCV8	-	2/24/2021 17:17:31	15884-1.RAW	17:17:31	746.79			ADD D	200 5	009'4701001		F101423
2600-3 00 Sam 1A00021-DSRE1 1000000 224/2021 17:55:51 15886-1.RAW 17:25:51 316.46 4 286.6 1.460 14600250.684 100 2600-3 00 SAM 1A00021-0RE1 2000000 224/2021 17:59:01 15887-1.RAW 17:30:01 605.37 4 286.6 3.097 774323.588 100 2600-3 00 SAM 1A00021-0FRE1 10000000 224/2021 17:58:21 15889-1.RAW 17:30:01 605.37 4 372.3 2102 2102271.244 100 2600-3 00 SAM 1A00021-0FRE1 10000000 224/2021 17:48:21 17:86:25 15889-1.RAW 17:56:25 218.89 183764.13 100 100 274.222 17:42:35 144.73 4 275.5 188764.13 100 100 274.222 17:45:35 168.641.RAW 17:56:25 218.896-1.RAW 17:56:25 218.869-1.RAW 17:56:25 218.869-1.RAW 17:56:25 218.869-1.RAW 17:56:26 218.869-1.RAW 17:56:26 218.869-1	2600-3	8	8	SEQ-CCB6	-	2/24/2021 17:21:41	15885-1.RAW	17:21:41	89.67			37.0	105	2010	1/6	
2000-3 00 Sam 1A00021-04RE1 250000 224/2021 17:34:11 15887.1 RAW 17:30:01 666.37 4 548.6 3.007 774333.588 199 2600-3 00 SAM 1A00021-04RE1 1000000 224/2021 17:34:11 15887.1 RAW 17:34:11 426.12 4 372.3 2.102 2.102 2.102 2.102 2.102 2.102 2.102 2.102 2.102 2.102 2.102 2.102 2.102 7.133.58 199 7.743.33.58 199 7.743.33.58 199 7.743.33.58 199 7.743.33.58 199 7.743.33.58 199 7.743.33.58 199 7.743.33.58 199 7.743.33.56 199 7.743.33.56 199 7.743.33.56 199 7.743.33.56 199 7.743.73 7.746.44 7.56.14 7.766 7.25895.56 199 7.743.73 7.746.44 7.56.26 2.755 7.75899.36 199 7.766 7.25899.36 199 7.766 7.25899.36 199 7.766 7.259.56	2000-3	8	SAM	1A00021-03RE1	100000	2/24/2021 17:25:51	15886-1.RAW	17:25:51	315.45	4		258.6	1 460	14602.00 604	1/6	F404 400
2000-3 00 SMI 1A00021-10FE1 1000000 224/2021 17:34:11 1588-1.RAW 17:34:11 428:12 4 372.3 2.102 <th< td=""><td>2000-3</td><td>8</td><td>SAM</td><td>1A00021-04RE1</td><td>250000</td><td>2/24/2021 17:30:01</td><td>15887-1.RAW</td><td>17:30:01</td><td>605.37</td><td>4</td><td></td><td>548.6</td><td>3 007</td><td>7743733 580</td><td></td><td>F101423</td></th<>	2000-3	8	SAM	1A00021-04RE1	250000	2/24/2021 17:30:01	15887-1.RAW	17:30:01	605.37	4		548.6	3 007	7743733 580		F101423
Matrix Thunoor1-offeet 1000000 2/24/2021 17:38-22 15889-1.RAW 17:38-22 544,73 4 467-9 2.755 2/556 2/555 2/556 2/556 2/556 2/556 2/556 2/556 2/556 2/556 2/556 2/556 2/556 2/556 2/556 2/556 2/556 1/388 1837/641.913 709 2600-3 00 SAM 1A00021-09RE1 1000000 2/24/2021 17:55.05 15892.1 RAW 17:42:538 382.27 4 165.3 0.922 92/25610 709 2600-3 00 SAM 1A00021-09RE1 1000000 2/24/2021 17:55.05 15892.1 RAW 17:55.05 216.33 4 165.1 0.922 92/55610 709 2600-3 00 SAM 1A00021-10RE1 1000000 2/24/2021 17:55.05 1889-1 RAW 17:55.05 216.33 4 156.16 0.925 91.9995.53 709 2600-3 00 SAM 1A00021-10RE1 1000000 2/24/2021 16:56.05 165894.1 RAW <td>20002</td> <td>B</td> <td>NAM</td> <td>1A00021-05RE1</td> <td>1000000</td> <td>2/24/2021 17:34:11</td> <td>15888-1.RAW</td> <td>17:34:11</td> <td>429.12</td> <td>4</td> <td></td> <td>372.3</td> <td>2,102</td> <td>2102171 244</td> <td>- Nou</td> <td>E101429</td>	20002	B	NAM	1A00021-05RE1	1000000	2/24/2021 17:34:11	15888-1.RAW	17:34:11	429.12	4		372.3	2,102	2102171 244	- Nou	E101429
Xerrors Number Toutor1-urket	20002	3 8		1 AU0021-06RE1	1000000	2/24/2021 17:38:22	15889-1.RAW	17:38:22	544.73	4		487.9	2.755	2754879 502	1,00	E101423
Xeronolistication Zoonolistication Zoonolistication <thzoonolistication< th=""> <thzoonolistication< <="" td=""><td>C-002C</td><td>3 8</td><td></td><td>1AUUU21-0/RE1</td><td>1000000</td><td>2/24/2021 17:42:33</td><td>15890-1.RAW</td><td>17:42:33</td><td>382.27</td><td>4</td><td></td><td>325.5</td><td>1.838</td><td>1837641.919</td><td></td><td>F101423</td></thzoonolistication<></thzoonolistication<>	C-002C	3 8		1AUUU21-0/RE1	1000000	2/24/2021 17:42:33	15890-1.RAW	17:42:33	382.27	4		325.5	1.838	1837641.919		F101423
Ze003 00 SMN Inductor 224/2021 17:50:55 51882 1 (a) 162.1 0.915 91498/57 mg Z6003 00 SAM IA00027-13Re1 1000000 224/2021 17:55:05 15893-1.RAW 17:55:08 216.38 4 162.1 0.915 91498/576 mg Z6003 00 SAM IA00021-1RE1 1000000 224/2021 15:55:08 15:53:1 4 128.6 0.901 900989.553 mg Z6003 00 SAM IA00021-1RE1 1000000 224/2021 16:503:1 15865-1 RAW 176.33 4 121.5 0.015 900989.553 mg Z6003 00 CAL SEQ-CCP7 1 1000000 224/2021 16:807.41 177.16 4 121.5 0.015 90989.553 mg Z6003 00 CAL SEQ-CCP7 1 1000000 224/2021 16:807.41 177.16 4 121.5 0.0559.54.938 mg	2600-2	38	MAD MAD		000001	2/24/2021 17:46:44	15891-1.RAW	17:46:44	220.14	4		163.3	0.922	922235.680		F101423
2600-3 00 SAM 1A00021-11RE1 1000000 2/24/2021 15864.1 RAW 17:55.08 216.36 4 159.6 0.901 900969.553 mg/ 2600-3 00 SAM 1A00021-11RE1 1000000 2/24/2021 15864.1 RAW 17:55.08 216.37 4 128.6 0.901 900969.553 mg/ 2600-3 00 SAM 1A00021-12RE1 1000000 2/24/2021 15864.1 RAW 17:59.21 4 128.6 0.376 7/2589.360 mg/ 2600-3 00 CAL SECO-CUP 1 2/24/2021 18:0741 171.16 171.4 4.033 4.033 mg/ mg/ 2600-3 00 CAL SECO-CUP 1 2/24/2021 18:0741 16:607.41 771.16 714.4 4.033 mg/ mg/ 2600-3 00 CAL SECO-CUP 10:00000 2/24/2021 18:0741 16:807.1 RAW 18:11:51 47.45 714.4 4.033 mg/ 260 309 360 26.54.328 100 2/24/20	2600-3	8 8	WWD		000000	2/24/2021 17:50:55	15892-1.RAW	17:50:55	218.86	4		162.1	0.915	914987.676	Jan 1	F101423
Z600-3 00 SAM Account-line 100000 22/4/2021 15884-1 RAW 17:55/21 185.37 4 128.6 0.726 725899.360 mg 2600-3 00 SAM Account-line 100000 22/4/2021 16866-1 RAW 16:33 4 121.5 0.686 666175.114 mg 2600-3 00 CAL SEQ-CCB7 1 2/24/2021 16:395.114 mg 121.5 0.686 666175.114 mg 2600-3 00 CAL SEQ-CCB7 1 2/24/2021 16:5967.1 RAW 16:16.1 17:1.16 711.45 4.033 4.033 mg 2600-3 00 CAL SEQ-CCB7 1 2/24/2021 16:5967.1 RAW 18:16.51 16:15.51 15:887.1 RAW 18:16.51 17:14 4.033 9.4 -0.053 9.0 0.053 mg 2600-3 00 CAL SEQ-CCB7 1 12866.1 RAW 18:16.51 16807.1 RAW 18:16.51 16:807.1 RAW 18:16.51 <td>2600-3</td> <td>88</td> <td>CAM</td> <td>1400001 11054</td> <td>100000</td> <td>80:02:11 17:22:08</td> <td>12693-1.RAW</td> <td>17:55:08</td> <td>216.38</td> <td>4</td> <td></td> <td>159.6</td> <td>0.901</td> <td>900989.553</td> <td>na/L</td> <td>F101423</td>	2600-3	88	CAM	1400001 11054	100000	80:02:11 17:22:08	12693-1.RAW	17:55:08	216.38	4		159.6	0.901	900989.553	na/L	F101423
Z600-3 00 CAL SEC-CCF 100000 Z244/2021 16806-1,RAW 16.0531 178.33 4 12.1.5 0.666 666175.1.14 mgl 2600-3 00 CAL SEC-CCF7 1 Z224/2021 16.966/1.RAW 16.057.41 771.16 714.4 4.033 4.033 ngl 2600-3 00 CAL SEC-CCF7 1 Z224/2021 16.151 1867.1.RAW 18.15.1 47.45 -9.4 -0.053 -0.053 ngl 2600-3 00 CAL SEC-CCF7 1000000 Z24/2021 16.15.11 1888-1.RAW 18.15.61 163.00 4 106.2 0.053 ngl 2600-3 00 CAL SEC-CCV8 1 224/2021 16.806.1 1888-1.RAW 18.15.61 168.30 4 106.2 0.053 9.033 ngl 2600-3 00 CAL SEC-CCV8 1 224/2021 16.806.1 1888-1.RAW 18.530 4 106.2 0.053 <	2600-3	8 8	NAN	1400021-110E1	100000	2/24/2021 17:59:21	15894-1.RAW	17:59:21	185.37	4		128.6	0.726	725899.360	na/L	F101423
Z600-3 00 CAL SEQ-CCB7 1 2/24/2021 1/1000 7/1.16 7/1.16 7/1.44 4.033 4.033 1/02 2600-3 00 CAL SEQ-CCB7 1 2/24/2021 16/97.1 7/1.16 7/1.45 4.033 4.033 4.033 1/02 2600-3 00 SAM 1.40021-13RE1 1000000 2/24/2021 16/9891.1 1/1.45 1/1.45 4.033 -9.4 -0.053 -0.053 n/0 22600-3 00 CAL SEQ-CCV8 1 106.2 0.060 59958.938 n/0 22600-3 00 CAL SEQ-CCV8 1 2/24/2021 16:2011 1683.00 4 106.2 0.000 59958.938 n/0 22600-3 00 CAL SEQ-CCV8 1 2/24/2021 16:2041 158300.1 4 106.2 0.000 59584.938 n/0 22600-3 00 CAL SEQ-CCV8 1 2/24/2021 16:2041 <td< td=""><td>2600-3</td><td>88</td><td>New York</td><td>SED.COV7</td><td>Innnnn</td><td>12:20:31 12:02:42:02</td><td>15895-1.RAW</td><td>18:03:31</td><td>178.33</td><td>4</td><td></td><td>121.5</td><td>0.686</td><td>686175.114</td><td>ng/L</td><td>F101423</td></td<>	2600-3	88	New York	SED.COV7	Innnnn	12:20:31 12:02:42:02	15895-1.RAW	18:03:31	178.33	4		121.5	0.686	686175.114	ng/L	F101423
3560-3 00 SAM 1400021-13RE1 1000000 224/2221 105.11 108/11/51 47.45 47.45 -9.4 -0.053 -0.053 ng 32600-3 00 SAM 1400021-13RE1 1000000 224/2221 16:01 16:8681.184W 18:16:01 16:30 47.45 -9.4 -0.053 -0.053 ng 32600-3 00 CAL SE0-CVB 1 224/2021 18:26.11 159891.RAW 18:20:11 683.07 4 106.2 0.600 59554.938 ng/ 22600-3 00 CAL SE0-CCBB 1 224/2021 18:24.21 15980-1.RAW 18:22.11 683.07 4 106.2 0.600 59554.938 ng/ 22600-3 00 CAL SE0-CCBB 1 224/2021 18:24.21 15980-1.RAW 18:22.21 43.74 43.74 53.6 3.536 ng/	12600-3	8	8	ISEO-CCR7		14:70:31 15:02/42/2	WAN. L-0601	18:07:41	771.16			714.4	4.033	4.033	ng/L	
2660-3 00 CAL SEQ-CCV8 1 22242021 153691.RAW 181501 163.00 4 106.2 0.600 599584.938 ng/ 2600-3 00 CAL SEQ-CCV8 1 22242021 182011 158691.RAW 181.2011 168.07 4 106.2 0.600 599584.938 ng/ 2600-3 00 CAL SEQ-CCV8 1 22242021 1822011 158691.RAW 18:20:11 483.07 46.74 1 26.3 3.556 3.556 ng/ 2600-3 00 CAL SEQ-CCV8 1 22242021 18:20:11 18:20:11 483.07 46.74 5.75 3.556 3.55	2600-3	8 8	SAM	1ADD021-13RE1	100000	10:11:91 1202/67/7	WAN. L-J. BOOT	18:11:51	47.45	-+		-9.4	-0.053	-0.053	ng/L	
2600-3 00 CAL SEQ-CCB8 1 2224/2021 18:24:24 16300-1.RAW 18:24:21 49.74 626.3 3.536 3.536 ng/	2600-3	00	B	SEO-CCVR		010410004 40:00:44	AVAN, - OSOCI	18:16:01	163.00	4		106.2	0.600	599584.938	ng/L	F101423
49.74	2600-3	8	5 2	SEL COB		LL'02:91 LZ0Z/HZ7Z	15899-1.HAW	18:20:11	683.07	-+		626.3	3.536	3.536	ng/L	
		3	5	00000		2/24/2021 18:24:21	15900-1.KAW	18:24:21	49.74			17.	0 040	070 0		

971 ro iz elus

Printed: 2/25/2021

Page 2 of 3

	and a second sec	I Con "ent													F102335	F102335 F405255	F102335	F102335	F102335	F102335	F102335				F102335	F102335	F102335 F102335	F102335	F102335	HG STANDARD DROPPED	F102335	F102335	F102335			F102335	F102333 F4n9333	F102333	F10233	F102333	F102333	F102333	F102333			
	Care Charl		őð	¥ F	e K	ę.	ž č	5 8	58	52	58		ok 1	OK 1	× i	58	5 č	, F	OK 1	oK	Ň	ž č	5 č	ð	OK 1	¥9	58	, Y	Q F	¥9	5 8	šð	oK 1	× č	5 ð	53	5 8	2 X	Š	No.	FB 1	FB 1	OK 1		XO	
	Part (Bau) Control (oth 1	3284.41 Clean	43.28 Sample	47.52 Sample	38.48 Sample	62.20 Sample	60.96 Sample	165.72 Sample	242 36 Sample	B60.08 Sample	3258.42 Sample	6513.86 Sample	907.74 Sample	99.13 Sample	833.74 Sample	134.27 Sample	104.80 Sample	100.28	478.50 Sample	40.11 Sample	37.45 Sample	31.51 Sample	837.86 Sample	92.93 Sample	718.93 Sample	640.08 Sample 633 36 Sample	202.00 Sample	563.42 Sample	109.88 Sample	79.01 Sample	141.39 Sample	980.86 Sample	954.75 Sample	847.81 Sample	274 70 Sample	830 04 Samide	887.34 Sample	85.59 Sample	79.95 Sample	86.16 Sample	3410.21 Sample	8926.27 Sample	658.90 Sample	2647.87 Sample		C1 BD Commo
8.298176019 14.60923995 25.18733237 14.77008743	14.22096/42 Run Frd	11:24:03	11:28:12	11:32:20	11:36:29	11:40:38	11:44:40	11:53:04	11:57:13	12:01:21	12:05:30	12:09:39	12:13:50	12:17:59	12:22:08	12:30:26	12:34:35	12:38:44	12:42:54	12:47:03	12:01:12	12:59:30	13:03:39	13:07:48	13:11:58	13:16:07	13:24:26	13:28:35	13:32:45	13(36)54	13:45:13	13:49:23	13:53:32	13:07:41	14-06-01	14-10-10	14:14:19	14:18:28	14:22:38	14:26:47	14:30:57	14:35:06	14:39:16	14:43:25	00.75.51	14-51-45
2/24/2021 Blank SD: 11:21:11 Blank RSD%: CF SD: CF SD:	A RawDate	15799-1.RAW	15800-1.RAW	15801-1.RAW	15802-1.RAW	15003-1.KAW	15805-1.RAW	15806-1.RAW	15807-1.RAW	15808-1,RAW	15809-1.RAW	15810-1.RAW	15811-1 RAW	13812-1-21801	15814-1 RAW	15815-1.RAW	15816-1.RAW	15817-1.RAW	15818-1.RAW	15819-1.RAW	15821-1 RAW	15822-1.RAW	15823-1,RAW	15824-1 RAW	15825-1.KAW	15827-1.RAW	15828-1.RAW	15829-1.RAW	15830-1.RAW	15832-1 RAW	15833-1.RAW	15834-1.RAW	15835-1.RAW	15837-1 PAIA	15838-1.RAW	15839-1.RAW	15840-1.RAW	15841-1.RAW	15842-1.RAW	15843-1.RAW	15844-1.RAW	15845-1.RAW	10640-1 KAVV	14041 - 144V	**************************************	15849-1.RAW
Conc = (Area-56.80 Run Date: QC Warnings:7/QC F Run Time: 1	MBYK FinalConc Rec.A Q							123.00	104.77	90.71	90.38	91.14											88.20	0.00	11.24202.11								80.32	0.00									00 6818	82.50F0		0.00
Calib Eqn: Status: R²:	Canc (ppt)	18.54	0.00	0.00	0.35	0.34	0.27	0.61	1.05	4.54	18.08	36.46	4.00	87.73	96.24	4.37	2.71	2.45	0.00	0.00	0.00	0.00	4.41	0.20	1317.29	162.77	40.99	143.02	0.13	25.88	23.88	260.86	44.002	0.25	61.51	88.43	93.79 2	3.25	2.61	35.5	00.010002	67.90	5851 77	4.27		0.03
BlankSi 56.801 50 CalibFa 177.11 # R: 1 003-210224-2	Dilt ic Plank	0.00	00.00 55 90	56 80	1 0.00	1 0.00	1 0:00	1 56.80	1 56.80	1 56.80	1 56.80	100.00	1 56.80	20 56.80	20 56.80	10 56.80	10 26.80	100.00.00	56.80	56.80	56.80	56.80	1 56.80	400 56.80	400 56.80	50 56.80	50 56.80	50 50.80	1 56.80	50 56.80	50 56.80	00.90 UC	1 56.80	1 56.80	50 56.80	20 56.80	20 56.80	20 56.80	20 25.80	10500 50.00	5000 56.80	20 56.80	400 56.80	1 56.80		1 56.80
Operati AH Worksh THg26 Method: #### Descrip THg26	Location Physics				A1	A2	A3	A4	CH CH	20	A/	A9	A10	A11	A12	A13	A15	A16				2+4	A1/ A18	A19	A20	A21	B1 B2	B3	B21	84	B5	87	BB	B9	B10	B11	B12	510	111	B16	B17	818	B19	C20		120
TotalMercury EPA1631	Cimerio (Cimerio)	Ulean M/S	WS	SW	SEQ-IBL1	SEQ-IBL2	SEQ-IBL3					SEQ-ICV	SEQ-ICB	F102335-BS1	F102335-BSD1	F102335-BLK1 E102335 BLK1	F102335-BLK3	1A00115-01	MS	SM	WS	WS SEC.COM	SEO-CCR1	F102335-MS1	F102335-MSD1	1A00115-02	1AUU115-U3 1A00115-03	1A00115-05	BLANKTEST	1A00115-06	1A00115-07	1A00115-10	SEQ-CCV2	SEQ-CCB2	1A00115-11	F102333-BS1	F102333-BSD1 F102333-BSD1	F102334-BLAT	F102333-BLK3	1A00104-01	1A00105-01	1A00048-01	F102333-MS1	SEQ-CCV3		

Page 22 of 146

102336 102336 102336 102336 102336 102336 102336 102336 102336	-102336 -102326 -102336 -102336 -102336 -102336 -102336 -102336 -102336 -102336 -102336 -102336 -102336 -102326 -10226 -10226 -10226 -10226 -10226 -10226 -10226 -102666 -102666 -102666 -102666 -102666 -102666 -102666 -102666 -	102336 102336 102336 102336 102336 102336 102335 102333, E 102333, E 102336 102335 102336 102335 102336 102336 102335 102336 102336 102336 102336 102336 102336 102336 102336 102336 102335 102336 102336 102335 102336 102335 102336 102335 102335 102336 102335 102335 102336 102335 102335 102335 102335 102335 102335 102336 102335 102335 102336 102335 102335 102335 102335 102335 102335 102335 102335 102335 102335 102335 10235 10235 10235 10235 10235 102555 10255 10255 102555 102555 102555 102555 102555 102555 1025555 1025555 1025555 10255555 1025555 10255555 1025555555555	101423 101423 101423 101423 101423 101423 101423 101423 101423 101423
8999999999999999999999999	6666 666 66666	565555555E55555	ĕĕĕĕĕĕĕĕĕĕĕĕĕ
860.90 Sample 126.05 Sample 67.70 Sample 73.51 Sample 109.03 Sample 418.65 Sample 844.21 Sample 82.17 Sample 82.17 Sample 57.20 Sample	248.20 Sample 244.92 Sample 241.86 Sample 324.41 Sample 325.304 Sample 163.98 Sample 153.98 Sample 189.77 Sample 189.77 Sample 188.38 Sample 58.38 Sample	145.56 Sample 292.61 Sample 256.98 Sample 129,70 Sample 123,86 Sample 90.25 Sample 90.25 Sample 66.10 Sample 92.23 Sample 292.23 Sample 746.79 Sample 746.79 Sample	315.45 Sample 805.37 Sample 4291.2 Sample 544.73 Sample 220.14 Sample 2216.38 Sample 216.38 Sample 185.37 Sample 171.16 Sample 47.14 Sample 173.35 Sample 633.07 Sample 49.74 Sample 49.74 Sample
15:04:14 15:08:23 15:12:33 15:16:43 15:20:62 15:20:62 15:29:11 15:29:11 15:33:21 15:33:21 15:41:41	15,45,50 15,542,10 15,554,10 15,554,10 16,02,30 16,02,30 16,10,49 16,10,49 16,10,49 16,10,96 16,10,96 16,27,29 16,27,29	16:35:48 16:35:48 16:39:58 16:44:09 16:56:40 17:05:51 17:05:51 17:05:51 17:05:51 17:05:51 17:15:11 17:15:11 17:15:14	17.265.01 17.265.01 17.262.11 17.262.44 17.562.44 17.565.05 17.565.05 17.565.05 17.565.05 17.565.05 17.565.05 17.565.05 18.07.41 19.07.410
15852-1,RAW 15853-1,RAW 15854-1,RAW 15855-1,RAW 15856-1,RAW 15856-1,RAW 15858-1,RAW 15858-1,RAW 15858-1,RAW 15869-1,RAW 15860-1,RAW	15862-1, RAW 15863-1, RAW 15864-1, RAW 15866-1, RAW 15866-1, RAW 15866-1, RAW 15869-1, RAW 15869-1, RAW 15879-1, RAW 15873-1, RAW 15873-1, RAW 15873-1, RAW	15874-1.RAW 15875-1.RAW 15876-1.RAW 15876-1.RAW 15879-1.RAW 15880-1.RAW 15880-1.RAW 15882-1.RAW 15882-1.RAW 15882-1.RAW 15882-1.RAW 15882-1.RAW	15885-1,RAW 15885-1,RAW 15889-1,RAW 15895-1,RAW 15895-1,RAW 15892-1,RAW 15895-1,RAW 15895-1,RAW 15895-1,RAW 15895-1,RAW 15895-1,RAW 15895-1,RAW 15895-1,RAW 15895-1,RAW 15895-1,RAW
691.82 83.04	134929.79 82.36 0.00	77.92 0.00	80.67 0.00 0.00
90.80 7.82 1.23 1.23 7.37.27 7.37.27 7.37.27 7.37.27 7.37.27 4.15 4.15 4.15	26101.655 2612.16 3783.07 4074.21 1512.88 3375.23 1876.88 1126.33 4.12 0.01	1252.89 3228.45 2825.23 943.68 472.13 131.27 131.27 1331024.88 3.90 3.90 0.19 0.19 0.19	7743233.69 2102171.24 2754879.50 1837641.92 922256.68 900989.55 725889.36 725899.36 725899.36 725899.36 725893.36 90.00 599584.94 3.54 0.00
56 80 80 80 80 80 80 80 80 80 80 80 80 80	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 25 25 25 25 25 25 25 25 25 25 25 25 2	756.80 75
20 20 2500 2500 2500 2500 2500 2500 250	2500 2500 2500 2500 2500 2500 2500 2500	2500 2500 2500 2500 2500 2500 2500 2500	аналарана 30-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
2336-BSD1 C1 2336-BSD1 C1 2336-BLK1 C2 2336-BLK2 C3 2336-BLK3 C4 2000-3-1 C5 2336-MS1 C5 2336-MS1 C7 2336-MS1 C7 2236-MS2 C11 2236-MS2 C11	388-MISD2 C12 388-MISD2 C13 003-221 C14 003-221 C14 003-25 C16 003-25 C18 003-25 C18 003-25 C18 003-25 C18 003-25 C18 C19 C19 C18 C18 C18 C18 C18 C18 C18 C18 C18 C18		21-04RE1 A15 21-04RE1 A15 21-05RE1 A16 21-05RE1 A18 21-05RE1 A18 21-05RE1 A18 21-17RE1 A20 21-17RE1 B1 21-17RE1 B1 20-7 20-7 83 20-7 83 20-8 20-8 84 83 20-8 20-8 84 20-8 20-8 85 20-8 20-8 20-8 20-8 20-8 20-8 20-8 20-8

Page 23 of 146

SEQ-IBL1	
SEQ-IBL2	
SEQ-IBL3	
SEQ-CAL1	
SEG.CAL2	
CEO CALZ	
SEQ-LAL3	
SEU-CAL4	
SEQ-CAL5	
SEQ-ICV	
SEQ-ICB	
F102335-8S1	
F102335-BSD1	
F102335.BLK1	
E102226 DLK1	
F 102333-DLKZ	1800003.34
F102330-BLK3	CED CD/4 (
1AUU115-U1	
WS	SEU-LLB4 (
WS	F102336-M52 L
WS	F102336-MSD2 (
WS	1800003-20 (
SER-COV1	1800003-21 (
SEQ-CCB1	1B00003-22
5102225 MC1	18/0003-23 (
F102330-MIST	1B00003.24 (
F102330-M501	100000027
1AUU115-02	1000003-20 (
1A00115-03	1500003-26 (
1A00115-04	1800003-27 (
1A00115-05	SEQ-CCV5 (
BLANKTEST	SEQ-CCB5 /
1A00115-06	1B00003-28 /
1A00115-07	1B00003-29 /
1400115-08	1B00003-30 /
1400115.10	1800003-32 /
2001010	1800003-33
	1800003-35
SEU-LUBZ	1800003.26
1A00115-11	1400105-010510
F102333-851	1D00040 01DE #
F102333-BSD1	1500048-01ME17
F102333-BLK1	TAUUUZT-UZHETA
F102333-BLK2	SEQ-CUV6 /
F102333-BLK3	SEQ-CCB6 /
1A00104-01	1A00021-03RE1/
1A00105-01	1A00021-04RE1/
1400048-01	1A00021-05RE1/
F102222.MC1	1A00021-06RE1/
CED CD (2	1400021-07BE14
	1A00021-098E1/
SEQ-LLB3	1400021-001212
F102333-MSD1.	
F102336-BS1	TAUUUZI-TUHE I/
F102336-BSD1	1AUUU21-11RE1[
F102336-BLK1	1A00021-12RE1[
F102336-BLK2	SEQ-CCV7 F
F102336-BLK3	SEQ-CCB7
1800003-31	1A00021-13RE1E
F102336-MS1	SEQ-CCV8
F102336-MGD1	SEO-CCB8
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	

Alan 2/25/21

1

3

1C04009

Instrument: Hg2700-1

Calibration ID: UNASSIGNED

Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
1C04009-IBL1	QC	1			
1C04009-CAL1	QC	2	2100465		
1C04009-CAL2	QC	3	2100466		
1C04009-CAL3	QC	4	2100332		
1C04009-CAL4	QC	5	2100333		GUA IT AGOUTANUE
1C04009-CAL5	QC	6	2100334		DEED DEVIEWED
1C04009-ICV1	QC	7	2100149		Duri l'Anni l
1C04009-ICB1	QC	8			INITIALS: DES
1C04009-ICV2	QC	9	2100149		
1C04009-ICV3	QC	10	2100149		
1C04009-ICB2	QC	11			
F102324-BS1	QC	12			
F102324-BSD1	QC	13			
F102324-BLK1	QC	14			
F102324-BLK2	QC	15			
F102324-BLK3	QC	16			
1B00035-01	MHg-CVAFS-S-KOH	17			BatchQC
1B00035-01	MHg-CVAFS-S-KOH-Nutra	18			
F102324-MS1	QC	19			
F102324-MSD1	QC	20			
1B00083-02	MHg-CVAFS-S-KOH	21			BatchQC
1B00083-02	MHg-CVAFS-S-KOH-Nutra	22			
F102324-MS2	QC	23			
1C04009-CCV1	QC	24	2100149		
1C04009-CCB1	QC	25			
F102324-MSD2	QC	26			
1A00115-01	MHg-CVAFS-S-KOH	27			
1A00115-02	MHg-CVAFS-S-KOH	28			
1A00115-04	MHg-CVAFS-S-KOH	29			
1A00115-05	MHg-CVAFS-S-KOH	30			
A00115-06	MHg-CVAFS-S-KOH	31			
A00115-08	MHg-CVAFS-S-KOH	32			
A00115-10	MHg-CVAFS-S-KOH	33			
B00046-01	MHg-CVAFS-S-KOH-Nutra	34			
B00047-01	MHg-CVAFS-S-KOH-Nutra	35			
C04009-CCV2	QC	36	2100149		

Page 52 of 173

Analyzed: 3/3/2021

1C04009

Instrument: Hg2700-1

Calibration ID: UNASSIGNED

Analyzed: 3/3/2021

Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
1C04009-CCB2	QC	37			
1B00055-01	MHg-CVAFS-S-KOH-Nutra	38			
1B00057-01	MHg-CVAFS-S-KOH-Nutra	39			
1B00058-01	MHg-CVAFS-S-KOH-Nutra	40			
1B00082-01	MHg-CVAFS-S-KOH	41			
1B00082-02	MHg-CVAFS-S-KOH	42			
1B00082-03	MHg-CVAFS-S-KOH	43			
1B00082-04	MHg-CVAFS-S-KOH	44			
1B00083-01	MHg-CVAFS-S-KOH-Nutra	45			
1C04009-CCV3	QC	46	2100149		
1C04009-CCB3	QC	47			

Samples Loaded By Date Date Date Date Date Date

Page 53 of 173

Peer Review Check List for MHg for CV-GC-AFS (SOP2808) 2018 Rev 7 (8/2/18)

Analyst:	MFS	Sequence #:	1C04009
Reviewer:		Dataset ID #:	MHg27001-210303-1
Date:	31412	WO #:	Multiple
Batch #(s):	F102324		

• Select the correct preparation method.

Analyte	Prep Method		Matrix
MHg	SOP2797	MHg Distillation	Water
. С. Мнд	SOP2986	KOH(MeO) Digest	Tissue
MHg	SOP5134	MeCl Extraction	Sed/Soil
		A ENTRY OF PROVIDENT	
DMHg	JOP 20101	nethed) associate	ALL

Additional Comments:

		Analyst	Initials:	Reviewer 1 PGS	nitiais/Date:
1. Compare Sample	e ID with Bench sheet/Sequence/Raw Data (Have all samples been imported?)	TES	🗌 NO		
2. Check for transc	ription errors from Excel spreadsheet (or Prep Bench sheet)/Raw data	TES YES			
(a) Reviewer: 10	00% of peak heights checked	TES			
(b) Are there pe	ak height errors?	YES	NO		
(c) Error on a sa	mple: Do peak heights, responses, & initial results match corrected data?	YES		N7A	
(d) Error on a Ca	al Pt, ICB/CCB, or PB: Has the data been reimported?	YES	NO NO	□ N/A-	
(e) Check standa	ards & reagents in sequence & bench sheet for correct usage (i.e. expiries).	YES		🗌 N/A	
(f) Check and co	mpare masses (review prep bench sheet)	YES		🗌 N/A	
(g) Check and co	ompare initial and final volumes	YES		🗌 N/A	
(h) Do aliquots a	nd dilutions written on benchsheet match those in Excel?	YES		🗌 N/A	
(i) Is the pH>3.() for all distilled samples?	YES		N/A	
(j) Is the sequen	ce #, analyst, date, and instrument # on the QC page?	YES	NO NO		
(k) Is the analys	is status correct? (analyzed/initial review/reviewed)	YES	NO NO		
(I) Original prep	bench sheet added to data package?	YES			
(m) Benchsheet	prep date MUST match actual prep date (check if re-shot vs re-extract)	YES			
3. High QA?	WO#(s)/Client(s):	YES	NO		
4. Client specific QC	?? (if Yes, refer to Project Notes/LIMS)	YES	NO		
(a) Have the QC	requirements been met for all WO#s?	YES	NO NO		
5. 20 or fewer samp	oles in batch?	YES	NO NO		
(a) 3 PBs, 1 LCS/	LCSD (or BS/BSD), 2 MS/MSD/MD per batch?	YES			
(b) 1 CCV and 1	CCB every 10 analytical runs?	YES			
QA/QC Data Chec	ked	_			
6. The calibration cu	urve included a minimum of 5 Standards	PASS	FAIL	N/A	
Comments:					
7. 1st Calibration St	andard % Recoveries (65-135%)	PASS	FAIL	□ N/A	
Comments:					
8. RSD CF (≤ 15%)		PAS8	FAIL		
Comments:		Ŧ			

-	Peer Review Check List I		GC-AFS (SOF 200	5/ 2010 N		10)	
Analyst:	MFS	Sequence #:	1C04009				
Reviewer:	Outlo.	Dataset ID #:	MHg27001-210303-1				
Date:	<u>3 14 21</u>	WO #:	Multiple				
Batch #(s):	F102324		····	Analyst	Initials	Reviewer In	itials/Date
				MP	s S	165	•
9. ICV % Reco	overies 67-133%			PASS	FAIL		
Comments:							
10. CCV % Re	coveries 67-133%			-PASS	FAIL		
Comments:							
11 Are the ab	solute value of the ICB and CCBs < POI	7		PASS	🗌 FAIL		
Comments:							
	(CPM/BS/BSD % Becoveries (70-130%)			PASS	FAIL		
Commonte:				<u> </u>			—
				PASS	FAIL		
13. LUS/LUSD	01 B3/B3D RPD (< 2370)			_	_		
Comments:			aition of 0.015 ng/12			N/A	
14. water: Ave	erage of Preparation Blanks < 0.045 ng/	L and standard deva	aluon of 0.015 hg/L?				
Comments:				DACC			
15. Sediment/	Issue: Individually, are the Preparation	Bianks < PQL for tr	ne matrix?				
Comments:	Due					N140*	
16. Have Tota	Solids been applied? (If NO, please ens	sure that they are do	one or nearly done)			L_L NYA	
17. Is the corr	ect 'Source' designated for MD/MS/MSD	?					
18. For digeste	ed preps: was there a spike witness sign	ature & date on the	e prep bench sheet?				
19. MD RPD/M	T RSD(< 35%)			PASS		Xele	
Comments:							
20. Is there or	e set of MS/MSD per every 10 samples?	1		LIPASS	L_ FAIL		
Comments:							
21. MS/MSD R	PD(< 35%)			PASS	FAIL		
Comments:	Incorrect spike						
22. MS (AS) %	Recoveries (65-130%)			PASS	FAIL		
Comments:							
23. MSD (ASD)	% Recoveries (65-130%)			PASS	FAIL		
Comments:							
24. Spiked 1-5	X ambient or 1-5X PQL (whichever is hig	her) (from EPA 163	0)	YES	NO		
25. Are all sam	ples within instrument calibration range	(or at maximum ali	quot size)?	YES	🗍 NO		
Comments:							
26. For instrum	nental dilutions, is the dilution factor in e	excel correct?		PASS'	ОИ 🛄	□ N/A	
Is the samp	ble volume, diluents, and final volume of	the dilution noted o	on benchsheet?	PASS		🗌 N/A	
27. Dissolved <	< Total metals (if applicable)			PASS	NO NO	N/A	
Comments							
28. Effluent <	Influent metals (visually confirm if need	ed)		PASS	NO	N/A	
Comments							

Analyst:	MFS	Se	quence #:	1C04009				
Reviewer:		Da	taset ID #:	MHg27001-210303-1				
Date:		W	0 #:	Multiple				
Batch #(s):					Analyst	Initials:	Reviewer I	nitials/Date:
29. Are re run	s noted with reason?				TES			
Comments:								
30. For failing	QC (CCV, CCB, PB, BS/E	SD, CAL):			YES	NO	□ N/A	
Was a bubb	oler and trap test run bel	fore the analytical run	continued?					
Comments:		-						
31. Do re-run	results compare to initia	l analysis (< 35% RPD)?		YES	NO NO	N/A	
Comments:								
32. Are qualifi	ers consistent with the d	ata review flowcharts?	1		YES	NO NO	N/A	
Comments:								
33. Have non-	reportable samples been	imported into LIMS a	nd clicked to r	ion-reportable?	YES	NO NO	🗌 N/A	
Comments								
34. Have re-ex	tracts been created for i	non-reportable sample	s?		YES	NO NO	🗌 N/A	
35. Narrations	in MMO box in LIMS?							
Comments					_			
36. Are there a	any HIGH QA projects wi	thin the data?			YES	NO		
If so, place	dataset to the QA office							
37. Does the d	ata set need scanning?				YES		N/A	
Files located	at: \\Cuprum\gen_adm	in\Quality Assurance	Training Ma	ster\DOCs				_
38. Date of and	alyst IDOC/CDOC:	3/5/2020 IDC	C/CDOC with	in last 12 months?	YES			
39. Date of ana	alyst's SOP reading:	10/24/2019 Cur	rent SOP revi	sion?	TES		_	
40. Date of LO	D: 10-25-(9	LOD within last 3 mon	ths (within 12	months for MDN)?	YES	L NO	N/A	
41. Date of LO	Q: 10-25-19	LOQ within last 3 mor	ths (within 12	months for MDN)?	L_YES	NO	□ N/A	
42. If MDN san	nples, date of last MDL s	study:				_	_	
43. MDL study	within last 12 months?				YES	NO NO	N/A	
Data can not l	pe reported without a c	urrent IDOC/CDOC, I	LOD or LOQ.					
Additional Com	ments:				YES	NO S		

Peer Review Check List for MHg for CV-GC-AFS (SOP2808) 2018 Rev 7 (8/2/18)

Failing Dats	1 Report - 1C04009												
Sample ID	Analysis	Result	MRL	Dup Result	Source Result	True Value	Units	% Rec.	Rec. LCL	Rec. UCL	RPD	RPD Limit	Over Cal
1C04009-ICV1	MHg-CVAFS-S-KOH	0.7	0.100			0.50368	ng/L	135	69.00	131.00			PASS-OVER
F102324-BLK1	MHg-CVAFS-S-KOH	3.2	2.0				g/gn						PASS-OVER

Failing Dats	a Report - 1C04009													971
Sample ID	Analysis	Result	MRL	Dup Sourc Result Resul	te Truc It Value	Units	% Rec.	Rec. LCL	Rec. F UCL	LD R	LPD C)ver Cal	Failure	Qualifier
1C04009-ICV1	MHg-CVAFS-S-KOH	0.7	0.100		0.50368	ng/L	135	69.00	131.00		PA	SS-OVER	FAIL-CCV	306
F102324-BLK1	MHg-CVAFS-S-KOH	3.2	2.0			g/gu					PA	SS-OVER	FAIL-BLK	28-40
F102324-MS1	MHg-CVAFS-S-KOH	435.0	9.4	458.05	28 0.37467	g/gu	-6170	50.00	150.00		PA	SS-OVER	FAIL-MS	70-MQ
F102324-MSD1	MHg-CVAFS-S-KOH	373.0	9.7	434,9539458.05	28 0.38745	g/gu	-22000	50.00	150.00 -	112 3!	5.00 PA	SS-OVER	FAIL-MSD (Rec.)	70-MQ
F102324-MS2	MHg-CVAFS-S-KOH	1.7	3.8	1.7365	3410.38037	₿/ĝu	453	50.00	150.00		PA	SS-OVER	FAIL-MS	QM-07
F102324-MSD2	MHg-CVAFS-S-KOH	0.4	3.8	1.723598).73658	3410.37750	₿/ĝu		50.00	150.00	ř	5.00 PA	SS-OVER	FAIL-MSD (Rec.)	QM-07
1C04009-ICV1	MHg-CVAFS-S-KOH-Nutra	0.7	0.100		0.50368	ng/L	135	69.00	131.00		PA	SS-OVER	FAIL-CCV	
F102324-BLK1	MHg-CVAFS-S-KOH-Nutra	3.2	2.0			b/gr					PA	SS-OVER	FAIL-BLK	<u>a</u> 8-lo
F102324-MS1	MHg-CVAFS-S-KOH-Nutra	435.0	9.4	458.05	28 0.37467	3/Bu	-6170	50.00	150.00		BA	SS-OVER	FAIL-MS	QM-07
F102324-MSD1	MHg-CVAFS-S-KOH-Nutra	373.0	9.7	434.9539458.05	28 0.38745	ng/g	-22000	50.00	50.00	112 3	5.00 PA	SS-OVER	FAIL-MSD (Rec.)	QM-07
F102324-MS2	MHg-CVAFS-S-KOH-Nutra	1.7	3.8).73658	3410.38037	3/au	453	50.00	150.00		PA	SS-OVER	FAIL-MS	QM-07
F102324-MSD2	MHg-CVAFS-S-KOH-Nutra	0.4	3.8	1.723598).73658	3410.37750	ng/g		50.00	150.00	т. т.	5.00 PA	SS-OVER	FAIL-MSD (Rec.)	QM-07
1C04009-ICV1	MHg-CVAFS-T-KOH	0.7	0.100		0.50368	ng/L	135	69.00	131.00		PA	SS-OVER	FAIL-CCV	
F102324-BLK1	MHg-CVAFS-T-KOH	3.2	2.0			ng/g					PA	SS-OVER	FAIL-BLK	02-10
F102324-MS1	MHg-CVAFS-T-KOH	435.0	9.4		0.37467	ng/g	116000	50.00	150.00		PA	SS-OVER	FAIL-MS	CM-07
F102324-MSD1	MHg-CVAFS-T-KOH	373.0	9.7	434.9539	0.38745	g/gu	96300	50.00	150.00	8.7 3	5.00 PA	SS-OVER	FAIL-MSD (Rec.)	QM-07
F102324-MS2	MHg-CVAFS-T-KOH	1.7	3.8		0.38037	g/gu	453	50.00	150.00		BA	SS-OVER	FAIL-MS	QM-07
F102324-MSD2	MHg-CVAFS-T-KOH	0.4	3.8	1.723598	0.37750	B/Bu		50.00	150.00	Ř	5.00 PA	SS-OVER	FAIL-MSD (Rec.)	QM-07

3/4/2/ Date 0 Analyst Reviewed By

Date

Pccr Reviewed By

	Sample Prepar	ration Revi	iew Checklist	t		Revision: 4 Effective: Dec. 11, 2017
Technician/Date: LEL	2/19/2021	Samples	to lab:17:50	Bat	ch #: F102324	
Upload/Date: MV2 (W2)	2/19/21	Reviewe	r/Date: <u>MR 2</u>	13/21		
EFGS F	Preparation Method			17 Intélala	COD Date	000.0-4-
SOP2836 Oven Digestion (Total Re	coverable Metals)		AFS	Infraits	SOP Date	DOC Date
SOP2837 Tissue Nitric Digestion			CVAFS	m	2/101	
SOP2840 Modified Aqua Regia				1.00	4/11/0	
SOP2820 RP				Comments:		
SOP2821 HF Bomb Digestion			CVAFS			
SOP2825 Nitric Bomb Digestion		CPMS	CVAFS			
SOP2993 Oven Digestion (As , Se S	Speciation)			Conditionally	/ formatted traini	ng files located at:
SOP5145 Microwave Digestion (Nu	traceuticals)			\\us34fila\Gene	ral and Admin\Qualit	y Assurance\Training\Training Master
NA Other: 10 2636	LI Malhe"	e togen		(Contact QA for	any problems rega	rding these training files.)
	Com//ricthand	»/		Bavia		Testing
Analytes: MHg				Initia	uls MPS	Review
1. Is any SOP/DOC expiring within one	week of Submission Da	te?	YES			
Data cannot be reported without	It a current IDOC/CDO	с.	lf YES, n	otify supervisor and	d technician Im	mediately.
2. Check prep method			YES			Z,
(a) For Ceuticals: Is correct Hg code b	eing used in LIMS?		PMS CV-AFS	🗌 70:30 🔤 N/A		
3. Compare sample ID & container ID w	vith benchsheet & in LIM	IS	YE\$	□ N/A		
Check for transcription errors from be	enchsheet		YES			
(a) Check and compare initial and fina	l volumes		YES	N/A		
(b) Check and compare mass			YES	□ N/A		
(c) Has the number of pills been docur	mented (Special Info 5 ir	i benchsheet)? YES	🗌 N/A		
(d) Have assay logbook copies been a	ttached & avg masses e	entered?	YES	□ N/A		
(e) For re-digests, have e-mails been a	attached and verified?		YES	L N/A		
(f) Benchsheet prep date MUST match	h actual prep date		YES			
5. Samples per Batch? Check QC Requ	uirements	<u></u> 20	0 🗌 <u><</u> 10			
(a) PBs per batch?		⊡⁄3 PI	Bs 🗌 2 PBs	1 PBs		
(b) Are pre and post homogenization	blanks in batch?		YES	⊡ N/A		
(c) BS, BS/BSD or CRM in batch?		BS	BS/BSD	CRM		
(d) MS/MSD in batch?			YES	🗆 N/A		
(e) MD in batch?			YES	№ N/A		
(f) is there at least one duplicate QC s	source in batch?		YES	□ N/A		
(g) Are there any client specific reque	sts, QC requests, etc?		YES	N/A		
Document:						
(h) Correct LIMS spike ID included for	BS, BS/BSD and/or MS	MSD?	YES	□ N/A		
(i) Correct 'source' designated for MD/	MS/MSD?		YES	N/A	<u> </u>	
(j) For EFGS-filtered samples, was a f	iltration blank included ?)	YES	N/A		Ø,
6. Special prep requirements?			YES			
(a) For 1638: Have samples sat for 48	hours after preservation	1?	YES	⊡ N/A		$\overline{\varphi}_{i}$
(b) For 200.8: Have samples sat for 16	b hours after preservation	n?	YES	⊡¶v/A	ď	
(c) For DOD have pipettes been calibration	ated day of prep?		YES	N/A		\square
7. Are the samples appropriately spiked?	1		YES	🗌 N/A	₫,	
(a) Is the spike and amount used appr	opriate and entered into	LIMS?	YES	🗌 N/A		
(b) For <u>all</u> spiking was there a witness?	? (Initials <u>must</u> be in logb	ook)	YES	□ N/A		
(c) Spikes added:	potrainte neu LINO ID-	mand to be -	YES	(4)-1-1		
spikes are used. Enter	new LIMS ID below and	use table to	reated when mu	luple/ supplemental		
Spike LIMS ID :						
Spike Name IMS I	D ul Spike Na	me III				
Dam-4 191502						
Mits Lender Diacon	7 100					

Revision: 4 Effective: Dec. 11, 2017

The Frenches Clated S. Street II.
THE LUTTICE CHODEN SCIENCE
GS SOP2986 KOH/Methano
Final Final but Spikel ID Spikel
20
20
20
20 1905023
20 1905023 +
20 2100277 10
20 2100277 100
20 2100277 100
20 2100277 100
0 0 2003243 - 2003365 2100328

Past due - Rush Analysis

Page 59 of 173

Page 1 of 3

		PR	EPARAT	ION BENC	CH SHEET	
				102324		
		Eurof	ins Fronti	ler Global	Sciences, LLC	
Matrix: Tissu	e Prepared using: Trace A	1etals - EF	GS SOP29	86 KOH/M	(ethanol Digestion for Methyl Hg	Prepared: 2/19/2021
Lab Number	Sample ID	Initial (g)	Final (mL)	Location	Sample Comments	Andraio Commonte
1A00115-01	MMBKD-01_012521_SED_00-01	0.2679	20	010203	NO	Auarysis Commertis
1A00115-02	MMBKD-01_012521_SED_01-03	0.256	20	010203	ON	
1A00115-04	MMBKD-01_012521_SED_01-03_DUP	0.2547	20	010203	ON	
1A00115-05	FRB-02_012621_SED_00-01	0.2549	20	010203	ON	
1A00115-06	FRB-02_012621_SED_01-03	0.2646	20	010203	ON	
1A00115-08 /	ES-13_012621_SED_00-01	0.2541	20	010203	ON	
1A00115-10 🖌	ES-13_012621_SED_01-03	0.2653	20	010203	ON	
1B00035-01	468-2021-02040168	0.2671	20	200303		BatchOC
1B00046-01	464-2021-02050358	0.251	20	120402		
1B00047-01	464-2021-02040613	0.2544	20	120402		
1B00055-01 🗸	111-2021-02100215	0.2662	20	010203	10	
1B00057-01 🗸	111-2021-02100217	0.2698	20	010203		
1B00058-01	111-2021-02100216	0.2666	20	010203		
1B00082-01	NIMS#10301564 PROBIOTIC MINT CUCUMBER RETEST 1 652	0.2556	20	eli Refrigerato	NO	
1B00082-02 🗸	NIMS#10301566 PROBIOTIC MINT CUCUMBER RETEST 2 652	0.2564	20	eli Refrigerato	NO	
1B00082-03	NIMS#10301568 PROBIOTIC MINT CUCUMBER RETEST 2 652	0.2684	20	eli Refrigerato	NO	
1B00082-04 🗸	NIMS#10301570 PROBIOTIC MINT CUCUMBER 650961	0.2509	20	eli Refrigeratd	NO	
1B00083-01	111-2021-02120128	0.2637	20	eli Refrigerato	110	
1B00083-02	111-2021-02120129	0.2601	20	eli Refrigerato	OU	
Page 60 o						
f 173	2/19/2021				Past due - Rush Analysis	Page 2 of 3

Page 33 of 146

Prepared: 2/19/2021		Page 3 of 3
TION BENCH SHEET F102324 ttier Global Sciences, LLC 2986 KOH/Methanol Digestion for Methyl Hg		Past due - Rush Analysis
PREPARAT PREPARAT Eurofins Front Eurofins Front Aatrix: Tissue Metals - EFGS SOP2		due Date: 2/19/2021

	10 <u>75 9059</u>	e is reached				Size CRM LIMS ID	10 Dom 4:	14 10	52 1701043	Comments	25	25	84	2	er l	37								(19/2)
1810		emperature		19/21		Sample	0.27	032	0.96	0-269	0.26	0,25	0.35	0268	0.25	0,36				_		_		ر بر
Date:	ior 30 minutes)	es 📋 No In before target t	Belau)	Mr. 21	NO NO	Container ID	4	¥	A	4	A	R	4	Y	7	4								
Color ID: DAUC	• 75±5°C for 2-4 hours. for two hours. k 45°C (nitrogen purge 1 four hours.	s 口 Tefton <u> ちんの</u> ため って *Time in can't beg	100 Jul (LIMS ID: 240	Calibration Date: Calibration Date:	Calibrated? Type SSSQB 2.18	Sample ID Number	1000046~1	M36047-01	1200055-01	1Boar 57-01	100058-01	18 000 75 - 2012 DI	1B voc 82 - v 2	[Beceso-03	1300122-04	11 30-83-01								
Batch	Hot plate 75±5°C Heat Bloc for over	н	vol.: M		PUC.	Vial #	ମ	20	21	52	23	2	55	26	27	28	29	80	31	32	33	34	35	36
- ×0	(OH/Methanol: 1:30: Hot plate - KBr/CH ₂ Cl ₂ : I AR: 18-25°C	Vial Type Therm.#) BS Spike (e) MS Sp	Pipette SN#	Dispenser #:	Sample Size	29450	0.4368	0,2965	6,1278	0,1266	0,2671	0.2669	02551	0,2601	92629	649C'O	6.2679	0.2560	CHUCO	02549	0,2646	INSCU	0,2653
atch#: 1 104	fethyl Mercury - ¹ otal Mercury - 70 - Methyl Mercury tal Mercury - Cold	2 년 Yes □ No p: (raw): 22 ° p. (raw): 23 °	Journard A		SE KoH/McH	Container ID	4	4	4	4	L.	4	A	A	4	64	A	A	A	¥	Ł	A	17	A
n: 200/14/ Ba	- T-AFS-SOP2986 Tissues - M - T-AFS-SOP2795 Tissues - T - T-AFS-SOP5134 Sediments - T-AFS-SOP2807 Solids - Tot	Lalibratedi 1533 Actual Temi 1736 Actual Tem	mess: Jon mt (LIMS ID:		5 ID: 5 ID: 1 LINS ID: 2100 32 7 2 # 0078794 9 Boll	Sample ID Number	F102224-12/21	FLORDY-BULZ	P/2324-BLKD	He2224-BSI	FI62224- 13501	Buc35-01 (Missun)	Fleazoy-Msi	Plezzay-MSDI	1 Boce 33-02 (MSDXn)	FL2324-MS2	FLO3324-MSD2	1. Acol 15-01	1/400115-02	14001504	1Acells o S	Ja-SIJeAl	14-mil 5-13	OF SILVER
chnicia	EFAFS: EFAFS: EFAFS: EFAFS:	ther: alance# Time in: ime out:	inal völ. pike Wit		0/30 LIM 0/30 LIM 0ther Acid	Vial #	1	3	m	4	IJ	9	7	00 60	6	10	11	12	13	14 *	15	16	6 17	18

Page 62 of 173

		Г							- [_	Γ	-	Γ.								
			Container Size/Type	Bug	Bho	<u>B</u>	Berg	Q45	Bas								. 6				85 of 121
	174	-	Total Post Assay Weight				.24/0.				2			112101	10101						10-3
	alance # \mathcal{M}_{ℓ}		Average Mass Per Unit (47)																		Mr J. I
siting	09 B		Total Mass (g)													2/19		and mix. nd mix.			/erified By <u>(</u>
Assay Compo	End Time_//		Number of Tablets/Capsules		10				6							ot laged - fr		pty raw/fill material e raw/fill material ar	gic Builet" grinder. trable grinder		020 / QA2020-014 / V
Nutra	nt Time0[4		Compositing Method *1-6	4	Ц	Ч	4	7	4							mogenizat but n		with syringe and emj excipient and remove	nogenized with "Ma gic Bullet" or compa section		.05 / Effective 03/16/20
	te 2/18/2(Sta		Composited Sample ID	1 Bace 75-0 A	13007302A	(Bacoson A	[haveszarA	18 occ33014	1Baac 3361 A							115 Samples has		Jels: Puncture excipient ile with excipient: open	ts with no excrptent: hor homogenized with "Ma ton filtration : describe in comments		ompositing / LOG-SR-016.
	Initials Mr Da		Original Sample ID	Bacossa A	1Buar 83-02 A	100055-01 A	1BUNG5701A	1200073-0 (A	1Rove 83-cl A							Comments: 1/100	*Methods	1: Soft (2: Capsu	3: Table 3: Pade 5: Plank 6: Other	63 0	reGS / Nutra Assay C

Page 36 of 146

-

				F102324					
		Euro	fins Front	ier Global	Sciences,]	TTC			
Matrix: Tissu	e Prepared using: Trace I	Metals - El	FGS SOP2	986 KOH/M	ethanol Di	gestion for 1	Methyl Hg		Prepared: 2/17/2021
Lab Number	Sample ID and Source Sample	Initial (g)	Final (mL)	Spikel ID	μl Spike1	Spike2 ID	μ1 Spike2	Extraction Comments	
F102324-BLK1	Blank	0.5	40		•	-			
F102324-BLK2	Blank	0.5	40						
F102324-BLK3	Blank	0.5	40						
F102324-BS1	ICS	0.5	40						
F102324-BSD1	LCS Dup	0.5	40						
F102324-MS1	Matrix Spike [1B00035-01]	0.5	40						
F102324-MS2	Matrix Spike [1B00083-02]	0.5	40						
F102324-MSD1	Matrix Spike Dup [1B00035-01]	0.5	40						
F102324-MSD2	Matrix Spike Dup [1B00083-02]	0.5	40						

Description: <u>Standard ID(s):</u>

Expiration:

Page 37 of 146

PREPARATION BENCH SHEET
		Id	REPARAT	TON BEN	CH SHEET	
				F102324		
		Euro	üns Front	iier Global	Sciences, LLC	
Matrix: Tissu	le Prepared using: Trace I	Metals - El	GS SOP2	986 KOH/M	(ethanol Digestion for Methyl Hg	Prepared: 2/17/2021
ab Number	Sample ID	Initial (s)	Final			
LA00115-01 🗸	MMBKD-01_012521_SED_00-01	0.5	(mm)		Sample Comments	Analysis Comments
A00115-02	MMBKD-01_012521_SED_01-03	0.5	9 9	CU2010		
IA00115-04 🗸	MMBKD-01_012521_SED_01-03_DUP	0.5	40	010303	ON ON	
A00115-05	FRB-02_012621_SED_00-01	0.5	40	010203		
A00115-06	FRB-02_012621_SED_01-03	0.5	40	010203	ON ON	
A00115-08	ES-13_012621_SED_00-01	0.5	40	010203		
A00115-10	ES-13_012621_SED_01-03	0.5	40	010002	2	
B00035-01	468-2021-02040168	2.0	÷ ;	507010	DV.	
B00046-01		c:n	40	200303		BatchQC
	464-2021-02050358	0.5	40	120402		
B00047-01	464-2021-02040613	0.5	40	120402		
B00055-01	111-2021-02100215	0.5	40	010203	Ę	
B00057-01	111-2021-02100217	0.5	40	010203		
B00058-01	111-2021-02100216	0.5	40	010203		
B00082-01	NIMS#10301564 PROBIOTIC MINT CUCUMBER RETEST 1 652	0.5	40	eli Refrigerato	ON	
B00082-02	NIMS#10301566 PROBIOTIC MINT CUCUMBER RETEST 2 652	0.5	40	eli Refrigerato	ON	
B00082-03	NIMS#10301568 PROBIOTIC MINT CUCUMBER RETEST 2 652	0.5	40	eli Refrigerato	ON	
B00082-04	NIMS#10301570 PROBIOTIC MINT CUCUMBER 650961	0.5	40	eli Refrigerato	ON	
B00083-01 V	111-2021-02128	0.5	40	eli Refrioerato		
300083-02	111-2021-02120129	50	Ę		24	
		C.N	1	ell Keingerato	ПО	
Dama 65						

Page 38 of 146

Page 2 of 3

t Date: 2/19/2021

		Prepared: 2/17/2021		
PREPARATION BENCH SHEET	F102324 Eurofins Frontier Global Sciences, LLC	Matrix: Tissue Prepared using: Trace Metals - EFGS SOP2986 KOH/Methanol Digestion for Methyl Hg		Page 66 c

Page 39 of 146

Page 3 of 3

te Date: 2/19/2021

TZ'TA SIBICUSI ANZZ			Peak Corrected tt Resoonse Factor % Recovery	nits 611.18 98.6 %Rec inits 655.07 105.7 %Rec	units 513.89 93.1 %Rec units 613.89 99.1 %Rec units 637.69 102.9 %Rec											
ici cui y apecies	Analyst: MPS Units ng/L		Uncorrected Response Corrected I Factor Height	771.79 30.56 uni 695.23 131.01 uni 580.07 591.00 uni	617.90 1227.77 ur 639.70 2550.75 ur			Mean (na/L) Std Dev (n	0.01 ng/L #VALUE		Std Dev	±11.711	±0.000			
iences	100400		Area	38.59 units 139.05 units 589.07 units	1235.80 units 2558.78 units		Uncorr. Mean RF 662.74	Std Dev			Меап	26.358 ng/L	-0.013 ng/L	0.000 ng/L	0.000 ng/L	
ier Global Sci	ry in Soil/Tissue :: March 03, 2021 :: Hg2700-1 :: -{しんくしんう		True Val	0.05 ng/L 0.20 ng/L 1.00 ng/l	2.00 ng/L 4.00 ng/L		Corr. RSD CF 4.5% RSD	Mean	8.03 units		۲ ۲	£	m c	0 0	0	
Ins Trong	t for Methy/ Mercu Date of Analysis Instrument # LIMS Sequence #	tistics:	c	भ्ल ाल क			Corr. St Dev Ri +/- 28.18	E			Batch ID		νm	4	Ŋ	
seurof	Analysis Datasheeı	Calibration Sta	LabNumber	SEQ-CAL1 SEQ-CAL2 SEQ-CAL3	SEQ-CAL4 SEQ-CAL5 SEQ CAL5	seq-calb SEQ-CAL7 SEQ-CAL8 SEQ-CAL9	Corr. Mean RF 619.77	Blanks: LabNumber	SEQ-IBL	Preparation Blanks	Sample Type	BLK	BLK	BLK	BLK	Page 67 0

Printed: 3/4/2021

1
Analyz
3/3/21 13
3/3/21 13:2
21 12/2/2
12/2/2
3/3/21 14:0
3/3/21 14:18
3/3/21 14:28
3/3/21 14:39
3/3/21 14:49
2/2/11/2/20
2011 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1
UE-51 12/2/2
3/3/21 15:40
3/3/21 15:51
3/3/21 16:01
3/3/21 16:11
3/3/21 16:21
3/3/21 16:32
3/3/21 16:42
3/3/21 16:52
ZN:/1 17/c/c
CT:/T 17/6/6
3/3/21 17:33
3/3/21 17:47
3/3/21 17:54
3/3/21 18:04
3/3/21 18:14
3/3/21 18:29
2/3/ 12/2/2
23:01 17/c/c
20-01 17/0/c
313/21 10-16
3/3/71 19-26
2/2/21 10/2/2
10.01 12/2/2
3/3/21 19:57
3/3/21 20:
3/3/21 20
3/3/21 20
3/3/21 20

10-12 MA : Sa DA

* Perk windows updated for both VOIACUIS due to large Hg II peak interference. All chromotogroms ennoteded with new peak window und transcriptions verified - Mts 3/4/21

Printed: 3/4/2021

Page 1 of 2

	រ	i																																	
	rommen	;																												1					
			F103394	F103394	F103394	F103394	F103394	F103394	F102304	F103304	100001	LIUSSY	F103394			F105594	F103394	1103394	F103394	F103394	F103394	F103394	F103394	r103394	L1U3554			r105594	F103394	F103394	F103394	F103394	F103394	F103394	
and the second second		/5u	J/Du	ng/L	חמ/ר		l/uu	no/L	1/20		1.00			1/60			ng/L		1/5u	- <u>ng/L</u>	1/6u	ng/L					1/50			J/L	J/bu	1/61		ng/L	
Ein-ID coult	TINCAVIDIUS	0.034	-0.013	-0.013	-0.013	0.326	11.827	6.835	5 623	14.744	1635		2,000	NOC'D	150.0	7001	7HU-2	0171T	QTT-7	1.728	-0.635	1.3/8	0.933	5.722	404.7	2000		2.4/6	CLO'T	1,381	2.180	1.188	2002	1.980	
Tertrattoente	1 Inconstant	0.034	-0.013	-0.013	-0.013	0.326	1.183	0.684	0.112	0.295	-0.013	2 067	1002.0		0000	0.041	360.0		0.07	0010	-0.013	870.0	ATU'D	10.020	0470	0.026		0000	0000	07070	0.004	0.024	0,040	0-0-0	
BFCD	0.10	7.17	0.9	-8.0	-8.0	193.9	732.2	422.8	69.5	182.6	-8 U	35.4	2002	2.00	17.0	25.3	15.3	1 1	1.02	017	0. Q	10.7	10.24	0.01	765.8	77.6	20.6	0 UC	12.0		1.20	0.41 -	24.7	1 1	
No PB Correction?																						+				-									
Batch ID					~	0	~	0	0		~									+	-								4- 		-				
ncorrected Response	10 00	12.02		0.0	0.00	201.96	740.23	430.85	77.57	190.62	00.0	43.43	317.82	30.76	25.01	33.24	23.34	34.10	05.02		20 20	19 44	54 DD	25.89	273.83	30.63	38.58	28.26	74 99	47 70	03 66	09 62	19 05	20 602	
Run End	20:59:01	21-00-12	CC-01-10	CC:61-12	21:29:49	21:40:07	21:50:24	22:00:41	22:10:57	22:21:14	22:31:31	22:41:47	22:52:03	23:02:20	23:12:37	23:22:53	23:33:11	23:43:27	23:53:44	0-04-01	0-14-18	0-24-34	0-34-51	0:45:08	0:55:25	1:05:40	1:15:57	1:26:13	1:36:30	1-46-47	1-57-04	10:00:0	0-17-38	2.77.55	
FileID	5393-1.RAW	5394-1 PAW	5205_1 DAM		WAN T-0655	5397-1.RAW	5398-1.RAW	5399-1.RAW	5400-1.RAW	5401-1.RAW	5402-1.RAW	5403-1.RAW	5404-1.RAW	5405-1.RAW	5406-1.RAW	5407-1.RAW	5408-1.RAW	5409-1.RAW	5410-1.RAW	5411-1 RAW	5412-1 RAW	5413-1.RAW	5414-1.RAW	5415-1.RAW	5416-1.RAW	5417-1.RAW	5418-1.RAW	5419-1.RAW	5420-1.RAW	5421-1.RAW	5422-1 RAW	5423-1.RAW	5424-1.RAW	5475-1 RAW	
Analyzed	3/3/21 20:59	3/3/21 21-00	2/3/21 21-10	00.10 10/0/0	67:17 17 K/c	3/3/21 21:40	3/3/21 21:50	3/3/21 22:00	3/3/21 22:10	3/3/21 22:21	3/3/21 22:31	3/3/21 22:41	3/3/21 22:52	3/3/21 23:02	3/3/21 23:12	3/3/21 23:22	3/3/21 23:33	3/3/21 23:43	3/3/21 23:53	3/3/21 0:04	3/3/21 0:14	3/3/21 0:24	3/3/21 0:34	3/3/21 0:45	3/3/21 0:55	3/3/21 1:05	3/3/21 1:15	3/3/21 1:26	3/3/21 1:36	3/3/21 1:46	3/3/21 1:57	3/3/21 2:07	3/3/21 2:17	CC-C ICIEIE	
Dilution		1						9	5	20	20	23	1	1	20	20	50	2	50	50	20	50	50	20	T	1	20	20	20	20	50	ß	20		
LabNumber	EQ-CCB3	103394-BLK1	103394-BLK2	103394-RI K3	annao_01				TD-TANNA	103394-MSZ	103394-MSD2	B00091-02	EQ-CCV4	EQ-CCB4	800091-03	B00091-04	800091-05	800091-06	800091-07	800091-08	800091-09	01-10008	800107-01	800107-02	EQ-CCV5	EQ-CCB5	800107-03	800107-04	800107-05	B00107-06	800107-07	B00107-08	800107-10	EQ-CCV6	
Type	CAL	BLK	BLK	BIK	SAM 11				NAM I	E L	MMAX	SAM 18	SI N	GP	SAM 11	SAM 11	SAM 11	SAM 1	SAM 11	SAM 11	SAM 1	SAM 11	SAM 11	SAM	CAL	CAL CAL	SAM 11	SAM LI	SAM 1	SAM 11	SAM 1	SAM 11	SAM 16	S	
Analyst	8	00	00	00	- CO	8.8	3 8	ŝ	3 8	8.8	31	00	8	00	8	8	8	0	8	8	8	8	8	8	8	0	8	00	8	8	8	8	00	ÛÖ	
Instrument	Hg2700-1	Hg2700-1	Hg2700-1	Hq2700-1	Hr2700-1	H07700-1					T-00/26	Hg2/10-1	Hg2700-1	Hg2700-1	Hg2700-1	Hg2700-1	Hg2700-1	Hg2700-1	Hg2700-1	Hg2700-1	Hg2700-1	Hg2700-1	Hg2700-1	Hg2700-1	Hg2700-1	Hg2700-1	Hg2700-1								

Page 69 of 173

MethylMercury EPA1630	Operat MFS Workst MHg27 Methoc 2012-0 Descric MHg27	BlankS ¹ 8.0304 0 CalibFa 619.77 7 R: 0.9996 001-210303-1	Calib Eqn: Status: R²:	. Conc = (Area-8. OK,1 Warnings 0.999257	030) / Run Di Run Ti CalibA	ate: ###### me: 11:28:53 naly MHg	Blank SD: Blank RSC CF SD:	0 0 28.17647279						
Sample/ID	Location Rinse	Dilute Blank	Conchig0(p)	ConcMeHg(Conc	Hg2(pi CondPri	Hgff Rec%	QA ROW	4.546252908 awData RunEnd	Peakhoù (B:	a PealdMoHor (Posternation Distance	Deskfoldsether Control Control	i	
MS	Al							338-1.RAW	65.141348		0 8.69589699	0 deandry	ok	RunCount Comment
HIGH PRIMER	A2	1 8.0304	0.909831	5.09			n u	339-1.RAW 340-1 DAM	98.49049	7	0	0 psample10	ц,	T T
HIGH PRIMER	A3	1 8.0304	0.94961	5.20			» Iл	341-1.RAW	72228.	4 3161.9454 4 2770 6714	5,	0 psample10	៦	7
PRIMER	A5 A5	1 8.0304	0.640838	3.73			LO .	342-1.RAW	405.20505	5 2321.6958	- 0	0 psample10	եե	≓ 1 +
PRIMER	A6	1 8.0304	200900-0	04-1 1 67 5				343-1.RAW	378.99684	5 2148.824	8	0 psample10	յե	-1
W/S	A7	1 8.0304	0.031408	0.08				344-1.RAW 245-1 DAM	320.84830	9 2249.0975	4	0 psample10	5	·
WS	A8	8.0304	0.032156	0.01			n	746-1 PAW	27.496262	5 58.066898		0 psample10	ЯQ	1
SEQ-IBL1	A9	1	0.103499	0.01			o 40	347-1.RAW	868666.72 950361 23	5 17/090422	о. л-	0 psample10	ð	1
SEQ-CALI	A10	1 8.0304	0.019815	0.05	P	98.61		348-1.RAW	20.311017	2 3R 5R970	- v	0 psample10	ŏ	1
SEQ-CALZ	118	8.0304		0.21		105.70	10	349-1.RAW		0 139.04577		0 psample10	ð ð	-
SEO-CAL4	A12 A13	1 8.0304	0.081049	- 0. - 26		93.75	5	350-1.RAW	58.26226	1 589.07349	, C	0 nsample10	55	-
SEQ-CALS	A14	1 8.0304	0.407607	1.98 4.12		99,05	Ω. I	351-1.RAW	144.57469	8 1235.8033	9	0 psample10	ե	
SEQ-ICV1	A15	1 8.0304	0.039797	0.68		68'70T		352-1.RAW	257.55253	4 2558.7815	4	0 psample10	: t	
SEQ-ICB1	A16	1 8.0304		0,05		0.00	n 17	353-1.KAW	32.69573	2 430.68949	0	0 psample10	Ե	100
SEQ-ICV2	0	1 8.0304	0.028376	0.556885		111.52	1 (11	355-1.RAW	1 172 35	274444/3 222122	4 0	0 psample10	ă	1
SEQ-JCV3	38	1 8.0304	0.026603	0.576506		115.44	5	356-1.RAW	24.518402	365.33365		U psample10	ել	1
JULT 2022	17	1000 0000		0.028529		0.00	ις.	357-1.RAW		25.711863	14	0 psanple.to	5 2	
F102324-BSD1	AI8	1000 8.0304	74.90364 59 54460	2641.998 2560 420			5	358-1.RAW	54.453732	9 1645.4709		0 psample10	5 ð	1 E102324
F102324-BLK1	A19	500 8.0304		57L76022				359-1.RAW	44.934637	1500.4948	2	0 psample10	ð	1 F102324
F102324-BLK2	A20	500 8.0304		19.6488			∩ ⊮	36U-1.RAW 361-1 DAW		57.46429	4	0 psample10	ð	F102324
F102324-BLK3	A21	500 8.0304		19.54348			ο LC	762-1 RAM		32.386053	2 2	0 psample10	ŏ	1 F102324
1B00035-01	B1 20	2500 8.0304		6143.653			1 1/1	363-1.RAW		1531 0008		0 psample10	ð (1 F102324
F102324-MSD1	82 83	2500 8.0304		5830.818		583081,81	ŝ	364-1.RAW		1453.5451		n psdmbsd u	5 t	F102324
1B00083-02	8	500 8 0304		4839.793 25 03601			ŝ	365-1.RAW		1207.8607	.0	0 psample10	56	1 F102324
F102324-MS2	BS	1000 8.0304		15065,65		77 77	5	366-1.RAW)	32.575925	•	0 psample10	ð	1 F102324
SEQ-CCV1	B6	1 8.0304	0.016507	0.614699		27:00:521	n ư	262_1 DAW		38.408217	0	n psample10	Х	F102324
SEQ-CCB1	87	1 8.0304		0.041109		0.00	5 L-	769-1 RAW	18.2607816	389.00442		0 psample10	ե	1
F102324-MSD2	111	1000 8.0304		31.125			i uni	370-1.RAW		1600C-CC (0 psample10	Š	-
10-5110011	B9 B10	500					L'I	371-1.RAW	45.7962555	112gn7c1/7 (0 psample10	ð ð	1 F102324
1400115-04	B11	200					vi	372-1.RAW	77.141300		0 14.277955	0 ntample10	5 8	1 F1U2324
1A00115-05	B12	200						373-1.RAW	38,5724435		0 15.8657049	0 psample10	őð	1 F102324
1A00115-06	813	500					Λi	5/4-1.RAW		1	5.66286531	0 psample10	Х	1 F102324
1A00115-08	B14	500					n ir	76-1 RAW	46.2939155 ED 0676003		0	0 psample10	ð	1 F102324
1200015-10	B15	200					1.0	377-1.RAW	41.151947c		7 27.0008908	0 psample10	ðð	1 F102324
1B0D042-01	81.7 B1.7	500					121	378-1.RAW 10	8:25:00 0		LCLODOCION	u psampatu ncampati	Б а	I F102324
SEQ-CCV2	B18	1050.8 1 1050.8	לפרחכת ח	14.67608 0.570765			ŝ	379-1.RAW	0	26.222135	1	0 psemple10	ă	1 F102324
SEQ-CCB2	B19	FULCO R 1	/0707070-0	C020/C/D		115.80	lini I	380-1.RAW	20.6039586	366.42361	1	0 psample10	5	1
1B00055-01	B20	2500 8.0304		\$06.7995		0.00	Lrý L	381-1.RAW	2	24.940133	1	0 psample10	ŏ	4 🖵
1800057-01	B21	2500 8.0304		357.7525			ńù	202-1.DAW		208.04369	0	0 psample10	ð	1 F102324
1800058-01	5	2500 8.0304		387.9672			ri ivi	384-1.RAW		1 96.7206597	0	0 psample10	š	1 F102324
10/082-01	0	500 8.0304		15.96821			i ini	385-1.RAW		DITTITILAT		u psample10	ž	F102324
1B00082-U2	33	500 8.0304		20.22048			10	386-1.RAW	Ģ	33.0946759		0 psample10	ĕè	1 F102324
1B00082-04	5 13	500 8.0304 500 8.0304		15.24811 15.4811			i.ri	387-1.RAW	Q	26.9311921	0	0 psample10	5 ð	1 F102324
1B00083-01	00	500 8.0304		09581.01			Lri L	388-1.RAW	0	28,0935764	0 1	0 psample10	ĕĕ	1 F102324
F103394-BS1	C10	10 8.0304	0.549199	11.79422			n' ù	389-1.RAW 390-1 PAW		26.677719	0	0 psample10	ŏ	1 F102324
F103394-BSD1	11	10 8.0304	0.580423	11.41916			i Lri	391-1.RAW	2010000124	11500.661		0 psample10	t;	1 F103394
SEQ-UCVS SFO-CCB3	50	8.0304	0.018376	0.628624		125.88	iri	392-1.RAW	19.4190905	397.63518	2 0	u psampletu 0 osmolet0	եե	F103394
		1000 T		0.034181		0.00	14	393-1.RAW	0	29.2149016	0	0 psample10	; è	4 -

1 F103394 1 F103394	
₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	
1 psample10 psample11 psample11	
65587791 66587791 6587791 6 6 6 0 10593171 10593171 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 201.959983 77.5671875 77.5671875 77.5671875 190.624219 57.5671875 190.624219 54.1009838 30.757581 30.757581 31.819778 30.757581 30.757581 30.757581 30.757581 30.757581 30.757581 30.757581 54.10091157 54.10091157 54.1001157 54.1001157 54.1001157 54.1001157 54.1001157 54.1001157 54.1001157 54.1001157 54.1001157 54.1001157 54.1001157 54.1001157 55.8125736 54.156736 54.156736 53.4124421 32.41344411 32.41344411 32.41344411 32.41344411 32.41344411 32.41344411 32.41344411 32.41344411 32.41344411 32.41344411 32.41344411 32.41344411 32.41344411 32.41344411 32.41344411 32.41344411 32.41344411 32.4144411 32.4144411 32.4144411 32.4144411 32.4144411 32.4144411 34	
111652.376 113.6433437 113.643347 113.6437 1	
21:29:4:0 0:04:0 2:38:1	
5394-LRAW 5395-LRAW 5395-LRAW 5395-LRAW 5395-LRAW 5400-LRAW 5402-LRAW 5405-LRAW 5405-LRAW 5405-LRAW 5405-LRAW 5405-LRAW 5405-LRAW 5405-LRAW 5410-LRAW	
1181.40 736.53 100.09 0.00 0.00 0.00 0.00	
o o o	
0.312904 0.312904 1.1.81397 5.609851 14.73069 14.73069 14.73069 14.730667 1.47959435 0.03667 1.369445 0.03667 1.369445 1.369445 1.715517 1.71	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
עמעמעמיי איייי	
1 C15 2 C15	
F103394-BLK F103394-BLK F103394-BLK F103394-BLK F103394-MSC F10339	

Page 44 of 146

Verified by: Mr314121

	SEQ-IBL1	A9	1800082-01	C 2	a Shirefi	
	SEQ-CAL1	A 10	1800082-02	C3		
	SEQ-CAL2	A11	1800082-03	C4		
	SEQ-CAL3	A12	1800082-04	C5		
	SEQ-CAL4	A13	1800083-01	C6		
	SEQ-CAL5	A14	F103394-BS1	C10		
	SEQ-ICV1	A15	F103394-BSD1	C11		
	SEQ-ICB1	A 16	SEQ-CCV3	C12		
	SEO-ICV2	C7	SEQ-CCB3	C13		
	SEQ-ICV3	C8	F103394-BLK1	C14		
	SEQ-ICB2	C9	F103394-BLK2	C15		
	F102324-8S1	A17	F103394-BLK3	C16		
	F102324-8SD1	A18	1800039-01	C17		
	F102324-BLK1	A19	F103394-MS1	C18		
	F102324-BLK2	A20	F103394-MSD1	C19		
	F 102324-BLK3	A21	1800091-01	C20		
	1800035-01	B1	F103394-MS2	C.21		
	F102324-MS1	B2	F103394-MSD2	A1		
	F102324-MSD1	B3	1800091-02	A2		
	1800083-02	84	SEQ-CCV4	A3		
	F102324-MS2	B5	SEQ-CCB4	A4		
	SEQ-CCV1	B6	1800091-03	A5		
	SEQ-CCB1	B7	1600091-04	A6		
	F102324-MSD2	B8	1800091-05	A7		
	1A00115-01	89	1800091-06	AS		
	1A00115-02	B10	1800091-07	A9		
	1A00115-04	B11	1800091-08	A10		
	1A00115-05	B12	1800091-09	A11		
	1A00115-06	B13;	1800091-10	A12		
	1A00115-08	B14	1800 107-01	A13		
	1A00115-10	815	1800107-02	A14		
	1B00046-01	816	SEQ-CCV5	A15		
	1600047-01	B17	SEQ-CCB5	A16		
	SEQ-CCV2	B18	1800107-03	A17		
	SEQ-CCB2	B19	1800107-04	A 18	1800107-08	B1
	1B00055-01	820	1800107-05	A19	1800 107-10	82
1	1800057-01	B21	1800 107-06	A20	SEQ-CCV6	B 3
1	1800058-01	C1	1800107-07	A21	SEQ-CCB6	B4

MHg27001-210303-1

Name	Area	Start Ti	me EndTime	StartValu	e EndValue	Peak Max	PeakHeigh	t Flags	Baseline	BlDev	BlShift	Comment
SEQ-IBL1 Hg0	64.146	46,8	71.3	481.98	482,36	56.0	0.708	OK	482.0261	0.00	-0.11	
SEQ-IBL1 MHg	8.030	77.0	94.3	482.38	482.34	82.2	0.066	OK	482.0261	0.00	-0.11	

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Tlags	Baseline	BlDev	BlShift	Comment
SEQ-CALL Hg0	20.311	46.5	64.0	481.57	481.93	56.7	0,444	OK	481.6513	0.01	-0,10	
SEQ-CALL MHg	38.589	75.1	101.3	481.95	481.93	84.8	0,291	OK	481.6513	0.01	-0.10	

Name	Area	Start Time	⊵ EndTime	StartValu	e EndValue	Peak Max	PeakHeigh	t Flags	Baseline	BlDev	BlShift	Comment
SEQ-CAL2	139.045	75.0	113.8	481.52	481.52	83.5	0,923	OK	481.2112	0.00	0.00	

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
SEQ-CAL3 Hg0	58.262	45.7	70.3	480.97	481.33	56.1	0.723	OK	401.0274	0.00	0.01	
SEQ-CAL3 MHg	589.073	75.0	125.0	481.36	481.45	84.2	3.905	CT	481.0274	0.00	0.01	

CVAFS Detector (mV) ° Extra Peaks MainPeak baseline

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
SEQ-CAL4 Hg0	144.575	46.6	73.9	480.88	481.30	55.7	1.422	OK	480.9691	0.00	-0.03	
SEQ-CAL4 MHg	1235.803	75.0	125.0	481.33	481.56	83.8	8.198	CT	480.9691	0.00	-0.03	

CVAFS Detector (mV) * Extra Peaks T MainPeak baseline

Name Art	rea	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BLDev	BlShift	Comment
SEQ-CAL5 Hg0 25	57.553	46.7	74.4	480.71	491.21	55.5	2.457	OK	480.7592	0.00	0.05	
SEQ-CAL5 MHg 25	58.782	75.0	125.0	481.21	481.81	84.2	17.056	CT	480.7592	0.00	0.05	

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
SEQ-ICV1 Hg0	32.696	46.9	66.3	480.54	480.81	56.1	0.467	OK	480.5796	0.00	0.05	
SEQ-ICV1 MHg	430.689	75.0	125.0	480.86	480.92	83.9	2.739	CT	480.5796	0.00	0.05	

Name	Area	Start Time	e EndTime	StartValue	e EndValue	Peak Max	PeakHeight	t Flags	Baseline	BlDev	BlShift	Comment.
SEQ-ICB1	44.944	75.0	114.8	480.87	480.88	84.1	0.228	OK	480.5590	0.00	0.10	

CVAFS Detector (mV) ° Extra Peaks []] MainPeak baseline

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
SEQ-ICV2 Hg0	25.617	46.7	65.6	480.49	480.73	55.9	0.397	OK	480.5636	0.00	0,10	
S5Q-ICV2 MHg	353.173	75.0	125.0	480.81	480.90	84.4	2.253	CT	480.5636	0.00	0.10	

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	B1Shift	Comment
SEQ-1CV3 Hg0	24.518	45.3	64.9	480.52	480.79	55.8	0.397	OK	480.5937	0.00	0.04	
SEQ-ICV3 MHg	365,334	75.0	125.0	480.88	480.92	83.9	2.337	CT	480,5937	0.00	0.04	

CVAFS Delector (mV) * Extra Peaks [] MainPeak baseline

Name	Area	Start Time	e EndTime	StartValu	e EndValue	Peak Max	PeakHeigh	t Flags	Baseline	BlDev	BlShift	Comment
SEQ-ICB2	25.712	75.0	108.9	480.85	480.64	84.9	0.153	OK	480.5604	0.00	0.08	

Page 83 of 173

CVAFS Detector (mV) ° Extra Peaks [____ MainPeak baseline

Name Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
F102324-BS1 Hg0 54.454	46.1	67.7	480.45	460.73	55,2	0.682	OK	480.4941	0.00	0.10	F102324
F102324-BS1 MHg 1645.471	75.0	114.4	480.85	461.71	83,6	11.578	OK	480.4941	0.00	0.10	F102324

Name Area	Start Time	e EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
F102324-BSD1 Hg 44.935	47.1	67.5	480.52	480.79	55.4	0.572	OK	480.5404	0.00	0.11	F102324
F102324-DSD1 MH 1600.495	75.0	114.5	480.91	481.75	83.8	11.293	OK	480.5404	0,00	0.11	F102324

CVAFS Detector (mV) ° Extra Peaks [] MainPeak baseline

Name	Area	Start Tí	me EndTime	StartValu	e EndValue	Peak Max	PeakHeight	t Flags	Baseline	B1Dev	BlShift	Comment
F102324-BLK1	57.464	75.0	113.1	460.91	480.92	85.1	0.330	OK	480.6195	0.00	0.10	F102324

CVAFS Detector (mV) * Extra Peaks 💭 MainPeak baseline

Name	Area	Start Ti.	me EndTime	StartValı	ie EndValue	Peak Max	PeakHeigh	nt Flags	Baseline	BlDev	B1Shift	Comment
F102324-BLK2	32.386	75.0	111.8	480.98	481.00	85,3	0.182	OK	480.7256	0.00	0,09	F102324

CVAFS Detector (mV) * Extra Peaks [] MainPeak baseline

Name	Area	Start Time	e EndTime	StartValu	e EndValue	Peak Max	PeakHeigh	t Flags	Baseline	BlDev	Blshift	Comment
F102324-BLK3	32.255	75.0	115.5	480.98	481.04	87.7	0,170	OK	480,7737	0.00	0.10	F102324

CVAFS Detector (mV) * Extra Peaks

Name Area	a Start Tim	e EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1800035-01 1531	1.100 75.0	125.0	481.18	481.44	83.4	9.861	CT	480.8236	0.00	0.18	F102324

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	Bl\$hift.	Comment
F102324-MS1	1453.545	75.0	125.0	481.23	481.60	83.7	9.498	CT	480.9489	0.00	0.04	F102324

CVAFS Delector (mV) * Extra Peaks [MainPeak baseline

Name Area	Start Time EndTime	StartValue EndValue	Peak Max	PeakHeight Flags	Baseline	BlDev	BlShift	Comment
F102324-MSD1 1207.861	75.0 125.0	481.23 481.48	84.0	7.836 CT	480.9482	0.00	0.08	F102324

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1800083-02	52.576	75.0	117.5	481.20	481.23	83.9	0.282	OK	480.9588	0.00	0.06	F102324

CVAFS Detector (mV) * Extra Peaks [] MainPeak baseline

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
F102324-M52	38,408	75.0	113.9	481.31	481.36	84.8	0.208	OK	481.0182	0.00	0.13	F102324

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
SEQ-CCV1 Hg0	18.261	45.9	64.6	480.98	481.16	56.6	0.299	OK	481.0473	0.00	-0.01	
SEQ-CCV1 MHg	389.004	75.0	125.0	481.27	481.38	83.9	2.461	CT	481.0473	0.00	-0.01	

CVAFS Detector (mV) * Extra Peaks [MainPeak baseline

Name Are	ea 5tar	t Time EndT	lime Start	Value EndValue	e Peak Max	PeakHeight	E Flags	Baseline	B1Dev	BlShift	Comment
SEG-CCB1 33.	,509 75.0	121.	3 481.2	1 481,27	82.5	0.160	OK	480.9923	0.00	0.07	

CVAFS Delector (mV) ° Extra Peaks 🗍 MainPeak baseline

Name	Area	Start Ti	me EndTime	StartValu	e EndValue	Peak Max	PeakHeig)	ht Flags	Baseline	BlDev	BlShift	Comment
F102324-MSD2	27.321	75.0	116.3	481.33	481.35	84.9	0.147	OK	481.0894	0.00	0.06	F102324

Name 1A00115-01	Area 45.796	Start Time 44.8	EndTime 66,8	StartValue 481.14	EndValue 481.36	Peak Max 55.2	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
	101120	11.0	0010	40.1.1.4	401.30	22.6	01010	UK	481.1427	0.00	0.16	F102324

CVAFS Detector (mV) * Extra Peaks MainPeak baseline

MHg 750-1050

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1A00115-01 Hg0	45.796	44.8	66.8	481.14	481.36	55.2	0.576	OK	481.1427	0.00	0.16	F102324
1A00115-01 MHg	38.677	75.0	105.0	481.46	481.54	84.6	0.290	CT	481.1427	0.00	0.16	F102324
1A00115-01 Hg(I	885.892	109.8	175.3	481.51	481.44	125.2	3.628	OK	481.1427	0.00	0.16	F102324

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
1AC0115-02 Hg0	77.141	47.0	68.3	481,10	481.41	55.1	0.892	OK	481.1790	0.00	-0.05	F102324
1AC0115-02 Hg(1	14.278	125.0	176.8	484,96	481.34	126.8	0.129	OK	481.1790	0.00	-0.05	F102324

MHg 750-1050

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1A00115-02 Hg0	77.141	47.0	68.3	481.10	481.41	55.1	0.892	OK	481.1790	0.00	-0.05	F102324
1A00115-02 MHg	34.706	75.0	105.0	481.43	481.49	84.8	0.259	CT	481.1790	0.00	-0.05	F102324
1A00115-02 Hg(I	860.767	111.9	176.8	481.46	401.34	126.8	3.633	OK	481.1790	0.00	-0.05	F102324

Name Area Start Time EndT	e StartValue EndValue	Peak Max PeakHeight	Flags Baseline OK 481.2258 OK 481.2258	B1Dev	BlShift	Comment
1A00115-04 Hg0 38,572 44,8 68.7	481.13 481.33	55.9 0.471		0.00	-0.02	F102324
1A00115-04 Hg(I 15,866 125.0 180.	484.99 181.32	127.0 0.141		0.00	-0.02	F102324

CVAFS Detector (mV) ° Extra Peaks (MainPeak baseline

MH, 750-1050

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
1A00115-04 Hor0	38.572	44.8	68.7		481.33	55.9	0.471	OK	481.2258	0.00	-0.02	F102324
1A00115-04 MHg 1A00115-04 Hg(I	38,656	75.0	105.0	481.42	481,47 481.32	84.8	0.273	CT	481.2258	0.00	-0.02	F102324 F102324

Name	Area	Start Tim	e EndTime	StartValı	ie EndValue	Peak Max	PeakHeight	: Flags	Baseline	BlDev	BlShift	Comment
1A00115-05	5.663	125.0	149.1	482,16	481.66	127.0	0.024	OK	481.2458	0.00	0.15	F102324

CVAFS Delector (mV) ° Extra Peaks 🛄 MainPeak baseline

MHg 750-1050

Name Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1A00115-05 MHg 23.935	75.0	105.0	481.53	481.61	85.7	0.162	CT	481.2458	0,00	0.15	F102324
1A00115-05 Hg(I 112.276	113.5	158.3	481.60	481.59	127.0	0.589	OK	481.2458	0.00	0.15	F102324

Name	Area	Start Time	e EndTime	StartValue	e EndValue	Peak Max	PeakHeight	t Flags	Baseline	BlDev	BlShift	Comment
1A00115-06	46.294	46.7	66.8	481.35	481.62	55.6	0.617	OK	481.3572	0.00	0.17	F102324

CVAFS Detector (mV) ° Extra Peaks 🛅 MainPeak baseline

Mag 750-1050

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1A00115-06 Hg0	46.294	46.7	66.8	481.35	481.62	55.6	0.617	OK	481,3572	0.00	0.17	F102324
1A00115-06 MHg	19.765	75.0	105.0	481.68	481.72	83.3	0.142	CT	481,3572	0.00	0.17	F102324
1A00115-06 Hg(1	116.260	113.4	158.1	481.69	481.69	125.8	0.606	OK	481,3572	0.00	0.17	F102324

Name Area Start Time EndTime	StartValue EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	81Shift	Comment
1A00115-08 Hg0 55.963 46.3 67.6	481.35 481.61	55.2	0.731	OK	481.4272	0,00	0.00	F102324
1A00115-08 Hg(I 27.001 125.0 183.9	488.26 481.56	127.1	0.281	OK	481.4272	0.00	0.00	F102324

CVAFS Detector (mV) * Extra Peaks [... MainPeak baseline

MHy 750-1050

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
1A00115-08 Hg0	59.963	46.3	67.6	481.35	481.61	55.2	0.731	OK	481.4272	0,00	0.00	F102324
1A00115-08 MHg	118.074	75.0	105.0	481.69	481.80	83.8	0.898	CT	481.4272	0.00	0.00	F102324
1A00115-08 Hg(J	1632.686	111.1	183.9	481.75	481.56	127.1	6.798	OK	481.4272	0.00	0.00	F102324

CVAFS Detector (mV) * Extra Peaks MainPeak baseline

D.N.R.

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1A00115-10 Hg0	41.152	46.6	65.9	481.30	481.56	55.5	0.561	OK	481,3518	0.01	0,13	F102324
1A00115-10 Hg(I	10.566	125.0	177.1	487.92	481.63	126.2	0.084	OK	481.3518	0.01	0.13	F102324

CVAFS Detector (mV) ° Extra Peaks []] MainPeak baseline

MHg 750-1050

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1A00115-10 Hg0	41.152	46.6	65.9	481.30	481.56	55.5	0.561	OK	481.3518	0.01	0.13	F102324
1A00115-10 MHg	98.131	75.0	105.0	481.64	481.80	84.2	0.770	CT	481.3518	0.01	0.13	F102324
1A00115-10 Hg(T	1469.678	111.6	177.1	481.73	481.63	126.2	6.276	OK	481.3518	0.01	0.13	F102324

1B00046-01: No peak(s) detected.

CVAFS Detector (mV) ° Extra Peaks []] MainPeak baseline

Name 1800046-01	Area 0.000	Start Time EndTime	StartValue EndValue	Peak Max	PeakHeight	Flags NP	Baseline 481.5258	BlDev 0.00	BlShift 0.06	Comment
--------------------	---------------	--------------------	---------------------	----------	------------	-------------	----------------------	---------------	-----------------	---------

Name	Area	Start Time	EndTime	StartValu	e EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1800047-01	26.222	75.0	113,8	481.93	481.97	86.4	0.143	OK	481,6619	0.00	9.13	F102324

CVAFS Detector (mV) ° Extra Peaks (___ MainPeak baseline

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
SEQ-CCV2 Hg0	20.604	48.2	65.6	481,75	481.92	55.9	0.308	OK	481.7633	0.00	0.02	
SEQ-CCV2 MHg	366.424	75.0	125.0	482,03	482.16	84.0	2.388	CT	481.7633	0.00	0.02	

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
SEQ-CCB2	24.940	75.0	109.4	482.09	482.09	83.8	0.151	OK	481.9043	0.00	-0.10	

Name Area Start Time EndTime StartValue EndValue Peak Max PeakHeight Flags Baseline BlDev BlShift Co	Comment
1B00055-01 208.044 75.0 117.7 482.14 482.22 84.0 1.388 OK 481.8922 0.01 0.08 Fl	F102324

CVAFS Delector (mV) * Extra Peaks []] MainPeak baseline

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev*	BlShift	Comment
1800057-01	96.721	75.0	115,9	482.29	482.34	83.7	0.607	OK	482.0447	0.00	0.02	£102324

Name	Area	Start Time	e EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1800058-01	104.211	75.0	116.5	482.42	482.48	84.0	0.655	OK	482.1877	0.00	0.05	F102324

CVAFS Detector (mV) * Extra Peaks [] MainPeak baseline

Name	Area	Start Tim	ne EndTime	StartValu	e EndValue	Peak Max	PeakHeigh	t Flags	Baseline	BlDev	BlShift	Comment
1800082-01	27.824	75.0	112.3	482.61	482.61	86,0	0.125	OK	482.3616	0.00	0.03	F102324

CVAFS Detector (mV) ° Extra Peaks [``MainPeak baseline

Name Area Start Time EndTime	StartValue EndValue Peak Max	PeakHeight Flags	Baseline	BlDev	BlShift	Comment
1800082-02 33.095 75.0 120.6	482.78 482.82 85.6	0.148 OK	482.5430	0.00	0.08	F102324

Name Ar	rea St	art Time H	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1800082-03 26	5.931 75	5.0	112.5	483.01	483.06	92.0	0.133	OK	482.8030	0.00	0.10	F102324

CVAFS Detector (mV) * Extra Peaks 📋 MainPeak baseline

Name	Area	Start Ti	me EndTime	StartValı	ue EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1800082-04	28.094	75.0	112.0	483.27	483.33	90.2	0.145	OK	482.9816	0.00	0.08	F102324

CVAFS Detector (mV) * Extra Peaks ____ MainPeak baseline

Vame Area Start Time	EndTime St.	tartValue E	IndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
1000083-01 26.678 75.0	116.2 48	83.40 4		91.1	0.137	OK	483.1533	0.00	0.04	F102324

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
F103394-BS1 Hg0	42.068	47.0	68.8	483.32	483.53	54,7	0.505	OK	483.3429	0.00	0.04	F103394
F103394-BS1 MHg	739.005	75.0	125.0	483.63	483.77	83.5	4.734	CT	483.3429	0.00	0.04	F103394

Name Area	Start Tir	ne EndTime	StartValue	e EndValue	Peak Max	PeakHeight	: Flags	Baseline	BlDev	BlShift	Comment
F103394-BSD1 Hg 44.003	44.7	68.1	403.50	483.69	54.8	0.558	OK	483.5412	0.00	-0.14	F103394
F103394-BSD1 MH 715.760	75.0	125.0	403.70	183.89	84.3	4.665	CT	483.5412	0.00	-0.14	F103394

Nates	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
SEQ-CCV3 Hg0	19.419	46.5	64.0	483.27	483.42	55.4	0.289	OK	483.3082	0.00	-0.01	
SEQ-CCV3 MHg	397.635	75.0	125.0	483.55	483.63	83.6	2.527	CT	483.3082	0.00	-0.01	

CVAFS Detector (mV) ° Extra Peaks [___ MainPeak baseline

Name	Area	Start Time	e EndTime	StartValu	e EndValue	Peak Max	PeakHeigh	t Flags	Baseline	BlDev	BlShift	Comment
SEQ-CCB3	29.215	75.0	117.0	483.51	483.54	84.9	0.170	OK	483,3200	0.00	0.01	

EVAFS Delector (mV) * Extra Peaks [MainPeak baseline

Name Area Start Time EndTime StartValue EndValue Peak Max PeakHeight Flag F103394-BLR1 11662.376 42.5 75.0 483.41 482.28 57.1 73.148 CT	ags Baseline BlDev BlShift Comment 483.4344 0.00 -1.19 Fl03394
---	---

F103394-BLK2: No peak(s) detected.

Name	Area	Start Time EndTime	StartValue EndValue	Peak Max	PeakHeight Flags	Baseline	BlDev	BlShift	Comment
F103394-ELK2	0.000				NP	482,6558	0.00	-0.07	F103394

F103394-BLK3: No peak(s) detected.

CVAFS Detector (mV) ° Extra Peaks CMainPeak baseline

Name F103394-BLK3	Area 0.000	Start Time EndTime	StartValue EndValue	Peak Max	PeakHeight Flags NP	Baseline 482.5459	BlDev 0.00	B1Shift -0.04	Comment F103394
----------------------	---------------	--------------------	---------------------	----------	------------------------	----------------------	---------------	------------------	--------------------

Name Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
1800039-01 MHg 201.960	75.0	114.4	482.86	403.01	83.6	1.347	OK	482.6055	0.00	-0.08	F103394
1800039-01 Hg(I 3.466	125.0	151.3	483.38	402.91	126.3	0.014	OK	482.6055	0.00	-0.08	F103394
1000003 OI HG(1 0.400	120.0	797.9	400.00	402.51		0.014	0K	402.0000	0.00	-0.00	2103324

Name Area Start Time EndTime StartValue EndV F103391-MS1 740.229 75.0 125.0 482.67 482.	alue Peak-Max Pe	eakHeight Flags	Baseline	BlDev	BlShift	Comment
	75 83.2 4.	.744 CT	482.3946	0.00	0.01	F103394

```
Page 131 of 173
```


CVAFS Delector (mV) * Extra Peaks [... MainPeak baseline

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
F103394-MSD1 Hg	18.643	48.3	68.1	482.36	482.30	57.5	0.173	OK	482.3880	0.00	0,01	F103394
F103394-MSD1 MH	430.853	75.0	125.0	482.33	482.65	83.8	2.475	CT	482.3880	0.00	0.01	F103394

CVAFS Detector (mV) ° Extra Peaks ____ MainPeak baseline

Name Ar	rea Si	tart Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1800091-01 77	7.567 73	5.0	122.2	482.45	482.46	83.9	0.451	OK	482.2861	0.00	-0,08	F103394

CVAFS Detector (mV) * Extra Peaks [____MainPeak baseline

Name Area Start Time EndTim	StartValue EndValue	Peak Max PeakHeigh	t Flags Baseline	B1Dev	BlShift	Comment
F103391-MS2 190.624 75.0 125.0	482.39 482.42	83.5 1.180	CT 482.2233	0,00	0.00	F103394

Name Area	Start Time EndTin	5 StartValue EndValue	Peak Max	PeakHeight Flags	Baseline	BlDev	BlShift	Comment
F103394-MSD2 Hg 99.734	46.8 75.0	482.09 480.76	56,1	0.300 CT	482.1755	0.00	-0.24	F103394
F103391-MSD2 Hg 56.747	126.4 219.0	481.64 481.95	218.1	0.307 OK	482.1755	0.00	-0.24	F103394

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1800091-02	43.425	75.0	116.5	482.19	482.20	86.1	0.219	OK	481.9905	0.00	0.06	F103394

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	: Flags	Baseline	BlDev	BlShift	Comment
SEQ-CCV4	317.820	75.0	125.0	482.09	482.15	83.7	2.047	CT	481.8637	0.00	-0.06	

Name	Area	Start Time	e EndTime	StartValu	e EndValue	Peak Max	PeakHeigh	nt Flags	Baseline	BlDev	BlShift	Comment
SEQ-CCB4	30.758	75.0	115.4	482.02	482.03	83.4	0.135	OK	481.8309	0.00	0.04	

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1800091-03	25.005	75.0	111.4	482.00	482,00	85.0	0.123	OK	481.8047	0.00	-0.09	F103394
1800091-03	25.005	75.0	111.4	482.00	482,00	85.0	0.123	OK	481,8047	0.00	-0.08	E10339

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1800091-04	33.242	75.0	122.2	481,98	482.00	89.3	0.129	OK	481.7282	0.00	0.02	F103394

Name Area Start Time EndTime 1800091-05 MHg 23.337 75.0 113.5 1800091-05 Hg(I 0.106 128.0 130.6	StartValue EndValue	Peak Max PeakHeight	Flags Baseline	BlDev	BlShift	Comment
	481.89 481.90	88.5 0.105	OK 481,6473	0.00	0.04	F103394
	481.92 481.93	130.1 0.011	OK 481.6473	0.00	0.04	F103394

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1800091-06	34.101	75.0	114.7	481.88	481.88	85.7	0,170	OK	481.7025	0.00	-0.13	F103394

Name A	rea	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1800091-07 2	9.295	75.0	117.5	481.90	481.90	90.1	0.123	OK	481.6841	0.00	-0.08	F103394

1800091-08: No peak(s) detected.

Name Area 1800091-08 0.000	Start Time EndTime	StartValue EndValue	Peak Max -	PeakHeight Flags NP	Baseline 481.6556	B1Dev 0.00	BlShift 0.06	Comment F103394
----------------------------	--------------------	---------------------	---------------	------------------------	----------------------	---------------	-----------------	--------------------

Name	Area	Start Time	EndTime	StartValu	e EndValue	Peak Max	PeakHeight	t Flags	Baseline	BlDev	BlShift	Comment
1B00091-09	24.950	75.0		481.80	481,81	84.5	0.141	OK	481.6250	0.00	-0.09	F103394

Name	Area	Start Time	e EndTime	StartValue	e EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1800091-10	19,439	75.0	106.7	481,89	481.89	85.9	0,103	OK	481.6609	0.00	-0.16	F103394

Name 1	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1800107-01	54.000	75.0	125.0	481.75	481,77	84.6	0.298	CT	481.5440	0,00	0.13	F103394

CVAFS Detector (mV) ° Extra Peaks [___MainPeak baseline

Name Area	Start T:	ime EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1200107-02 25.89	92 75,0	112.0	481.78	481.79	89.3	0.122	OK	481.5444	0.00	0.10	F103394

CVAFS Delector (mV) ° Extra Peaks | _ MainPeak baseline

Name SEQ-CCV5	Area 273.827	Start Time 75.0	EndTime	StartValu 481.90	e EndValue 481,93	Peak Max 83.3	PeakHeight 1.813	Flags OK	Baseline 481,7119	BlDev 0.00	BlShift -0.15	Comment
------------------	-----------------	--------------------	---------	---------------------	----------------------	------------------	---------------------	-------------	----------------------	---------------	------------------	---------

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
520-0035	30.629	75.0	116.4	481.92	481.92	91.3	0.129	OK	481.6501	0.00	-0.08	

CVAFS Delector (mV) ° Extra Peaks [] MainPeak baseline

Name	Area	Start Ti	me EndTime	StartValı	ue EndValue	Peak Max	PeakHeigh	t Flags	Baseline	BlDev	BlShift	Comment
1800107-03	38,585	75.0	124.9	481.91	481,96	88.8	0.174	OK	481.6277	0.00	0.01	F103394

Name	Area	Start Tim	e EndTime	StartValu	e EndValue	Peak Max	PeakHeigh	t Flags	Baseline	B1Dev	BlShift	Comment
1800107-04	28.260	75.0	114.8	481.86	481.87	83.5	0.137	OK	481.6419	0.00	0.12	F103394

Name	Area	Start Time	EndTime	StartValu	e EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	Blshift	Comment
1809107-05	24.994	75.6		481.83	481.83	87.0	0.121	OK	481.6629	0.00	0.01	E103394

CVAFS Detector (mV) * Extra Peaks | MainPeak baseline

Name	Area	Start Time	EndTime	StartValu	e EndValue	Peak Max	PeakHeight	: Flags	Baseline	81Dev	BlShift	Comment
1800107-06	47.285	75.0	125.0	481.79	481.79	84.1	0.219	CT	481.5495	0.00	0.05	F103394

EVAFS Detector (mV) ° Extra Peaks

Name	Area	Start Time	e EndTime	StartValı	ie EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	Blshift	Comment
1800107-07	22.591	75.0	105.6	481.89	481.89	85.9	0.118	OK	481.7129	0.00	~0.13	F103394

CVAFS Detector (mV) ° Extra Peaks [] MainPeak baseline

Name	Area	Start Time	e EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1800107-08	32.686	75.0	116.0	481.85	481.86	85.4	0.157	OK	481.5548	0.00	0.02	F103394

Nare	Area	Start Tim	e EndTime	StartValı	e EndValue	Peak Max	PeakHeigh	: Flags	Baseline	B1Dev	Blshift	Comment
1800107-10	32.412	75,0	122.9	481,88	481.90	89.4	0.130	OK	481,5973	0.00	-0,02	F103394

2012 2010 1010 1010 10101 10100 0410 21001 C1 1010421 0.00 -0.02	Name SEQ-CCV6	Area 327.029	Start Time 75.0	EndTime 125.0	StartValue 481.97	e EndValue 481,99	Peak Max 84.0	PeakHeight 2.057	Flags CT	Baseline 481.6421	BlDev 0.00	BlShift -0.02	Commen
--	------------------	-----------------	--------------------	------------------	----------------------	----------------------	------------------	---------------------	-------------	----------------------	---------------	------------------	--------

Name /	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
SEQ-CCB6 MHg (31.329	75.0	120.9	481.87	461.87	85.7	0.130	OK	481.6386	0.00	0.08	
SEQ-CCB6 Hg(II) (0.168	127.8	131.0	481.86	481.86	128.9	0.011	OK	481.6386	0.00	0.08	

GU/ SURANCE eurofins |

Frontier Global Sciences

Total Solids Dataset Cover Page

Dataset ID:	TS210305-1
Batch ID:	F103409
Work Order(s);	115, 1B00120, 1B00048, 1C0

Analyst:	AH/MV2
Prep. Date:	3/5/2021

Analytical Issues/Explanations:

2015 Rev. 2

3/23/2015

Analyst: AH/MV2 Date: 3/5/2021 Reviewe	r:	_ Date:	
WO #: Multiple Batch #: f103409	Data	aset ID: TS2103	04-1
		Reviewer In	itials: \$ 65
General Comments/Re-run requirements:			
Sample Hoolis-08 was skipped during	Select SOP	Method	Matrix
initial weighcutsm-3/5/21	SOP5133	Density	S/T Liquids
	Initials ABA	SOP Date 3/9/2 2/17/2	
		Reviewer Ini	tials:
1. Total Solids	Пе	ensity Only - NA H	le section
 A. Check for transcription errors from Benchsheet/Raw Data (i) Do sample ID(s) match? (ii) Do mases/volumes match? (iii) Are the analyst name, dataset ID, and preparation date listed? (iv) Does the LIMS benchsheet prep date match the actual prep date? 	☐ DONE ☐ YES ☐ YES ☐ YES ☐ YES ☐ YES		
B. Does the batch include 1 MD/MT per 10 client samples?	YES		
C. MD RPD/MT RSD ≤ 10% D. Are qualifiers, O-04 and O-09, included for samples analyzed out of hold time?	PASS YES		
2. Density			
 A. Check for transcription errors from Benchsheet/Raw Data (i) Do sample ID(s) match? (ii) Do mases/volumes match? (iii) Are the analyst name, dataset ID, and preparation date listed? (iv) Does the LIMS benchsheet prep date match the actual prep date? (v) Volume (if other than 1 mL): Can the calculated result be repro 	duced?	Solids Only - NA NO NO NO NO NO	this section

971	135 of	Баде
	Qualifier	
	Faiture	
	Over Cal	ate
	RPD Limit	
	RPD	
	Rec. UCL	
	Rec. LCL	
	% Rec.	Ewed By
	Units	cer Revi
	True Value	
	Source Result	
	Dup Result	
	MRL	ate
	Result	Â
ata Report -	Analysis	iewed By
Failing D	Sample ID	Analyst Rev

Preparation Date:	Mar 5, 2021	Batch #:	1	Analyst: AH/MV2
		Batch ID: F10	3409	

Work Order(s): 1A00115, 1B00120, 1B00048, 1C00012

			Pan + Sample	Wet Sample	Pan + Sample	Drv Sample		
Pan ID	Sample ID	Pan Wt (g)	Wet (g)	(g)	Dry (g)	(g)	% TS	Notes
1	1A00115-06	0.9860	6.1846	5.1986	3.6313	2.6453	50.9%	
2	F103409-MD	1.0009	6.0549	5.0540	3.6020	2.6011	51.5%	1.1%
3	1800120-01	1.0010	6.0040	5.0030	5.1083	4.1073	82.1%	
4	F103409-MD	0.9856	6.7287	5.7431	5.6882	4.7026	81.9%	0.3%
5	1A00115-01	0.9863	6.1553	5.1690	2.2761	1.2898	25.0%	
6	1A00115-02	0.9918	6.0880	5.0962	3.0886	2.0968	41.1%	
7	1A00115-03	0.9888	6.1087	5.1199	3.6741	2.6853	52.4%	
8	1A00115-04	0.9770	6.0279	5.0509	2.9237	1.9467	38.5%	
9	1A00115-05	0.9941	8.5100	7.5159	4.7578	3.7637	50.1%	
10	1A00115-07	0.9887	6.6667	5.6780	4.1049	3.1162	54.9%	
11	1A00115-10	0.9768	6.0286	5.0518	3.0353	2.0585	40.7%	
12	1A00115-11	0.9996	8.3472	7.3476	6.3324	5.3328	72.6%	
13	1B00039-01	0.9842	6.7238	5.7396	1.7833	0.7991	13.9%	
14	1800048-01	0.9818	6.1628	5.1810	5.2069	4.2251	81.5%	
15	1C00012-01	0.9776	6.3570	5.3794	5.3181	4.3405	80.7%	

Urd	19	Data There all the	CF: - 6 +
2º Tech	Calibration	Date/Time: 17:12	Oven Start Date/Time: 34/21 16:518
2 TELII.	Callbrated:y	Final Weigh 3/5/21	Temp Raw/Corrected: 105.0 °C / 104.5
111-	31101,315/21	Date/Time*: 1229	Oven End Date/Time2: 3/5/21 1225
Batch: H03404		Oven ID: OVN-12	Temp Raw/Corrected: 1/3 5 1/02 2

Total Solids

Density 🗇 (Flask Volume =

mL)

CF = Thermometer Correction Factor

Line	Sample ID	Dan #. Of Sissk#	Pan or Flask (8)	Pan or Neul Wet Sample (g)	Pimis Dry Sample (g) □ / - Deseter Orac	Densia (2 mml) Sample (1 a / Plast Uplanas
11	1900115-06 ADP	AI	1.0009	6,0549	3.5020	
$\frac{2\pi}{s}$	1800129-0100	2A2	\$.9856	6.7287	5.6882	
	1 A00115-161A	A3	0.9863	6.1553	2.2761	
5	1A00/15-02A	A4_	1977100 9918	6.0880	3.0826	
3-93 10-10-10-10-10-10-10-10-10-10-10-10-10-1	1400115-038	A5	8 A888	6.1087	3,6741	
	1A00115-04A	P16	8.97715	6,0279	21237	
	1A00115-05A	A7	10.9941	8.5100	4,7578	
8	1A00115-06A	A8	Ø.98105	6.1846	3.6313	
	1A80115-07A	Aq	0.9887	6.0007	4.1049	
	1488115-1614	AUS	0.9768	6,0226	3,0353	
	1A00115-111A	All	0.9996	8.3472	6.3324	
	100000001100000000000000000000000000000	A12_	01.9842	6.7238	1.7833	
	1680048-01	AB	0.9818	6.1628	5.2069	
	1800120-01	A14 -	1.0000	6-0040	5.1083	
	1000012-01	A15	0.9776	6.35710	5.3181	
					Ma	3/5/21
64_						

Comments:

いた ちょう しょう しょう しょう

¹The same balance must be used to weigh samples before and after ovening. ²Samples must be ovened over 12 hours at 103-105°C. ³Samples must be re-weighed within 30 minutes of oven cool down.

EFGS / Total Solids and Density / LOG-PR-038 / Effective 7/2/2020 / QA2020-037/ Page 63 of 101 / Verified By: 1/2 3/5 /2

Page 164 of 173

		ΡF	REPARAT	ION BENC	CH SHEET		
				103409			
		Eurof	fins Front	ier Global	Sciences, LLC		
Matrix: Soil/S	Sediment Prepared u	Ising: Trac	e Metals -	EFGS SOP	5133 Solids Analysis	Prepared: 3/4/2	1/2021
Lab Number	Sample ID	Initial (g)	Final (g)	I ocation	Samula Commanto		
1A00115-01	MMBKD-01_012521_SED_00-01	s S) in	010203	ON	Analysis Comments	
1A00115-02	MMBKD-01_012521_SED_01-03	s	2	010203	ON		T
1A00115-03	MMBKD-01_012521_SED_03-05	5	5	010203	ON		
1A00115-04	MMBKD-01_012521_SED_01-03_DUP	S	2	010203	ON		
1A00115-05	FRB-02_012621_SED_00-01	5	5	010203	ON		
1A00115-06	C FRB-02_012621_SED_01-03	5	5	010203	ON		
1A00115-07	FRB-02_012621_SED_03-05	3/2/2	ars	010203	ON		Τ
1_00115-08	ES-13_012621_SED_00-01_///	2451	-114-S.	\$ / 020302	NO		
1A00115-10	ES-13_012621_SED_01-03	5	5	010203	ON		
1A00115-11	ES-13_012621_SED_03-05	5	5	010203	ON		Τ
1B00039-01	21B0186-01	2	5	200303			Τ
1B00048-01	LS-350-01142021	5	S	010102	Off		
1B00120-01	C LS 450-02/22/21	S	5	010102			
1C00012-01	WM-150030120211600	S	S	vironmental C	NO		
Ρας							
je 165							
to Date:	2/26/2021				² ast due - Rush Analysis	Page 2	2 of 2
]						`	

Page 138 of 146

		PI	LEPARAT	ION BEN	CH SHEE	ľ			<u>, </u>
				F103409					130
		Euro	fins Front	ier Global	Sciences,]	rrc			ane
Matrix: Soil/S	Prepared u	using: Trac	e Metals -	EFGS SOP	5133 Solids	Analysis			Prepared: 3/4/2021
Lab Number	Sample ID and Source Sample	Initial (g)	Final (g)	Spikel ID	μ1 Spikel	Spike2 ID	μl Snike2	Pytraction Comments	
F103409-DUP1	Duplicate [1A00115-06]	5	S	1		4	The second se		
F103409-DUP2	Duplicate [1B00120-01]	5	5						
<u>Standard ID(s):</u>	Description:	xpiration:							

146

Page 160 0012021

Past due - Rush Analysis

GUALITY ASSURANCE PEER DEVIEWED INITIALS: NGS

Frontier Global Sciences

Total Solids Dataset Cover Page

Dataset ID:	TS210308-1	Analyst:	MV2
Batch ID:	F103412	Prep. Date:	3/8/2021
Work Order(s):	1A00115		

Analytical Issues/Explanations:

Peer Review Checklist for Total Solids and Density (SOP5133)

3/23/2015

Analyst: MV2	Date: 3/8/2021 R	eviewer: <u>PC</u>	-5	Date:		
WO #: 1A00115	Batch #: F103412		Data	set ID: TS2103	08-1	_
				Reviewer In	itials: <u>}</u>	<u> </u>
General Comments/Re-run requirer	nents:		· · · · · · · · · · · · · · · · · · ·			
			SOP5133 SOP5133	Method TS Density	Matrix S/T Liquids	
		init M		SOP Date		
				Reviewer Ini	tials:(Ż
I. Total Solids			D	insity Only - NA t	his section	
A. Check for transcription errors from E	Benchsheet/Raw Data		DONE	<u> </u>	unit in the second	
(i) Do sample ID(s) match?			YES	NO		
(II) Do mases/volumes match?			YES			
(iii) Are the analyst name, datas	set ID, and preparation date listed?		YES	□ NO		
(IV) Does the LIMS benchsheet	prep date match the actual prep date?		YES			
	r 10 client samples?		YES			
) Are qualifiers $O_0 0$ and $O_0 0$ induce		•	PASS			
	ded for samples analyzed out of hold time	97	YES	□ NO	🗌 N/A	
Density				6.11.1. A. 1		
. Check for transcription errors from B	enchsheet/Raw Data			Solide Uniy * NA	this section	
(i) Do sample ID(s) match?						
(ii) Do mases/volumes match?						
(iii) Are the analyst name, datas	et ID, and preparation date listed?					
(iv) Does the LIMS benchsheet	prep date match the actual prep date?					
(v) Volume (if other than 1 mL);	Can the calculated result h	e reproduced?				

Failing Dat	ta Report -															941 J
ample ID	Analysis	Result	MRL	Dup Result	Source Result	True Value	Units	% Rec.	Rec. LCL	Rec. UCL	RPD	RPD Limit	Over Cal	Failure	Qua	lifier
							•									Page
Analyst Review	ved By	Dat	9			d	eer Revie	wed By		H			A			

Page 169 of 173

Preparation Date: Mar 8, 2021

 Batch #:
 1
 Analyst: MV2

 Batch ID:
 F103412

 Work Order(s):
 1A00115

			Pan + Sample	Wet Sample	Pan + Sample	Dry Sample		
Pan ID	Sample ID	Pan Wt (g)	Wet (g)	(g)	Dry (g)	(g)	% TS	Notes
1	1A00115-08	1.0086	7.1260	6.1174	3.4567	2.4481	40.0%	
2	F103412-MD	1.0086	7.1260	6.1174	3.5467	2.5381	41.5%	3.6%

			Pronarad: 2/5/3011	TZ07/C/C insteads ty		
					Extraction Comments	
	_] ല	alysis	E	orkez IU Spikez	_
NCH SHEET	2	al Sciences, LLC	P5133 Solids Ana	pul Section	de Tayrde	
ARATION BEI	F10341	Frontier Globa	etals - EFGS SO	inal Snikel ID	april 10	
PREP		Eurofins	kd using: Trace M	Initial F) v	~
			ediment Prepar	Sample ID and Source Sample	Duplicate [1A00115-081	
			Matrix: Soil/So	Lab Number	F103412-DUP1	

Past due - Rush Analysis

Page 171 of 173

Page 1 of 2

Page 144 of 146

			Prepared: 3/5/2021		nalysis Comments		
NCH SHEET	F103412	rontier Global Sciences, LLC	als - EFGS SOP5133 Solids Analysis		a Sample Comments A	NO	
RATION BE					Location	010203	
PREPAI		rofins F1	race Met	Fina	(g)	5	
		Eu	d using: T	Initial	8	5	
			Preparec	Samula ID		ES-13_012621_SED_00-01	
			Matrix: Soil/Se	Lab Number		1A00115-08	

Page 172 of 173

Past due - Rush Analysis

941 to 341 90s9

Page 2 of 2
Total Solids and Density Logbook

1° Tech:	Balance:	Initial Weigh 3/5/2(Date/Time: 1540	Thermometer ID:/3/206/34 CF: -6.7 Oven Start Date/Time: 3/5/2 (
2° Tech	Calibrated:	Final Weigh 3/8/21	Temp Raw/Corrected: 104.2- / 103.5-
/IT		Date/Time ³ : 0962	Oven End Date/Time2: 317/2(0910
Batch: [-[039]	12	Oven ID: Nn-02	Temp Raw/Corrected: /62,7 / 102,1
			CF = Thermometer Correction Factor

Total Solids 2

A REAL PROPERTY OF A REAL PROPER

Density

(Flask Volume = ____mL)

Line	Sample 10	Pan# or Flask#	Pan or Flask (g)	Pan or Flask + Wet Sample (g)	Pan + Dry Sample (g)	Density (g/mL) Sample Mass / Flask Volume
	F1034112-Dup	l	0,9332	8,7349	4.1634	
	HOOLIT-CR	2	1,0086	7.1260	3.4567	
,3						· · · · · · · · · · · · · · · · · · ·
5.						
\overline{U}						
8			*		. /	
9*						
10						
					/	
12						
13						
14						
15				/		
416						
17						
18						
19						
20		/				
21		/				
22						
23					n	318121
Comr	nents:			а.		

 $^1 \text{The}$ same balance must be used to weigh samples before and after ovening, $^2 \text{Samples}$ must be ovened over 12 hours at 103-105°C. ³Samples must be re-weighed within 30 minutes of oven cool down. EFGS / Total Solids and Density / LOG-PR-038 / Effective 7/2/2020 / QA2020-037/ Page 64 of 101 / Verified By:

Page 173 of 173

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

10 March 2021

Rod Pendleton Wood - MA 271 Mill Road Chelmsford, MA 01824 RE: Penobscot

Enclosed are the analytical results for samples received by Eurofins Frontier Global Sciences. All quality control measurements are within established control limits and there were no analytical difficulties encountered with the exception of those listed in the case narrative section of this report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Patrik Stulla

Patrick Garcia-Strickland Business Unit Manager

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Wood - MA	Project: Penobscot	
271 Mill Road	Project Number: 3617207486.03	Reported:
Chelmsford MA, 01824	Project Manager: Rod Pendleton	10-Mar-21 14:36

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
EB_DeconlinerHSBowl_020121_SED_QC	1B00004-01	Water	01-Feb-21 10:45	02-Feb-21 09:31

Eurofins Frontier Global Sciences, LLC

atuk Stullind

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Wood - MA	Project: Penobscot	
271 Mill Road	Project Number: 3617207486.03	Reported:
Chelmsford MA, 01824	Project Manager: Rod Pendleton	10-Mar-21 14:36

SAMPLE RECEIPT

Samples were received at Eurofins Frontier Global Sciences (EFGS) on 02-Feb-21 09:31. The samples were received intact, on-ice within a sealed cooler at

CoolerTemp C°Default Cooler0.8

SAMPLE PREPARATION AND ANALYSIS

Samples were prepared and analyzed for total mercury by flow injection atomic fluorescence spectrometry (FI-AFS) in accordance with EPA 1631E.

Samples were prepared and analyzed for methyl mercury by cold vapor gas chromatography atomic fluorescence spectrometry (CV-GC-AFS) in accordance with EPA 1630 (EFGS-070).

ANALYTICAL AND QUALITY CONTROL ISSUES

Method blanks were prepared for every preparation to assess possible blank contribution from the sample preparation procedure. The method blanks were carried through the entire analytical procedure. All blanks fell within the established acceptance criteria with the exception of any items narrated above or flagged and described in the notes and definitions section of the report.

Liquid spikes, certified reference material (CRM) or a quality control samples (QCS) were prepared for every preparation as a measure of accuracy. All liquid spikes, CRMs and/or QCS samples fell within the established acceptance criteria with the exception of any items narrated above or flagged and described in the notes and definitions section of the report.

As an additional measure of the accuracy of the methods used and to check for matrix interference, matrix spikes (MS) and matrix spike duplicates (MSD) were digested and analyzed. All of the matrix spike recoveries fell within the established acceptance criteria with the exception of any items flagged and described in the notes and definitions section of the report.

A reasonable measure of the precision of the analytical methods is the relative percent difference (RPD) between a matrix spike recovery and a matrix spike duplicate recovery and between laboratory control sample recovery and laboratory control sample duplicate recoveries. All of the relative percent differences fell within established acceptance criteria with the exception of any items flagged and described in the notes and definitions section of the report.

Eurofins Frontier Global Sciences, LLC

atuk Stullion

🔅 eurofins Frontier Global Sciences

Sample Receipt Checklist

Client: Nocd	2 /1	10 -				Date & Time Received: 2/2/2/ CT3/ Date Labeled: Labeled By:									
Matrix: Seda	hald nent	21	lator	•	Receiv	_ Received By: Label Verified By:) [
# of Coolers Received:		S	amples	Arrived By:	Ship	ping Service		_ Courier	На	nd	Other	(Specify:)
Coolant: 🔲 None/A	mbient		se Ice	Gel Ice	Dry Ico	e Coolar	it Re	quired: 🏹 N		Temp	Blank Us	ed(🏹N foi	Cooler	(s):	
Notify Project Manager if packages/coolers are received without coolant or with thawed coolant and at a temperature in excess of 6°C. PM notified: 1/1															
Samples from Wisconsin have special requirements. Shipment received includes samples from Wisconsin: Y/W															
Cooler Information:	its		TID: 5/431	(83 C	F: to. 1	°C Dat	e/time;2/2/	21 09	40 By	m					
The coolers do not appear to	be tamper	ed with:	Y			Cooler 1:0,7 °C w/CF: 0, 8°C Cooler 4: °C w/CF						w/ CF:	°C		
Custody Seals are present an	d intact:		7					Cooler 2:	°C	w/ CF	: °C	Cooler 5:	°C	w/ CF:	°C
Custody seals signed:			7					Cooler 3:	°C	w/ CF	: °C	Cooler 6:	°C	w/ CF:	°C
	·····										, , , , , , , , , , , , , , , , , , ,				
Chain of Custody:	Y/N/NA		Co	omments		Sample Cond	ition/	Integrity:			Y/N/NA		Comme	ents	
Sample ID/Description:	4					Sample conta	iners	Intact/present:							
Date and time of collection:	4					Sample labels	arep	present and legil	ole:						
Sampled by:	9					Sample ID on	conta	iner/bag match	es COC:						
Preservation type:	7					Correct samp	e cor	tainers used:							
Requested analyses:	7					Samples recei	ved v	vithin holding tir	nes:						
Required signatures:		Sample volume sufficient for requested analyses:													
Internal COC required:	N					Correct prese	vativ	e used for reque	sted ana	lyses:					
Anomalies/Non-conforma	nces (atta	ch additic	onal page	s if needed):									100 million and 21	1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
												1 B 00	004		

Page 4 of 116

w	ood.	Wood E&IS 511 Congress Street Portland, ME 04101 (207) 828-3367			SHIP Eurot 5755 Taco Atten Lab F	PTO: fins 68th St oma, W/ h: P. Ga Phone#	E A, 98424 rcia-Stricklan 206-351-952	d 2	CH CU	AIN STC	OF DY		DATE:2 COC #: PAGE:				2/1/20	21	
An W. D. A. Hards make in a separate to the An-	Project Name:	Penobscot River 2020	Project Co	ntact	Danis	se King	200 001 002	6	III To	Denis	e King, Wo	od E&IS	1	Disposal	Instruct	ions	Ŀ	AB	
	Project Number	3617207486.03 ****	Phone Nur	nber.	528-7	789-173	8			271 N	ill Rd		1	Shipment	Metho	1	FI	ED EX	
	Project wanager	Nod Pendelton	Project Ph	ase	Biota	Monito	nang	-		Chein	sford, MA	01824	1	Naybill N	lumber		N	!A	
Sample Information						+			Me	thods f	or Analysis	<u>;</u>			_		RUSI	-	
No.	Sample ID	Date & Time Sampled	Matrix	Sample Type	MS/MSD	Total Hg 1631e	MeHg 1630									STANDARD - 21 days	& Hour 2 Hour	Days	OTAL CONTAINERS
1 EB_Deconliner	HSBowl_020121_SED_QC	02/01/2021, 1045	AQ	EB	Ν	X	X									X	8.1~		2
2				_	 					N									
3		· · · · · · · · · · · · · · · · · · ·												i					
=					+	-				+									
					ļ				_									_	
7								_							\downarrow		-		
0																_			
0																	-		
9									ļ į .										
10				and the second division of the second divisio															
															Ň				
12				16										10					
Sampler's Signature:	XIC		Date: 2/1/202	1 ^{Time:} 1230)	Dees	Free constants	or Lab Us											
Relinquished By/Affilia	ion:		Date:/	Time:		Broke	en Container	samples:	Y	or N or N	X=Anab	nts: Ize H=Ho	ld Anal	veie Do	auget				
	TOM OGRHARD, LOOGI	S GTIS	2/1/202	.1 123	0	COC	seal intact:		Yo	DF N	/////	2011-110		yala i te	queat				- I
Received By:	FEDEX		Date:	Time:	2	Other	problems:		Υc	or N	PO # C	01290620	5						
Relinquished By/Affiliat	ion:		Date:	Time:	0	Date	OT contacted contacted:	: 	Yo	n N	Total Hg a	and MeHg :	samples	preserve	ed with I	HCI.			
Received By:	<u></u>	<u> </u>	Date:	Time:		Coole	r Temperatur	e at receip	ot:	°C				A					
Relinquished By/Affiliat	ion:		Date:	Time:		-					NUMBE	K OF COC	JLERS	SENT:	1				-
Received By (LAB):		ä	Date:	Time: 0931															

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Wood - MA 271 Mill Road Chelmsford MA, 01824	Project: Penobscot Project Number: 3617207486.03 Project Manager: Rod Pendleton EB_DeconlinerHSBowl_020121_SED_QC										l: 14:36	
1B00004-01												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes	
Sample Preparation: EPA 1630												
Methyl Mercury (as Mercury)	ND	0.026	0.050	ng/L	1.25	F102295	04-Feb-21	1B05002	04-Feb-21	EPA 1630	U	
Sample Preparation: EPA 1631E												
Mercury	ND	0.08	0.50	ng/L	1	F102311	11-Feb-21	1B12001	11-Feb-21	EPA 1631E	U	

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Patrick Garcia-Strickland, Business Unit Manager

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Frontier Global Sciences

Wood - MA	Project: Penobscot	
271 Mill Road	Project Number: 3617207486.03	Reported:
Chelmsford MA, 01824	Project Manager: Rod Pendleton	10-Mar-21 14:36

Quality Control Data

		Detection	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1B05002 - F102295											
Cal Standard (1B05002-CAL1)					Prepared &	Analyzed:	04-Feb-21				
Methyl Mercury (as Mercury)	0.050	-		ng/L	0.050000		100				
Cal Standard (1B05002-CAL2)					Prepared &	Analyzed:	04-Feb-21				
Methyl Mercury (as Mercury)	0.209	-		ng/L	0.20000		105				
Cal Standard (1B05002-CAL3)					Prepared &	Analyzed:	: 04-Feb-21				
Methyl Mercury (as Mercury)	0.965	-		ng/L	1.0000		96.5				
Cal Standard (1B05002-CAL4)					Prepared &	z Analyzed:	: 04-Feb-21				
Methyl Mercury (as Mercury)	1.984	-		ng/L	2.0000		99.2				
Cal Standard (1B05002-CAL5)					Prepared &	Analyzed:	: 04-Feb-21				
Methyl Mercury (as Mercury)	3.965	-		ng/L	4.0000		99.1				
Calibration Blank (1B05002-CCB1)					Prepared &	Analyzed:	: 04-Feb-21				
Methyl Mercury (as Mercury)	-0.007	-		ng/L							U
Calibration Blank (1B05002-CCB2)					Prepared &	Analyzed:	: 04-Feb-21				
Methyl Mercury (as Mercury)	-0.011	-		ng/L							U
Calibration Blank (1B05002-CCB3)					Prepared &	Analyzed:	: 04-Feb-21				
Methyl Mercury (as Mercury)	-0.0006	-		ng/L	-	-					U
Calibration Blank (1B05002-CCB4)					Prepared &	z Analyzed:	: 04-Feb-21				
Methyl Mercury (as Mercury)	0.012	-		ng/L							
Calibration Blank (1B05002-CCB5)					Prepared &	z Analyzed:	: 04-Feb-21				
Methyl Mercury (as Mercury)	0.005	-		ng/L	-						

Eurofins Frontier Global Sciences, LLC

atuk Stullind

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Frontier Global Sciences

Wood - MA 271 Mill Road		Reported:									
Chelmstord MA, 01824		ł	roject Mana	ager: Ro	d Pendleton					10-Mar-21	14:36
			Quality	y Conti	rol Data						
		Detection	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1B05002 - F102295											
Calibration Blank (1B05002-CCB6)					Prepared &	Analyzed:	04-Feb-21				
Methyl Mercury (as Mercury)	0.0004	-		ng/L							
Calibration Check (1B05002-CCV1)					Prepared &	Analyzed:	04-Feb-21				
Methyl Mercury (as Mercury)	0.483	-		ng/L	0.50368	·					
Calibration Check (1B05002-CCV2)					Prepared &	Analyzed:					
Methyl Mercury (as Mercury)	0.497	-		ng/L	0.50368	•	98.6	67-133			
Calibration Check (1B05002-CCV3)					Prepared & Analyzed: 04-Feb-21						
Methyl Mercury (as Mercury)	0.519	-		ng/L	0.50368		103	67-133			
Calibration Check (1B05002-CCV4)					Prepared &	Analyzed:	04-Feb-21				
Methyl Mercury (as Mercury)	0.573	-		ng/L	0.50368	j	114	67-133			
Calibration Check (1805002-CCV5)					Prepared &	Analyzed:	04-Feb-21				
Methyl Mercury (as Mercury)	0.569	-		ng/L	0.50368		113	67-133			
Calibration Check (1805002-CCV6)					Prepared &	Analyzed.	04-Feb-21				
Methyl Mercury (as Mercury)	0.476	-		ng/L	0.50368	- Thaty 200.	94.6	67-133			
Instrument Blank (1805002-IBI 1)					Prenared &	Analyzed.	04-Feb-21				
Methyl Mercury (as Mercury)	ND	0.021	0.040	ng/L	1 Topared &	e i maryzeu.	0.100.21				U
Initial Cal Blank (1805002-ICB1)					Prenared &	Analyzed	04-Feb-21				
Methyl Mercury (as Mercury)	-0.004	-		ng/L	i icpaicu a	. Anaryzeu.	0				U
Initial Cal Chealt (1005002 LCV1)				5	Dropored 0	Analyza	04 Ech 21				
Methyl Mercury (as Mercury)	0.538	-		ng/L	0.50368	c Anaryzed:	107	69-131			

Eurofins Frontier Global Sciences, LLC

atuk Stulla

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Frontier Global Sciences

Wood - MA			Pro	ject: Per	nobscot						
271 Mill Road			Project Num	nber: 36	17207486.03					Reporte	ed:
Chelmsford MA, 01824		I	Project Mana	ager: Ro	d Pendleton					10-Mar-21	14:36
			Quality	y Cont	rol Data						
Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1B12001 - F102311											
Cal Standard (1B12001-CAL1)					Prepared &	Analyzed:	11-Feb-21				
Mercury	0.58	-		ng/L	0.50000		117				
Cal Standard (1B12001-CAL2)					Prepared &	Analyzed:	11-Feb-21				
Mercury	1.08	-		ng/L	1.0000		108				
Cal Standard (1B12001-CAL3)					Prepared &	Analyzed:	11-Feb-21				
Mercury	4.58	-		ng/L	5.0000	•	91.7				
Cal Standard (1B12001-CAL4)					Prepared &	Analyzed:	11-Feb-21				
Mercury	18.57	-		ng/L	20.000		92.8				
Cal Standard (1B12001-CAL5)					Prepared &	Analyzed:	11-Feb-21				
Mercury	36.40	-		ng/L	40.000		91.0				
Calibration Blank (1B12001-CCB1)					Prepared &	Analyzed:	11-Feb-21				
Mercury	-0.05	-		ng/L	-						U
Calibration Blank (1B12001-CCB2)					Prepared &	Analyzed:	11-Feb-21				
Mercury	-0.02	-		ng/L							U
Calibration Blank (1B12001-CCB3)					Prepared &	Analyzed:	11-Feb-21				
Mercury	-0.04	-		ng/L							U
Calibration Blank (1B12001-CCB4)					Prepared &	Analyzed:	11-Feb-21				
Mercury	-0.11	-		ng/L	-	•					U
Calibration Blank (1B12001-CCB5)					Prepared &	Analyzed:	11-Feb-21				
Mercury	-0.15	-		ng/L							U

Eurofins Frontier Global Sciences, LLC

atuk Stullia

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Frontier Global Sciences

Wood - MA 271 Mill Road			Pro Project Num	ject: Per iber: 36	nobscot 17207486.03					Reporte	ed:
Cneimstord MA, 01824		1	roject Mana	ager: Ro	a Pendleton					10-Mar-21	14:36
			Quality	y Conti	rol Data						
	D k	Detection	Reporting		Spike	Source	N/DEC	%REC		RPD	N
Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1B12001 - F102311											
Calibration Blank (1B12001-CCB6)					Prepared &	Analyzed:	11-Feb-21				
Mercury	-0.05	-		ng/L							U
Calibration Blank (1B12001-CCB7)					Prepared &	Analyzed:	11-Feb-21				
Mercury	-0.13	-		ng/L	*	•					U
Calibration Blank (1B12001-CCB8)					Prepared &	Analyzed:	11-Feb-21				
Mercury	-0.11	-		ng/L	1	2					U
Calibration Blank (1B12001-CCB9)					Prepared &	Analyzed:	11-Feb-21				
Mercury	-0.07	-		ng/L	1	y					U
Calibration Check (1B12001-CCV1)					Prepared &	Analyzed:	11-Feb-21				
Mercury	4.85	-		ng/L	4.9950	j	97.0	77-123			
Calibration Check (1B12001-CCV2)					Prenared &	Analyzed.	11-Feb-21				
Mercury	4.87	-		ng/L	4.9950	Tillary Zea.	97.6	77-123			
Calibration Check (1812001-CCV3)					Prenared &	Analyzed.	11-Feb-21				
Mercury	4.91	-		ng/L	4.9950	Thatyzea.	98.2	77-123			
Calibration Chask (1812001 CCV4)					Dranarad &	Analyzad	11 Eeb 21				
Mercury	4.76	_		ng/L	4.9950	Anaryzeu.	95.3	77-123			
Colibration Check (1D12001 CCV5)				-	Duomono 1 0	Anolymet	11 Eak 21				
Mercury	4.76			ng/L	4.9950	Analyzed:	95.3	77-123			
				8-2	D 10		11 5 1 61				
Calibration Check (1B12001-CCV6)	4 72			ng/I	Prepared &	Analyzed:	94.5	77-123			

Eurofins Frontier Global Sciences, LLC

atuk Stullia

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Frontier Global Sciences

Wood - MA			Pro	ject: Per	nobscot						
271 Mill Road			Project Num	nber: 36	17207486.03	i				Report	ed:
Chelmsford MA, 01824]	Project Mana	ager: Ro	d Pendleton					10-Mar-21	14:36
			Quality	y Cont	rol Data						
Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1B12001 - F102311											
Calibration Check (1B12001-CCV7)					Prepared &	& Analyzed:	11-Feb-21				
Mercury	4.42	-		ng/L	4.9950		88.5	77-123			
Calibration Check (1B12001-CCV8)					Prepared &	& Analyzed:	11-Feb-21				
Mercury	4.35	-		ng/L	4.9950		87.0	77-123			
Calibration Check (1B12001-CCV9)					Prepared &	& Analyzed:	11-Feb-21				
Mercury	4.19	-		ng/L	4.9950		83.9	77-123			
Instrument Blank (1B12001-IBL1)					Prepared &	& Analyzed:	11-Feb-21				
Mercury	ND	0.08	0.50	ng/L							U
Instrument Blank (1B12001-IBL2)					Prepared &	& Analyzed:	11-Feb-21				
Mercury	ND	0.08	0.50	ng/L							U
Instrument Blank (1B12001-IBL3)					Prepared &	& Analyzed:	11-Feb-21				
Mercury	0.09	0.08	0.50	ng/L							
Initial Cal Blank (1B12001-ICB1)					Prepared &	& Analyzed:	11-Feb-21				
Mercury	0.15	-		ng/L							
Initial Cal Check (1B12001-ICV1)					Prepared &	& Analyzed:	11-Feb-21				
Mercury	5.05	-		ng/L	4.9950		101	79-121			
Batch F102295 - EFGS SOP2797 Me	thyl Hg Dis [,]	tillation for	Water								
Blank (F102295-BLK1)					Prepared &	& Analvzed:	04-Feb-21				
Methyl Mercury (as Mercury)	ND	0.026	0.050	ng/L	1						U

Eurofins Frontier Global Sciences, LLC

stuk Stullind

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824		I	Pro Project Num Project Mana	ject: Per iber: 361 iger: Ro	nobscot 17207486.03 d Pendleton					Reporte 10-Mar-21	ed: 14:36
			Quality	y Conti	rol Data						
Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch F102295 - EFGS SOP2797 Me	thyl Hg Dist	tillation for	Water								
Blank (F102295-BLK2)					Prepared &	Analyzed:	04-Feb-21				
Methyl Mercury (as Mercury)	ND	0.026	0.050	ng/L							U
Blank (F102295-BLK3)					Prepared &	Analyzed:	04-Feb-21				
Methyl Mercury (as Mercury)	ND	0.026	0.050	ng/L							U
LCS (F102295-BS1)					Prepared &	Analyzed:	04-Feb-21				
Methyl Mercury (as Mercury)	0.861	0.026	0.050	ng/L	1.1111		77.5	65-135			
LCS Dup (F102295-BSD1)					Prepared &	Analyzed:	04-Feb-21				
Methyl Mercury (as Mercury)	0.860	0.026	0.050	ng/L	1.1111		77.4	65-135	0.145	35	
Matrix Spike (F102295-MS1)		Source:	1B00004-0	1	Prepared &	Analyzed:	04-Feb-21				
Methyl Mercury (as Mercury)	1.007	0.026	0.050	ng/L	1.1111	ND	90.7	65-130			
Matrix Spike (F102295-MS2)		Source:	1A00094-0	IRE1	Prepared &	Analyzed:	04-Feb-21				
Methyl Mercury (as Mercury)	1.076	0.026	0.050	ng/L	1.1111	0.318	68.1	65-130			
Matrix Spike Dup (F102295-MSD2)		Source:	1A00094-0	1RE1	Prepared &	Analyzed:	04-Feb-21				
Methyl Mercury (as Mercury)	1.067	0.026	0.050	ng/L	1.1111	0.318	67.4	65-130	0.811	35	
Batch F102311 - EFGS SOP2796 EP4	A 1631 Oxid	ation									
Blank (F102311-BLK1)					Prepared &	Analyzed:	11-Feb-21				
Mercury	0.08	0.08	0.50	ng/L	1	,					J
Blank (F102311-BLK2)					Prepared &	Analyzed:	11-Feb-21				
Mercury	ND	0.08	0.50	ng/L	*	-					U

Eurofins Frontier Global Sciences, LLC

stuk Stullind

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Frontier Global Sciences

Wood - MA			Pro	ject: Per	nobscot						
271 Mill Road			Project Nun	nber: 36	17207486.03					Report	ed:
Chelmsford MA, 01824		F	Project Mana	ager: Ro	d Pendleton					10-Mar-21	14:36
			Quality	y Cont	rol Data						
		Detection	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch F102311 - EFGS SOP2796 EPA	A 1631 Oxida	ation									
Blank (F102311-BLK3)					Prepared &	Analyzed:	11-Feb-21				
Mercury	ND	0.08	0.50	ng/L							U
Blank (F102311-BLK4)					Prepared &	Analyzed:	11-Feb-21				
Mercury	ND	0.08	0.50	ng/L							U
Blank (F102311-BLK5)					Prepared &	Analyzed:	11-Feb-21				
Mercury	ND	0.08	0.50	ng/L							U
LCS (F102311-BS1)					Prepared &	Analyzed:	11-Feb-21				
Mercury	4.59	0.08	0.50	ng/L	5.0000		91.9	77-123			
LCS Dup (F102311-BSD1)					Prepared &	Analyzed:	11-Feb-21				
Mercury	4.41	0.08	0.50	ng/L	5.0000		88.3	77-123	4.02	24	
Matrix Spike (F102311-MS1)		Source:	1A00113-0	8RE1	Prepared &	Analyzed:	11-Feb-21				
Mercury	569.8	8.34	50.0	ng/L	505.00	167.6	79.7	71-125			
Matrix Spike (F102311-MS2)		Source:	1B00050-0	3	Prepared &	Analyzed:	11-Feb-21				
Mercury	9.65	0.08	0.50	ng/L	5.0000	6.05	71.9	71-125			
Matrix Spike Dup (F102311-MSD1)		Source:	1A00113-0	8RE1	Prepared &	Analyzed:	11-Feb-21				
Mercury	589.4	8.34	50.0	ng/L	505.00	167.6	83.5	71-125	3.38	24	
Matrix Spike Dup (F102311-MSD2)		Source:	1B00050-0	3	Prepared &	Analyzed:	11-Feb-21				
Mercury	9.81	0.08	0.50	ng/L	5.0000	6.05	75.2	71-125	1.70	24	

Eurofins Frontier Global Sciences, LLC

stuk Stullind

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Wood - MA	<u>.</u>	Project:	Penobscot	
271 Mill Ro	pad	Project Number:	3617207486.03	Reported:
Chelmsford	MA, 01824	Project Manager:	Rod Pendleton	10-Mar-21 14:36
		Notes and De	finitions	
U	Analyte was not detected and is reported as less than or concentration of the sample.	the LOD or as defi	ned by the client. The LOD has been adjusted for any dilution	n
J	The result is an estimated concentration.			
DET	Analyte DETECTED			
ND	Analyte NOT DETECTED at or above the method reported to the MRL.	hod detection lim	it if reported to the MDL or above the reporting limit if	,
NR	Not Reported			
dry	Sample results reported on a dry weight basis			
RPD	Relative Percent Difference			

Eurofins Frontier Global Sciences, LLC

atuk Stullind

ANALYSIS SEQUENCE

1B05002

Analyzed: 2/4/2021

Instrument: Hg2700-1

Calibration ID: UNASSIGNED

Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
1B05002-IBL1	QC	1			
1B05002-CAL1	QC	2	2003153		
1B05002-CAL2	QC	3	2003154		
1B05002-CAL3	QC	4	2100332		OUALITY ASSURANCE
1B05002-CAL4	QC	5	2100333		
1B05002-CAL5	QC	6	2100334		PEER - REVIEWED
1B05002-ICV1	QC	7	2100149		ALC .
1B05002-ICB1	QC	8			
1B05002-CCV1	QC	9	2100149		
1B05002-CCB1	QC	10			
F102295-BS1	QC	11			
F102295-BSD1	QC	12			
F102295-BLK1	QC	13			
F102295-BLK2	QC	14			
F102295-BLK3	QC	15			
1B00004-01	MHg-CVAFS-W-Dist	16			
1B00004-01	MHg-CVAFS-W-Dist DOD	16			BatchQC
F102295-MS1	QC	17			
F102295-MSD1	QC	18			
0L00108-06RE1	MHg-CVAFS-W-Dist	19			1x: Redistill CCV Fail MFS 1/28/21
1A00094-01RE1	MHg-CVAFS-W-Dist	20			1x: Redistill CCV Fail MFS 1/28/21
1A00094-01RE1	MHg-CVAFS-W-Dist DOD	20			BatchQC
1B05002-CCV2	QC	21	2100149		
1B05002-CCB2	QC	22			
F102295-MS2	QC	23			
F102295-MSD2	QC	24			
1A00004-01RE1	MHg-CVAFS-W-Dist DOD	25			1x: Redistill CCV Fail MFS 1/28/21
A00004-02RE1	MHg-CVAFS-W-Dist DOD	26			1x: Redistill CCV Fail MFS 1/28/21
A00004-03RE1	MHg-CVAFS-W-Dist DOD	27			1x: Redistill CCV Fail MFS 1/28/21
A00004-04RE1	MHg-CVAFS-W-Dist DOD	28			1x: Redistill CCV Fail MFS 1/28/21
A00019-01RE1	MHg-CVAFS-W-Dist DOD	29			1x: Redistill CCV Fail MFS 1/28/21
A00019-01RE1	MHg-CVAFS-W-Dist	29			Added 2/5/2021 by MV2
A00019-02RE1	MHg-CVAFS-W-Dist DOD	30			1x: Redistill CCV Fail MFS 1/28/21
A00019-03RE1	MHg-CVAFS-W-Dist DOD	31			1x: Redistill CCV Fail MFS 1/28/21
A00019-04RE1	MHg-CVAFS-W-Dist DOD	32			1x: Redistill CCV Fail MFS 1/28/21
B05002-CCV3	QC	33	2100149		
			<u>.</u>		Page 15 of 116

1B05002

Instrument: Hg2700-1

Calibration ID: UNASSIGNED

Analyzed: 2/4/2021

Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
1B05002-CCB3	QC	34			
1A00094-02RE1	MHg-CVAFS-W-Dist	35			1x: Redistill CCV Fail MFS 1/28/21
1B05002-CCV4	QC	36	2100149		
1B05002-CCB4	QC	37			
1B05002-CCV5	QC	38	2100149		
1B05002-CCB5	QC	39			
1B05002-CCV6	QC	40	2100149		
1B05002-CCB6	QC	41			

 \mathcal{Q} 2/2/21

Data Processed By Date

Samples Loaded By

Date

Peer Review Check List for MHg for CV-GC-AFS (SOP2808) 2018 Rev 7 (8/2/18)

Analyst:	MFS/MV2 (DE)	_Sequence #:	1805002
Reviewer:		_Dataset ID #: _	MHg27001-210204-1
Date:	1. 2/9/2	_WO #:	Multiple
Batch #(s):	F012297, F102295	-	

• Select the correct preparation method.

Analyte	Prep Method		Matrix
MHg	SOP2797	MHg Distillation	Water
Ш мнд	SOP2986	ROH/MeCH Digest	Tissue.
🗌 МНд	SOP5134	MeCI Extraction	Sed/Soil
	5072816	None Accretion	ALL

Additional Comments:

	Analyst	Initials:	Reviewer I	nitials/Date:
1. Compare Sample ID with Bench sheet/Sequence/Raw Data (Have all samples been imported?)	YES	NO		
2. Check for transcription errors from Excel spreadsheet (or Prep Bench sheet)/Raw data	YES			
(a) Reviewer: 100% of peak heights checked	YES			
(b) Are there peak height errors?	YES	⊡ NO		
(c) Error on a sample: Do peak heights, responses, & initial results match corrected data?	YES	NO 🗌	🗌 N/A	
(d) Error on a Cal Pt, ICB/CCB, or PB: Has the data been reimported?	YES	🗌 NO	N/A	
(e) Check standards & reagents in sequence & bench sheet for correct usage (i.e. expiries).	YES		N/A	
(f) Check and compare masses (review prep bench sheet)	YES		⊡ ∕Ñ/A	
(g) Check and compare initial and final volumes	YES		🗌 N/A	i
(h) Do aliquots and dilutions written on benchsheet match those in Excel?	YES	NO NO	🗌 N/A	
(i) Is the pH>3.0 for all distilled samples?	YES	📋 NO	🗌 N/A	
(j) Is the sequence #, analyst, date, and instrument # on the QC page?	YES			
(k) Is the analysis status correct? (analyzed/initial review/reviewed)	YES			
(I) Original prep bench sheet added to data package?	YES			
(m) Benchsheet prep date MUST match actual prep date (check if re-shot vs re-extract)	YES			
3. High QA? WO#(s)/Client(s):	YES	⊡ ∕NO		
4. Client specific QC? (if Yes, refer to Project Notes/LIMS)	YES	NO		
(a) Have the QC requirements been met for all WO#s?	YES	NO NO		
5. 20 or fewer samples in batch?	YES			
(a) 3 PBs, 1 LCS/LCSD (or BS/BSD), 2 MS/MSD/MD per batch?	- MYES			
(b) 1 CCV and 1 CCB every 10 analytical runs?	VES			
QA/QC Data Checked	-			
6. The calibration curve included a minimum of 5 Standards	PASS		🗌 N/A	
Comments:				
7. 1st Calibration Standard % Recoveries (65-135%)	PASS	FAIL	□ N/A	
Comments:				
8. RSD CF (≤ 15%)	PASS	FAIL		
Comments:				

Analyst:	MFS/MV2 (DE)	Sequence #:	1805002				
Reviewer:		Dataset ID #:	MHg27001-210204-1				
Date:		WO #:	Multiple				
Batch #(s):	<u>F012297, F102295</u>			1		Deviewent	
						Reviewer	S
9. ICV % Recc	overies 67-133%			PASS	FAIL		
Comments:							
10. CCV % Re	coveries 67-133%			PASS	FAIL		
Comments:							
11. Are the ab	solute value of the ICB and CCBs < PQL	?		PASS	FAIL		
Comments:							
12. LCS/LCSD/	CRM/BS/BSD % Recoveries (70-130%)			PASS	FAIL		
Comments:							
13. LCS/LCSD	or BS/BSD RPD (< 25%)			🗾 PASS	🗌 FAIL		
Comments:							
14. Water: Ave	arage of Preparation Blanks < 0.045 ng/l	and standard deva	aition of 0.015 ng/L?	📝 PASS	FAIL	□ N/A	
Comments:							
15. Sediment/7	Fissue: Individually, are the Preparation	Blanks < PQL for th	e matrix?	PASS	FAIL	⊡∕ N/A	
Comments:		-		PASS	FAIL		
16. Have Total	Solids been applied? (If NO, please ense	ure that they are do	one or nearly done)	YES	NO NO	<mark>↓</mark> ∕N/A	
17. Is the corre	ect 'Source' designated for MD/MS/MSD?		. ,	YES			
18. For digeste	d preps: was there a spike witness signa	ature & date on the	e prep bench sheet?	YES		N/A	
19. MD RPD/MT	T RSD(< 35%)			M PASS	FAIL		
Comments:							
20. Is there on:	e set of MS/MSD per every 10 samples?			PASS	FAIL		
Comments:							
21. MS/MSD RF	νD(< 35%)			PASS	FAIL		
Comments:							
22. MS (AS) %	Recoveries (65-130%)			Z PASS	FAIL		
Comments:							
23. MSD (ASD)	% Recoveries (65-130%)			PASS	FAIL		
Comments:							
24. Spiked 1-5X	ambient or 1-5X PQL (whichever is high	ier) (from EPA 1630))	YES			
25. Are all samp	oles within instrument calibration range	(or at maximum alio	uot size)?	VES			
Comments:	_	•	. ,				
26. For instrum	ental dilutions, is the dilution factor in ex	cel correct?		🗹 PASS	D NO	□ N/A	
Is the sampl	le volume, diluents, and final volume of t	the dilution noted o	n benchsheet?	PASS		□ N/A	
27. Dissolved <	Total metals (if applicable)			PASS	NO NO	N/A	
Comments:							
28. Effluent < In	nfluent metals (visually confirm if neede	d)		PASS	NO NO	N/A	
Comments:	. ,	-					

Peer Review Check List for MHg for CV-GC-AFS (SOP2808) 2018 Rev 7 (8/2/18)

Analyst:	MFS/MV2 (DE)	Sequenc	e #:	1805002				
Reviewer:		Dataset 1	ID #:	MHg27001-210204-1				
Date: Batch #(s):	E012207 E102205	WO #:		Multiple				
baccii #(3).	1012237, 1102233				Analyst	Initials:	Reviewer I	nitials/Date:
29. Are re-run	s noted with reason?				YES		N/A	
Comments:								
30. For failing	QC (CCV, CCB, PB, BS/BSI), CAL):			YES		N/A	
Was a bubb	ler and trap test run befor	e the analytical run continu	ied?					
Comments:								
31. Do re-run	results compare to initial a	nalysis (< 35% RPD)?			YES	NO NO	<mark>.</mark> ⊘∕N/A	
Comments:								
32. Are qualifie	ers consistent with the dat	a review flowcharts?			YES	NO NO	🗌 N/A	
Comments:								
33. Have non-i	reportable samples been ir	nported into LIMS and click	ed to r	on-reportable?	YES	🗌 NO	🗹 N/A	
Comments								
34. Have re-ex	tracts been created for no	n-reportable samples?			YES	NO NO	N/A	
35. Narrations	in MMO box in LIMS?							
Comments:								
36. Are there a	ny HIGH QA projects with	n the data?			YES	NO		
If so, place	dataset to the QA office.							_
37. Does the da	ata set need scanning?				YES		N/A	
Files located	at: \\Cuprum\gen_admin\	Quality Assurance\Training	ng Ma	ster\DOCs				_
38. Date of ana	ilyst IDOC/CDOC:	SI22 IDOC/CDO	C with	in last 12 months?	YES			
39. Date of ana	Ilyst's SOP reading:	Current SO	P revi	sion?	YES			
40. Date of LOI	D: <u> 5/25/11</u> _LC	D within last 3 months (with	hin 12	months for MDN)?	U YES	NO	□ N/A	
41. Date of LO	a: <u>10/25/19</u> _LC	Q within last 3 months (with	hin 12	months for MDN)?	LYES	NO NO	□ N/A	
42. If MDN sam	ples, date of last MDL stu	dy: N, H						_
43. MDL study	within last 12 months?				YES		N/A	
Data can not b	e reported without a cur	rent IDOC/CDOC, LOD or	LOQ.					
Additional Com	ments:				YES	NO		

Peer Review Check List for MHg for CV-GC-AFS (SOD2808) 2018 Pey 7 (8/2/18)

Failing Data Report - 1B0500	2														20
Sample ID Analysis	Result	MRL	Dup Result	Source Result	True Value	Units	% Rec.	Rec. LCL	Rec. UCL	RPD	RPD Limit	Over Cal	Failure	Qualifier	t 10 8 e
							<								Page
Analyst Reviewed By	Da	Ę			IC,	eer-Rovie	wed By				P	ate	ļ		

Methyl Mercury Distillations (EPA 1630)

Name:	USA	Date: 2 4-21	Batch	#: FID2295	Sa	mole Matrixe VA	lator
WO#: _	0100103,	1A00004,	1A 000 19	1400094	<u> </u>	00004	ater

The pH of the preserved sample must be documented before an aliquot is removed for preparation.

	- Lighter	Sample ID Number	Preserved	Sample Size	Final of	Time first sample distillation
ſ		FLAZ295-BIKI	102	46 50.11	(23)	completed: 1 54 4
	2	F102295-B162	32	115 0071	442	Spike ID:
1	3	1=102295-BK3	0	46 601	1:3	Spike Witness:
F	Ý	E102295 851		41. 00	123	
	5	ELANDER BEDI	<u><u> </u></u>	47 47	23	Balance #:9
F	6	BODDAY-61 BID			23	Calibrated? XYes INO
	7	FLODDRE-USI	67	4700440	125	Pinette # 104 691.53
	в	FLODDAS USOI	<u> </u>	45000022	73	-Cal. Date: 2.4.21
	ġ	PLADIAR-GODELL		45. 1940	43	1813
	10	14000 USICE A		47.0450	20%	Pipette #: <u>NU0115</u>
	11	LACODOLICE A	42	46.0538	12.2	Cal. Date: 2.0.21
.t	6	TROCCOMODICELA	42	45.0M	75	Pipette #: / IA
Ĩ –	2	TACCOT-USIZEL 14		450 4647	123	Cal. Date:
	121	IA COLO FOURE A	- 42	46.9125	73	
		TA OUG-OIKET A	28	45-6357	273	APDC ID: 2(0)230
- F.	$\overline{)}$	14000 19-03 KEI /F	2.2	46.0785	43	HCI ID: $100326(0.47)$
		TA OCD19-05 KET A	22	45.1717	<u>}3</u>	HC 911798
		140019-04 KELA	62	46.1170	3	Temperature: No set range as
μ		1400044-01 [/E] A	28	45-9842	13	the temp. may be changed to
H	9	F108293-P152	62	46,0794	>3	keep flow rate of ≥10 mL per
Æ		1-102295-19502	42	46.7410	3	hour. Temperature is recorded
ЧY	4-+	Pt ADOOG 4-02 PET A	42	45.9406	13	for informational purposes only.
-					7	Unit 1: <u>[CC</u>
						Unit 2: 114
						Unit 3: <u>005</u>
				<u> </u>		Unit 4:
-			$- \wedge$			Unit 5: 124
						Unit 6: 18.9
					———. [c	Comments:
						a)SRC MS2/MS172
						-
				·		1
L						
	\leq	8			- pts:	214/21
EFGS	/ Mathur	More my Diskillation of the second	<u></u>		<u>_</u>	
	7 meanyl I	mercury Disuliauons / LOG-PR-029.07 / Effec	ctive:11/17/202	20 QA2020-055 V	erified By:	h d/1/d/ Page 21 of 116

MHg27001-210204-1

🔹 eurofins

Frontier Global Sciences

Analysis Datasheet for Methyl Mercury in Soil/Tissue Date of Analysis: February 04, 2021 Instrument #: Hg2700-1

LIMS Sequence #:

Units ng/L

Analyst:

Calibration Statistics:

				Uncorrected			
				Response	Corrected Peak	Corrected	
LabNumber	E	True Val	Area	Factor	Height	Response Factor	% Recovery
SEQ-CAL1	1	0.05 ng/L	11.79 units	235.80	8.43 units	168 56	100 5 % Dar
SEQ-CAL2	-	0.20 ng/L	38.47 units	192.34	35 11 units	175.53	104 6 04 Doc
SEQ-CAL3	T	1.00 ng/L	165.32 units	165.32	161 96 unite	161 06	DELE OLDAR
SEQ-CAL4	1	2.00 na/L	336.28 units	168 14	337 07 unite	00'TOT	
SEO-CAL5	Q.	4.00 ng/l	668 55 unite	167 14	500 10 10 100	DL'00T	39.2 70KBC
SEO-CAL6	. 0	18.000		LT./OT		T00'30	99.1 %Rec
SEQ-CAL7	0						
SEQ-CAL8	0						
SEQ-CAL9	0						

Uncorr. Mean RF	185.75
Corr. RSD CF	3.0% RSD
Corr. St Dev RF	+/- 4.96
Corr. Mean RF	167.76

Blanks:

LabNumber	E	Mean	Std Dev	Mean (ng/L)	Std Dev (ng/L)
SEQ-IBL		3.36 units		0.02 ng/L	#VALUE!

	ean Std Dev	<u>)3 ng/L ±0.007</u>	9 ng/L ±4.771	0 ng/L	0 na/L	0 ng/L
i	M L	3	3 3.71	0.00	0 0.00	0 0,00
	Batch ID	1	2	e	4	Ŋ
Preparation Blanks	Sample Type	BLK	BLK	BLK	BLK	BLK

File: MHg27001-210204-1

rument	Analyst	Type	LabNumber	Dilution	Analyzed	FileID	Run End	Response Batch ID	Correction?	DECD	TuttialDead	Electiboent	Traitentillinidae	
2700-1	00	₫	SEO-IBL1	Ħ	2/4/21 13:78	4700-1.RAW	13-28-26	3 36			A DOA			Comments
2700-1	8	B	SEO-CAL1		2/4/21 13-38	4701-1 BAW	12-39-41	11.70		0.0	0.000	0.000	- UNL	
2700-1	5	CAI	SED-CAL2	1	00'01 17/1 17	MACHT TO /I	71-00-01	6/1TT		α.4	0,050	0.050	1/L	
10020	8 8	5	GED CALS		01.01 17/1-12	MWYT-70/4	10:94:5T	36.4/		35.1	0.209	0.209	ng/L	
2700-1	88	5 3			AC:CT 174.7	MAN.1-50/1	71:6C:51	105.32		162.0	0.965	0.965	ng/L	
1 0020	8	5		-	60:41 17/4.17	4/UH-LIKAW	14:09:2/	336.28		332.9	1,984	1.984	ng/L	
T-00/7	3	3	SECTION D		2/4/21 14:19	4/05-1.RAW	14:19:43	668.55		665.2	3.965	3.965	ng/L	
1-00/7	8	3	SECTICAT		2/4/21 14:29	4706-1.RAW	14:29:58	93,66		90.3	0.538	0.538	na/L	
2700-1	8	3	SEQ-ICB1	7	2/4/21 14:40	4707-1.RAW	14:40:14	2.70		-0.7	-0.004	-0.004	DO/L	
2700-1	8	SAM	WS	1	2/4/21 14:50	4708-1.RAW	14:50:30	1.70		-1.7	Error	#VALLIFI	1/00	
2700-1	8	SAM	MS	1	2/4/21 15:00	4709-1.RAW	15:00:45	2.21		-12	Frmr	#VALLET	100	
2700-1	8	SAM	MS SM	-	2/4/21 15:11	4710-1.RAW	15:11:00	0.64			CHOIL	AVALUE:		
2700-1	8	SAM	MS	-	2/4/21 15:21	4711-1.RAW	15:21:16	0.99		40		#VALUE	1/1	
2700-1	8	SAM	MS	-	2/4/21 15:31	4712-1.RAW	15:31:31	000		46-	5	# VALUE:		
2700-1	8	SAM	MS	1	2/4/21 15:41	4713-1.RAW	15:41:47	2.16		r c T	5 15	# VALUE:	1/60	
2700-1	8	SAM	SM		214/21 15:52	4714-1 RAW	15-52-02			1.1	010	#VALUE!	UQ/L	
2700-1	8	SAM	MS		2/4/21 16-02	4715-1 RAW	16-02-10	1000		t .		#VALUE	- UG/L	
700-1	2	SAM	SM		21471 1612	4716.1 DAW	12.13.33	000		1.5	ETTOP	#VALUE!	1/6u	
2700-1	8	SAM	SM	-	CC-91 1C/8/C	4717-1 DAW	07-00-01	000		4 v		#VALUE!	UQ/L	
700-1	8	SAM	WC SM		CC-31 10/0/C	4710-1 DAW	FU-50-31	000		t :		#VALUE!	ug/L	
700-1	88	SAM	SM		CENT TZILIZ	1710-1 DAW	10:00:00	000		4.5-	Error	#VALUE!	1/6u	
700-1	88	SAM			CL-01 17/L/5	11171 - CT-17	10.01	2/10		9.7-	LIOL	#VALUE!	ng/L	
700-1	8 8	NAS	MC		CC'0T 17/4/2	MWY'T-0774	10:03:50	0.00		-3.4	Error	#VALUE!	ng/L	
1 1 1 1 1 1	88	CAM	UNC .	• •	CO:/T 17/4/7	MAN'T-TZ/4	10:50:71	2.33		-1.0	Error	#VALUE!	ng/L	
1002	3 6	THUC .	244		244/21 17:14	4/22-1.KAW	1/:14:06	1.55		1.8	Error	#VALUE!	ng/L	
1 1002	38	CAM			47-17 17-17	4/ 23-1.KAW	1/:24:22	1.04	-	-2.3	Ettor	#VALUE!	ng/L	
T-DOV	38	CAN	WC Not		244/21 17:34	4/24-1.KAW	1/:34:37			-3.4	Error	#VALUE!	ng/L	
1-000	38		C/4		74/21 1/:44	4/25-1.KAW	17:44:52			-3.4	Error	#VALUE!	ng/L	
1-00-	B	NAM	200 CM		2/4/21 17:55	4726-1.RAW	17:55:08	0.00		-3.4	Error	#VALUE!	ng/L	
1-00-	38	3	SEL-CUVI		2/4/21 18:05	4727-1.RAW	18:05:24	84.45		81.1	0.483	0.483	ng/L	
	B	3	SEQ-UBL		2/4/21 18:15	4728-1.RAW	18:15:39	2.12		-1.2	-0.007	-0.007	ng/L	
T-DO/	38	MBA I	L102295-B51	1.5	2/4/21 18:25	4729-1.RAW	18:25:55	133.07		129.7	0.775	0.969	ng/L F10	12295
	в	NAM .	F102295-BSD1	1.25	2/4/21 18:36	4730-1.RAW	18:36:10	132,88		129.5	0.774	0.968	ng/L F10	12295
1-00/	38	BLK	F102295-BLK1	1.25	2/4/21 18:46	4731-1.RAW	18:46:26	4.03		0.7	0.004	0.005	ng/L F10	12295
1-00/	8	BLK	F102295-BLK2	1.25	2/4/21 18:56	4732-1.RAW	18:56:42	2.45		6.0	-0.005	-0.007	na/L F10	12295
	31		F102295-BUK3	1.25	2/4/21 19:06	4733-1.RAW	19:06:57	2.53		-0.8	-0.005	-0.006	na/L F10	12295
I-nn/	B	MAX.	1900004-01	1.25	2/4/21 19:17	4734-1.RAW	19:17:13	4.09		2.0	0.006	0.008	na/L F10	12295
1-00/	B	SAM	F102295-MS1	1.25	2/4/21 19:27	4735-1.RAW	19:27:28	155,11		151.7	0.907	1.133	na/L F10	12295
1-00	8	SAM	F102295-MS2	1.25	2/4/21 19:37	4736-1.RAW	19:37:44	152.10		148.7	0,889	1.111	no/L F10	12295
1-00/2	8	SAM	0L00108-06RE1	1.25	2/4/21 19:47	4737-1.RAW	19:47:59	6.89		3.5	0.023	0.029	no/L F10	12295
2700-1	8	SAM	1A00094-01RE1	1.25	2/4/21 19:58	4738-1.RAW	19:58:15	51.08		47.7	0.287	0.358	no/i F10	12295
2700-1	8	B	SEQ-CCV2		2/4/21 20:08	4739-1.RAW	20:08:30	86.66		83.3	0.497	0.497	l/uu	
2700-1	8	B	SEQ-CCB2		2/4/21 20:18	4740-1.RAW	20:18:46	1.53		-1.8	-0.011	-0.011	- Mu	
2700-1	8	SAM	F102295-MS2	1.25	2/4/21 20:29	4741-1.RAW	20:29:01	165.40		162.0	0.968	1.210	nn/l F10	1770E
2700-1	8	SAM	F102295-MSD2	1.25	2/4/21 20:39	4742-1.RAW	20:39:17	164.09		160.7	0.960	1 200	00/1 E10	12201
2700-1	8	SAM	1A00004-01RE1	1.25	2/4/21 20:49	4743-1.RAW	20:49:32	6.36		3.0	0200	0.075		2220
2700-1	8	SAM	1A00004-02RE1	1.25	2/4/21 20:59	4744-1.RAW	20:59:48	18.28		14.9	0.091	0.114	no/l F10	26220
2700-1	8	SAM	1A00004-03RE1	1.25	2/4/21 21:10	4745-1.RAW	21:10:05	5.25		0	0.012	0.017		2677

Printed: 2/25/2021

Page 1 of 2

Page 23 of 116

Mater Definition Definition Mater		ŝ	ample						Uncorrected		No PB							Γ
0 500 10000 500 0.005 </th <th>- C - C</th> <th>alyst</th> <th>adyt</th> <th>LabNumber</th> <th>Dilution</th> <th>Analyzed</th> <th>FileID</th> <th>Run End</th> <th>Response</th> <th>Batch ID</th> <th>Correction?</th> <th>RESP</th> <th>InitialResult</th> <th>FinalResult</th> <th>InitialUnits</th> <th></th> <th>Comments</th> <th></th>	- C - C	alyst	adyt	LabNumber	Dilution	Analyzed	FileID	Run End	Response	Batch ID	Correction?	RESP	InitialResult	FinalResult	InitialUnits		Comments	
0 3000 3000 113 2001.130 7000.140 113 2001.130 7000.140 113 2001.130 7000.140 113 2001.130 7000.140 113 2001.130 7000.140 113 2001.130 7000.140 113 2001.130 7000.140 113 2001.130 7000.140 113 7000.140 113 7000.140 113 7000.140 113 7000.140 113 7000.140 113 7000.140 113 7000.140 7000.14		8	SAM	1A00004-04RE1	1.25	2/4/21 21:20	4746-1.RAW	21:20:21	11.75	Ŧ		8.4	0.057	0 OKK	i linn	3000013		Ţ
0 300 30000-00000 1.23 2400.123.00 512.00<	- T	8	SAM	1A00019-01RE1	1.25	2/4/21 21:30	4747-1.RAW	21:30:36	2.45	1		6.9	-0.003	1000		100001		Ì
0 500	- 1	8	SAM	1A00019-02RE1	1.25	2/4/21 21:40	4748-1.RAW	Z1:40:53	531.75	1		578.4	3 152	DAD 5		C677011		İ
0 0. 0. 0.0 0.000 0.001	1.1	8	SAM	1A00019-03RE1	1.25	2/4/21 21:51	4749-1.RAW	21:51:08	43.84	1		40.5	0 243	0.304		C47701		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		8	SAM	1A00019-04RE1	1.25	2/4/21 22:01	4750-1.RAW	22:01:24	38.49	1		35.1	0.217	0.764	1/00	E10330E		
0 500		8	B	SEQ-CCV3	F	2/4/21 22:11	4751-1.RAW	22:11:40	90.51	• -		87.1	0.519	0.510	- Indi	CC7707	Î	
0 Mindbeller 10.1 247.12.23 959.140 2.03.1 0.03.1 <th0.03.1< th=""> <th0.03.1< th=""> <th0.03.1< t<="" td=""><td></td><td>8</td><td>3</td><td>SEQ-COB3</td><td>=</td><td>2/4/21 22:21</td><td>4752-1.RAW</td><td>22:21:56</td><td>3.26</td><td></td><td></td><td>ç</td><td>-0.001</td><td>1000</td><td></td><td></td><td></td><td>İ</td></th0.03.1<></th0.03.1<></th0.03.1<>		8	3	SEQ-COB3	=	2/4/21 22:21	4752-1.RAW	22:21:56	3.26			ç	-0.001	1000				İ
0 540 17.1275-551 100 24/91.2342 67/91.2342 6	- 1	8	SAM	1A00094-02RE1	1.25	2/4/21 22:32	4753-1.RAW	22:32:11	72.83	1		69.5	0.416	0.520	1761			
0 1 1 2	1	8	SAM	F012297-BS1	1000	2/4/21 22:42	4754-1.RAW	22:42:27	321.09	2		317.7	1 800	1800 106		C67701		
0 BK TU127F akt 500 242 240 260 753 600 753 600 753 600 753 600 753 600 753		8	SAM	F012297-BSD1	1000	2/4/21 22:52	4755-1.RAW	22:52:43	352.63	0		2 005	2 078	CUC BLUC	1/1/1	16770TJ		
0 BK FULZENER(C) 500 247(2, 12) 775-14M 23333 210 2 400 400 60000 4000 40000 40000 40000 40000 40000 40000 40000 400000 400000	1	8	BLK	F012297-BLK1	500	2/4/21 23:02	4756-1.RAW	23:02:59	5.82	0		250	0.015	7 376		L102201		
Bit FULXPP-RIC Sign 2/4/11 2/34 7/53 / 1/3 5/11 2/11 1/2 0/011 1/2/3 1/2/3	ŕ	8	BLK	F012297-BLK2	500	2/4/21 23:13	4757-1.RAW	23:13:15	2.80		İ	2	0000	0021		L102201		
0 5M 102379-751 2500 2/512 2339 102379-750 24312 9793-160 24312 9791 9741 0 3M 102373-7501 500 2/512 25440 759.2 759.4 9741.23 9761-164W 759.2 759.6 931.7 991.4 921.2 991.4 102277 0 500 2/512 759.1 950.1 759.2 759.3 951.1 991.4 102277 991.4 102277 0 500 2/512.055 956.1.64W 0.55.61 759.2 759.3 951.1 991.4 1022777 1022277	- i	8	BLK	F012297-BLK3	200	2/4/21 23:23	4758-1.RAW	23:23:30	5.21	-		2.0 1	0.011	-1,000		F10229/		
0 301 01/12/37-161 200 21/12 660-150 755/12 660-150 755/12 660-150 755/12 75/12		8	SAM	1B00007-01	2500	2/4/21 23:33	4759-1.RAW	23:33:45	644.00			Edn 6	110.0	OTC:C		167701-		ĺ
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	i	8	SAM	F012297-MS1	2500	2/4/21 23:44	4760-1.RAW	73-44-00	759 02			756.6	/10.0	211242	1/100	F102297		
0 544 16002-01 500 2071 100 10002 0 540 16002-01 100 2071-00 100 10002	ŕ	8	SAM	F012297-MSD1	2500	7/4/71 73-54	4761-1 RAW	22-54-16	737 05		I	0'00'	4.508	112/0.678	100/L	F102297		
0 0, Li Sectore (1) 1 24/31 (1)		8	SAM	1800022-01	200	2/4/21 0:04	4762-1 RAW	01-10-0	27.023			/34.5	4.377	10941,819	- 1/6u	F102297		
00 0.4 Sec.Constant 1 24/12 0:55 675-100 0.573 0.073 0.073 0.073 0.073 0.071 0.071 0.071 0.071 0.071 0.071 0.073 0.071 0.073 0.071 0.073 0.071	1	00	CAL	SEO-CCV4		2/4/21 0-14	MV0 1-527	01.11.0	1100	2		1.120	3./31	1865.312	1/6u	F102297		
(b) SMI (1) 257-1432 Sign 247 Number	l I	8	B	SEO-CCB4	•	2/4/21 0-25	4764-1 DAW	01-11-10	10.22			2:96	0.573	0.573	1/6u			
00 SM FULZYSY-NGZ 500 247L LOSS 466L LOW 0.55.25 953.30 2 112.025	1	8	SAM	F012297-MS2	2002	2/4/21 0-25	4765-1 DAW	0012010	01210	c	-	1.2	0.012	0.012	J/Gu			
00 SMN 1500001-01 500 24/21 L165 4775-18/WI 0.5552 1.132 5.4 0.002 21.781 001 120.297 00 SMN 1500001-02 24/21 L165 4770-18/WI 1.1661 8.74 0.025 1.131 001 10.2297 00 SMN 1500007-05 2500 24/21 L165 4770-18/WI 1.1664 8.74 0.025 1.1213 001 1.02297 00 SMN 150007-05 2500 24/21 L167 477-18 1.1254 277-18 1.1259 277-18 1.1205 277-21 001 1.02297 001 1.02297 001 1.02297 001 1.02297 001 1.02297 001 1.02297 001 1.02297 001 1.02297 001 1.02297 001 1.02297 001 1.02297 001 1.02297 001 1.02297 001 1.02297 001 1.02297 001 1.02297 001 1.02297 001 1.02297	í	8	SAM	F012297-MSD2	200	2/4/21 0:45	4766-1 RAW	0-45-35	07:070	V r		812.7	4.837	2418.607	ug/L	F102297		
00 SMM 100001-02 SMM 10001 1001 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 10001 10000 100		8	SAM	160001-01	200	2/4/21 0:55	4767-1.RAW	0:55:52	11 92	4		7.600	5000	1/24,560	1/6u	F102297		
00 5M 160007-02 2/4/21 11/6 17/91 2 2/4 11/6 11/2 11/6 11/2 11/6 11/2 11/6 11/6 11/2 11/6 11/6 <th< td=""><td>l i</td><td>8</td><td>SAM</td><td>1800001-02</td><td>200</td><td>2/4/21 1:06</td><td>4768-1.RAW</td><td>1:06:08</td><td>8 74</td><td>1</td><td></td><td>0.0</td><td>0.044</td><td>21./81</td><td>1/6u</td><td>F102297</td><td></td><td>İ</td></th<>	l i	8	SAM	1800001-02	200	2/4/21 1:06	4768-1.RAW	1:06:08	8 74	1		0.0	0.044	21./81	1/6u	F102297		İ
00 SMM 1300007-03 2670 2670-1.8MW 177.39 2 77.40 1.003 90L 12.239 00 SAM 1300007-01 2500 2472.1.156 777-1.8MW 177.39 2 277.1 1.356 399.1 100.297 00 SAM 1300007-07 2500 2472.1.157 477-1.8MW 1.77.3 2.1105 2 277.1 1.356 339.3.399 90L 100.2397 00 SAM 1300007-07 2500 2472.1.207 477-4.1.8MV 2.77.5 277.4.1 277.5 277.4.1 277.5 276.3 1.666 414.3.1.7 90L 10.02.97 00 SAM 1300007-01 2.000 247.1.2.89 4776-1.8MV 2.77.4 4.28 0.05 00L 10.02.97 00L 10.02.97 00 SAM 1300015-01 2.77.4.1 2.77.4 4.28 0.05 0.05 0.01 10.02.97 10.01 10.02.97 00 SAM 1300015-01		8	SAM	1800007-02	2500	2/4/21 1:16	4769-1.RAW	1:16:24	170 10	1		175.0	C70.0	12.313		F102297		
00 SAM 150007-01 2500 2471.1.5A 777.1.RAW 156.55 21.07 2.96 269 16.0229 00 SAM 180007-05 249.21.147 777.1.RAW 156.55 21.07 1.26 249.21.217 777.1.RAW 157.50 21.05 2690 249.21.207 777.1.RAW 157.51 277.51 2600 249.21.207 777.1.RAW 157.52 277.51 90.1 10.0229 90.1 10.0229 00 SAM 180007-05 2600 249.21.207 777.1.RAW 277.51 98.83 166.6 11.32.44 90.1 170.229 00 CAL SEQ CX5 1 249.21.2.36 777.1.RAW 238.29 36.5 0.05 0.05 0.01 120.229 00 SAM 1800015-01 200 247.1.2.44 238.250 0.05 0.05 0.01 120.229 00 SAM 1800015-01 200 247.1.2.44 277.41 0.13 0.25 0.55 0.05 0		8	SAM	1B00007-03	2500	2/4/21 1:26	4770-1 RAW	07-96-1	177 20	-		0.011	T-U4/	2010-408	Dg/L	F102297		
00 SMN 1980007-05 2300 24/21 1::77 1:37:0 211.71 1:35:6 3383.73:0 00L F102.227 00 SAM 190007-05 2500 24/21 1::77 477-1.8WN 1::77:25 279.70 2 275.3 1:44:34 4502.27 00L 1:44:34 4646 411.43.14 m0L F102.227 00 SAM 190007-05 2500 24/72.128 4776-1.8WN 1:57.23 275.3 1:646 411.43.14 m0L F102.227 00 SAM 190007-01 2602 24/72.128 4776-1.8WN 2:79.73 286.33 0.001 1:43.14 m0L F102.227 00 SAM 190006-01 0.00 24/72.128 4776-1.8WN 2:79.3 366.3 2 0.00 0.005 0.001 F102.227 00 SAM 1900015-01 2500 24/72.148 2:89.3 365.33 0.001 F102.297 0.01 F102.297 0.01 5 5	1	8	SAM	1800007-04	2500	2/4/21 1-26	4771-1 DAW	23.20.1	20100			1/4.0	1.036	2589.656	no/L	F102297		
00 SiM 100007-05 2500 2[4]21 157 477-1.6NM 1.57.12 27.9.70 2 76.3 1.864 4583.772 001. 1.002297 00 CM SKM 180007-07 2500 2[4]21 277 477-1.6NM 2.77.3 27.9.70 2 26.63 1.666 414.3.37 001. 100.2297 00 CM SKO 2[4]21 2.77 477-1.6NM 2.27.3 26.03 1.653 1.666 414.3.37 001. 100.2297 00 CM SKM 180000501 24721 2.88.4 2.88.3 2.9 0.6 0.005 0.666 0.016 1.02297 001. 1.02297 00 SMM 1800015-01 2500 2[4]21 2.9 37.6 0.66 0.06 0.01 1.02297 001. 1.02297 00 SMM 1800015-01 2500 2[4]21 2.9 37.6 0.6 0.06 0.016 1.02297 1.02297	1	8	SAM	1800007-05	2500	LP-1 LCIPIC	11771-1 DAW	CC:0C:T	CO-167			227.7	1.356	3389.349	1/6u	F102297		
00 Sam 180007-07 24/21 207 21/421 21/421	1	8	SAM	1B00007-06	2500	214/21 1-57	MAN T-577	1-57-76	NZ TTC			307.8	1.834	4583.772	ng/L	F102297		
00 C4L SEQ-COVS 1 24/22 2:17 477-LAW 2:17:57 98.33 0 0.0 9.00 0.00 0.00 <	í i	8	SAM	1B00007-07	2500	20-6 1-6/4/6	4774-1 DAW	CP-LU-C	01.612	V		2/0.3	1,646	4114.314	J/Gu	F102297		
00 C4L SEQ CCB5 1 24421 2:38 4776-LRAW 2:38:14 4.23 9:50 0.055 0.055 0.055 0.055 0.055 0.016 1.02297 001 1.02297 001 1.02297 001 1.102297	í.	8	ß	SEQ-CCV5		2/4/21 2:17	4775-1 RAW	2.17.57	C2-F02	7		200.9	1.553	3883.720	1)/Cu	F102297		
00 SAM 1800009-01 500 2472.12.38 4777-1.84W 2.38.29 3.56 2 0.05 0.001 1.02297 0.001 1.02297 0.001 1.02297 0.011 1.02297 0.011 1.02297 0.011 1.02297 0.011 1.02297 0.011 1.02		8	B	SEQ-CCB5		2/4/21 2:28	4776-1.RAW	2:28:14	80.02			0.02	0.00	0.569	ng/L			
00 SMI 180000901 500 2/4/21 5-36 7.5 2.5500 2/4/21 7.92.8 0/9/1 F.00297 0/9/1	i	8	SAM	1B0008-01	200	2/4/21 2:38	4777-1.RAW	2.38.79		1		2.0	500.0	500.0	1/Gu			ĺ
00 SAM 1800015-01 2500 2/4/21 2:59 4779-1,RAW 2:59:01 191:39 2 1.0.0 0.0.20 0.0.23 molil F102297 00 SAM 1800015-02 2500 2/4/21 3:09<:16		8	SAM	1B00009-01	500	2/4/21 2:48	4778-1 RAW	7-48-45	76 50	1		0.5		276-T-	1/00/	F102297		
00 SAM 1800015-02 2500 2/473 3:09 16 277,41 2 274.11 1.1.22 2006.5/73 MQL F102297 00 SAM 1800015-03 2/471 3:19 3:19:32 3:79:32 3:79:32 3:79:32 4080.246 MQL F102297 00 SAM 1800012-01 2500 2/472 3:29 3:79:32 3:79:32 3:79:32 4080.246 MQL F102297 00 SAM 1800012-01 2500 2/472 3:29 3:79:32 5597.447 76 MQL F102297 00 SAM 1800012-01 2500 2/472 3:66.88 2 3:1.1 0.184 4:50.563 MQL F102297 00 SAM 1800012-01 500 2/472 3:50:18 3:54:18 3:44 2 3:51.1 0.184 F102297 00 SAM 1800023-01 500 2/472 6:17 2 3:51.1 2:0257 6:17.2	. 1	00	SAM	1B00015-01	2500	2/4/21 2:59	4779-1.RAW	2:59:01	191 93	4 0		1001	0.150	257.00	J/IGU	F102297		Ì
00 SAM IB00015-03 2500 2/4/21 3:19 4781-LRAW 3:19:32 379.22 2 2/14 2.1252 1000.2797 00 SAM IB00017-01 2500 2/4/21 3:29 4781-LRAW 3:19:32 379.22 2 3597.42 00/L F102297 00 SAM IB00019-01 2500 2/4/21 3:30 4782-LRAW 3:29:48 34.46 2 31.1 0.189 459.663 00/L F102297 00 SAM IB00020-01 500 2/4/21 3:40 4:00:39 56.48 2 35.1.1 0.189 459.665 00/L F102297 00 SAM IB00020-01 500 2/4/21 4:10 4785.1RAW 4:00:30 66.88 2 35.1.1 0.189 490/L F102297 00 SAM IB00020-01 500 2/4/21 4:10 4786.1RAW 4:00:30 6.5.88 0.0.1 F102297 00 SAM IB00025-01 500 2/4/21 4:10 4:00:30 6.5		00	SAM	1800015-02	2500	2/4/21 3:09	4780-1.RAW	3:00:16	777 41	1.0		1000	C71-1	C/5.0U62	100/L	F102297		
00 SAM IB0001701 2500 2/4213:29 4782:1,RAW 3:29:48 3/46 2 37:37 2:29 37:37 1:2029 1:0029 00 SAM IB0001901 2/40213:40 4782:1,RAW 3:30:03 66.88 2 31:1 0.137 942.766 mol/L F102297 00 SAM IB0000901 2/47213:40 4769:1,RAW 3:40:03 66.88 2 63:5 0.377 942.766 mol/L F102297 00 SAM IB0000901 500 2/47214:00 4769-1,RAW 3:50:18 354.43 2 63:5 0.377 942.766 mol/L F102297 00 SAM IB00026-01 500 2/47214:00 4765-1,RAW 4:00:36 354.43 2 354.11 2.0055 1042.2604 mol/L F102297 00 SAM IB00025-01 500 2/47214:00 4721:05 83.29 0.476 0.013 1.10.2297 00 CAL SECCCK6		8	SAM	1B00015-03	2500	2/4/21 3:19	4781-1.RAW	3-19-32	270 77	4		275.0	1.032	4080.246	Jdv -	F102297		
00 SAM 1800019 01 2500 2/4/21 3:40 4783-1.RAW 3:40:03 66.86 2 51.1 0.1.187 459.663 ng/L F102297 00 SAM 1800020-01 500 2/4/21 3:50:18 3:54:49 2 3:51.1 0.1.187 4:59.663 ng/L F102297 00 SAM 1800020-01 500 2/4/21 3:50:18 3:54:49 2 3:51.1 0.0357 9:42.796 ng/L F102297 00 SAM 1800020-01 500 2/4/21 4:10 4:36:1.RAW 4:10:50 4:22 2 3:51.1 2.0357 0:0 1:042.664 ng/L F102297 00 CAL 560 2/4/21 4:10 4:36:1.RAW 4:10:50 4:22 2 3:4.1 2:4.2 3:4.1 1:02:29 0:0 1:02:29 0:0 1:02:297 0:0 0:0 0:0 2:4.421 1:02:297 0:0 1:02:297 0:0 0:0 2:4.421 <		8	SAM	1B00017-01	2500	214171 3-29	47R7-1 RAW	31.20.40	24.00			6.676	2.439	294.442	UQ/L	F102297		i
00 Sam 1800020-01 500 2/4/12 550 4/84-LAW 3:50:18 354.43 2 0.3/1 9/2/766 ng/L F102297 00 SAM 1800024-01 500 2/4/21 4:00 478-LAW 3:50:18 354.43 2 351.1 2.065 194.2 F102297 00 SAM 1800024-01 500 2/4/21 4:00 478-LAW 4:00:34 6.17 2 351.1 2.065 194.2 F102297 00 CAL 560-0056 1 2/4/21 4:10 478-LAW 4:10:50 4.22 2 351.1 2.065 164.0 ng/L F102297 00 CAL 560-0056 1 2/4/71 4:11 4787-LAW 4:10:50 4:22 2 0.9 0.002 1.60/L F102297 00 CAL 550-0066 1 7/4/71 4:11 4787-LAW 4:12:0 8:3.26 8:3.26 0.9 0.002 0.16/L 16:022		00	SAM	1B00019-01	2500	2/4/21 3-40	47R3-1 RAW	CU.07-C	00 00	V		31.1	0.184	459.663	1/6u	F102297		
00 Sam 1800024-01 500 21471 4.00 37.7 2 31.1 2.085 100.2604 noll. F102297 00 SAM 1800025-01 500 21471 10 4765 6.400 mg/L F102297 00 SAM 1800025-01 500 21472 4.10 4765 4.00 mg/L F102297 00 CAL SEQ-COR6 1 21473 4.21 2 0.9 0.002 1.160 10/L F102297 00 CAL SEQ-COR6 1 794.9 4.21:05 83.29 2 0.9 0.002 1.160.297	1	00	SAM	1800020-01	200	2/4/21 3-50	4784-1 DAW	2.60.10	254.43	N (22	0.3//	942.786	1/6u	F102297		
00 SAM 180025-01 500 2/4/21 4:10 7/26-1.1KAW 4:10:50 4.122 2 0.01 6.440 ng/L F10:297 00 CAL SRQ-COV6 1 2/4/21 4:11 4787-1.1KAW 4:10:50 4.122 2 0.09 -0.002 -1.160 ng/L F10:297 00 CAL SRQ-COV6 1 7/4/71 4:21 4787-1.154 4:10:50 8:3.29 2 0.99 0.476 ng/L F10:2297 00 CAL SRQ-COV6 1 7/4/71 4:31 4788-1.184W 4:10:51 8:3.29 0.476 ng/L F10:2297	1	8	SAM	1B00024-01	200	714/71 4:00	4785-1 RAW	72.00.7	CT.100	4.0		351.1	2,085	1042.604	1/0u	F102297	,	
00 CAL SEQ-COVE 1 24/21 4:21 4787-1.84W 4.21:05 83.29 2 -0.002 -1.160 mg/L F102297 00 CAL SEQ-COVE 1 2/4/21 4:31 4787-1.84W 4:21:05 83.29 29.9 0.476 mg/L F102297 00 CAL SEQ-COBE 1 2/4/21 4:31 4786 mg/L F102297	1	8	SAM	1B00025-01	500	2/4/21 4-10	47R6-1 DAW	4-10-50	1/-0	7		4.4	0.013	6.440	ng/L	F102297		
00 CAL SE0-CD86 11 214771 437 427881 RAW 4.31-31 2.44		8	₫	SEQ-COV6	-	2/4/21 4:21	4787-1.RAW	4:21:05	P2 29	7		0.0	-0.002	-1.160	J/Gu	F102297	i	ĺ
		8	ß	SEQ-CCB6		2/4/21 4:31	4788-1 RAW	4-21-21	44			13.2	0.4/0	0.4/6	- Dg/L			

201	01	IЭ	6e,
601	► ± ⊂	$FF \sim$	NOG

6

6941630	Worksh MHg270 CalibFa 1 Method 2012-07 R: Descrip MHg27001-210204-)	67.75 Status: 0 1 R ² ;	.drc = (Area-3.36) %,1 Warnings 0.99993635	2) / 167.7 Run Date: 7 Run Time: CalibAnaly M	###### Blank SD 11:40:13 Blank RS Hg CF SD:	. 0 64289657 4.964289657							
Sample/ID	A.ocation Rinse Dilute Bi	ank ConcHgu(pr C	bindMeHg(ppi) C	onchq2(pi Cuncorhg(r R	ers of the	RawData 28084	mEnd	Perkhol (Kav 1	PeakMettu (R. 1	Dated webico: they	other/Ray Control (040)	et anno	there are a second
Mrs.						4690-1.RAW	11:45:51	30,4043403	0	3.54172887	0 cleandry	fi t	
WS	A1 1					4691-1.RAW	11:56:06	D			psample10	5 dz	
노	A2 1.3	L3622 0.3644597	5.98			4693-1 RAW	12:90:21	68.821004		7.35112847	0 psample10	ե	
£.	A3 1.3	.3622 0.2876799	6.22			4694-1.RAW	12:26:52	51.6236164	1047.30877		0 psample10	ե	
× 0	A4 1.3	L3622 0.1747306	4.15			4695-1.RAW	12:37:08	32.6751584	699,108073	00	0 psamole10	5 t	-1 -
. 0.	A6 A6	13622 U.1201287	4.06			4696-1.RAW	12:47:24	23.5150965	684.309664	Ð	0 psample10	յե	
SM	A7 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	13622 ULUSDOULD	20.4 20.0			4697-1.RAW	12:57:39	19.9037326	682.950752	0	0 psample10	ե	-
WS	A8 1.1	3622 0.026471				4698-1.KAW	13:07:54	3.25787102	9.31976273	0	0 psample10	ե	1
SEQ-IBL1	49 1	0 0.0250089	0.02			4039-1.KAW	01:81:51	7.80300926	1.38995949	0	0 psample10	ð	1.1
SEQ-CAL1	A10 1.3	.3622 0	0.05		100.48	4201-1 RAW	13:28:41	4.19511699 2021202	3.36221065	0 0	0 psample10	ð	
SEQ-CAL2	A11 1 3	.3622 0	0,21		104.63	4702-1.RAW	13-48-57	2 03466810	29106/11		0 psample10	ĕ	-
SEQ-CALS	A12 1 3	.3622 0	0.97		96.54	4703-1.RAW	13:59:12	3.06381621	165.318924		u psampletu	ວັ ເ	
SEQUALS SEQUENTE	A13 1.3	3622 0.0243933	1.98		99.22	4704-1.RAW	14:09:27	7.45445602	336.279803	0 0	0 nsamole10	5 t	
SFO-IOV	ALT L 3	.3b22 0.1126368	3.97		99.13	4705-1.RAW	I4:19:43	22.2582433	668.546394	D	0 osample10	5 5	4 -
SEO-ICB1	A16 1 3	2022 U.UU48363	0.54		107.78	4706-1.RAW	14:29:58	4.17354708	93.6584491	0	0 psample10	ដ	-
WS.	A17 1 3	3622	00.0		0.00	4/U7-1.RAW	14:40:14	0	2.70300926	0	0 psample10	ð	e-f
MS	A18 1 3	.3622		2		4/UB-L.KAW	14:50:30	1.07552731	1.70196759	0.73894676	0 psample10	Ե	1
MS	A19 1 3	0 ZZ9E)	0			4710-1. BAM	15:00:45	0	2.20671296	0	0 psample10	ð	1
SM	A20 1.3	3622	0	0		4711-1. RAW	15-21-16	18245600.1	0.001555213 0.0015556	0	0 psample10	ð	1
SM	A21 1					4712-1.RAW	15:31:31	0.212906		171348585 D	0 psample10	ð ð	
SW	B1 1.3	.3622	ø			4713-1.RAW	15:41:47	0	2,1599537	0	0 neamha10	5 à	
SM		2103010 0 CC30	C			4714-1.RAW	15:52:02	16.4479427	0	0	0 psample10	бŏ	
SM	3 42	/TCD/TN'N 7700-	5			4715-1.RAW	16:02:18	6.65564488	0.21345486	Ø	0 psample10	ð	H
MS	B5					4716-1.RAW	16:12:33	14.191522	0		0 psample10	ŏ	
WS	B6					4717-1.RAW	16:22:49	3.56518515	0	0	0 psample10	ð	1
MS	B7 1.3.	3622 0	D			4719-1.6AW	16:33:04	3.92468889	0	0	a psample10	ð	84) 1
SM	B8 1					4720-1.RAW	16-53-35	109620/2.2	0./240162	in a	0 psample10	ŏ	-
MS	B9 1.3.	.3622 0	D			4721-1.RAW	17:03:51	7.53761574	0 15077005 C		0 psample10	ել	-
SW	B10 1 3	3622	0			4722-1.RAW	17:14:06	0	1.54560185		0 psdmple10	5 8	н.
		.3622	0			4723-1.RAW	17:24:22	0	1.0444444	0	0 Dearmine10	5 8	
SM	D12 1					4724-1.RAW	17:34:37	D		•	psample10	5 2	
SM	B14 1					4725-1.RAW	17:44:52	0			psample10	e da	<
SEQ-CCV1	B15 1 3	2632	0 483360038		91 J	4726-1.RAW	17:55:08	0.41651646	0	0	0 psample10	Ь	1
SEQ-CCB1	B16 1 3	.3622 0	02505204-2		96./9 0.00	4727-1.RAW	18:05:24	D	84,449537	0	0 psample10	ե	
F102295-851	B17 1.25 3.	3622 0.0177968	0.966441908		0.00	4/28-1.KAW	18:15:39	1.29088542	2.11996528	0	0/psample10	ð	1
F102295-BSD1	B18 1.25 3.	3622 0.0421777	0.965041164 2	6652887		4730-1 RAW	01:32:81	5./5069444	133.067043	0	0 psample10	ð	1 F102295
F102295-BLK1	B19 1.25 3.	.3622 0	0.004981405 0	0.0519944		4731-1.RAW	18:46:26	CTC20220.6	1006/9.7cT	226000.105	psample10	ð ð	1 F102295
F102295-BLK2	BZ0 1.25 3	3622	0	0.0004584		4732-1.RAW	18:56:42	0	2.4458044	3.42372685	0 hsampet0	ð ð	1 F102295
1B00004-01	5 571 172 3 C1 172 3		0 0	0.0565105		4733-1.RAW	19:06:57	0	2.53208912	10.946412	0 psample10	Śð	1 5102295
F102295-MS1		2621120/0 2205-	0.00543/396	1.122061 î		4734-1.RAW	19:17:13	6.20128101	4.09195602	153.952459	U psample10	ið	1 F102295
F102295-MS2	1.25 3	13622 0.0348826	1.108270405	Ð	113.U/ FE 41	4735-1.RAW	19:27:28	0	155.106424	2.52278127	0 psample10	ե	1 F102295
0L00108-06RE1	C4 1.25 3	3622	0.026291814	0	TLICC	WWWT-0075	19:57:51	8.04375	152.101649	0	0 psample10	ե	1 F102295
1A00094-01RE1	C5 1.25 3	.3622 0.0012431	0.355567308	, 0		WAN L-AFTA	19-58-15	U 013000051 5	6.89079861	3.08087384	0 psample10	ð	1 F102295
SEQ-CCV2	C6 1.3	3622	0.4965316		99.43	4739-1.RAW	05-80-02	01040620-C	4/04280.10	3.2///28585	0 psample10	ել	1 F102295
SEQ-CCB2	13	.3622	0		0.00	4740-1.RAW	20:18:46) C	1 57829861		0 psample10	58	
F102295-M52	C8 1.25 3	.3622 0	1.207344197	Ð	60.37	4741-1.RAW	20:29:01	0.3349675	165.398206	2.1729456	0 neamnlait0	5 t	1 C4/220F
1ADD004-018F1	C10 1.25 3	-3622 0.0647393 	1.19756594 1	1066211		4742-1.RAW	20:39:17	12.0507837	164.08588	151.880301	0 psample10	ōð	1 F102295
1A00004-02RE1	C11 175 3	3622 0.0330344	0.0111122200	U 50055000		4743-1.RAW	20:49:32	0	6.35729167	2.81730324	0 psample10	ð	F102295
1A00004-03RE1	C12 1.25 3	3622 0.0250474	0.014098637 0	1.8561682		4/44-1.KAW	20:55:48	7.79571759	18.2806134	123.315683	0 psample10	ð	F102295
1A00004-04RE1	C13 1.25 3	.3622 0	0.06252574 0	0.0655228		4746-1.RAW	21:20:21	5/140/57/04	5.25436941 11 7637037	118.267361 17 100017	0 psample10	¥ i	F102295
1A00019-01RE1	C14 1.25 3	.3622 0	0	0		4747-1.RAW	21:30:36	0.73576437	144087630	1102021771 010862982 1	u psampletu	δŧ	F102295
									100000 L-1	CT00/00/17	n tadillact n	J	I FIUZZYS

Con 2

1A00019-03RE1	C16	1.25 3.3622 0.1079045 1.25 3.3622	3.937049695 3.3434506 0.301586602 0.2232226		4748-1.RAW 4749-1.RAW	21:40:53 21:51-08	17.8439236	531.748207 4457554 54	452.082087	0 psample10	ХÖ	1 F102295
LAUOU19-04REI		1.25 3.3622	0.261755629 0.1903985		4750-1.RAW	22:01:24	0	38.4920718	28.9153356	0 psample10	ðð	1 F102295
		1 3.3622 0	0.519477496	104.02	4751-1.RAW	22:11:40	2.22316667	90.5101563	0	0 neaminatio	5 t	T FIUZ295
1 ADDOP4-02PE1	000	0 7795.5 Y	0 0	0.00	4752-1.RAW	22:21:56	0.40836075	3.25784144	0.92094907	0 nsamnle10	ŏč	
E012267_RC1	31		U.51/631886 0.0606962		4753-1.RAW	22:32:11	0	72.8328704	11.5081597	0 nsamrle10	ίt	2000012
FD12297-RSD1	1	1000 11 COSC 0011	1893.91541 52.559554		4754-1.RAW	22:42:27	7.43593489	321.086921	12.179642	0 nsample10	; t	1 FI0203
F012297-BLK1		/8+++69.11 2202.6 UUV1	2081.921406 61.397297		4755-1.RAW	22:52:43	5.35763889	352.626952	13.6622685	0 nsamnle10	; t	76770Y 1 T
F012797-BLK2	22		7.335525545 0.1593705		4756-1.RAW	23:02:59	0	5.8234375	3.41568287	0 nsamnle10	īč	1272011 T
	2 3	200 5.3622	0		4757-1.RAW	23:13:15	0	2.79583333	1 95997477	o poloned o	5 ð	- LT0520-1
1 CV12237-BLK3	A4	500 3.3622	5.509664425 0		4758-1.RAW	23:23:30		5.21082176	C1CP077 C		бð	1 F102297
	٩ ٩	2500 3.3622 25.71843	9546.871343		4759-1.RAW	23:33-45	5 08802811	543 009417		Otaiduled a	5 I	1 F102297
1 ISM-792-104	A6	2500 3.3622	11274.39704	***	4760-1.RAW	23-44-DD	11020000-7			u psample10	51	1 F102297
F01Z297-MSD1	A7	2500 3.3622 109.83626	10945.53809		4761-1.RAW	71-54-16	10 7376048		5 0	o psampreito	51	1 F102297
1B00022-01	A.8	500 3.3622 3.4236771	1869.030851		4762-1 RAW	02-00-0		7/6LC0'/C/	5 1	u psampletu	ե	I F102297
SEQ-CCV4	A9	1 3.3622 0	0.573323151	114.81	4763-1 PAW	0-14:40		075201-000		0 psample10	ե	1 F102297
SEQ-COB4	A10	1 3.3622	0.01241934		MACH DAVA	04-147-0	07nfccor.c	22.545.544	D	0 psample10	ដ	1
F012297-MS2	A11	500 3.3622 2.5280694	2422.325672	00.0	APCE 1 DAM	40:02:04		5.44568866	0	0 psample10	ŏ	1
F012297-MSD2	A12	500 3.3622 10.303714	1758 778931	07-077797		U2:20:0	4.21043241	816.104659	0	0 psample10	ե	1 F102297
1B00001-01	EIA	500 3.3622 5.6108697	75 48070001 / FCA001+		4/bb-L.KAW	0:45:35	6.8193287	593.302671	0	0 psample10	ե	1 F102297
1B00001-02	Q14	2003 34622			4/b/-1.RAW	0:55:52	5.24477831	11.9179398	3.55147569	0 psample10	ŏ	1 F102297
1B00007-02	415	7500 3 3675 73 071075			4768-1.RAW	1:06:08	0	8.74134838	0	0 psample10	ŏ	1 F102297
1B00007-03	416				4769-1.RAW	1:16:24	8.32604887	179.188079	1.56027199	0 psample10	ð	1 F107297
1B00007-04	A17				4770-1.RAW	1:26:40	4.10326968	177.388836	0	0 psample10	ե	1 F107797
1B00007-05	018	100000101 270010 0002	117890.5655		4771-1.RAW	1:36:55	4.26047454	231.051707	0	0 osamole10	; t	1 F10701
1 R00007-06	010		201149-1404		4772-1.RAW	1:47:10	3.76689815	311.202633	0	D psample10	it	1 5107071
1 R00007-07	000	dc1/n1.d/ 2200.c 0002	4118.033474		4773-1.RAW	1:57:26	8.4693287	279.7	0	0 asamole10	; t	1 E102307
SED-COUVE	101		3887.439168		4774-1.RAW	2:07:42	0	264.226128	0	0 assemble10	ιt	167707J T
	172	79241UU.U 2202.C 1	0.569099489	113.96	4775-1.RAW	2:17:57	3.60617557	98.8347801	0	0 reamplet0	5 Č	4
		0 2205.5 I	0.005467925	0.00	4776-1.RAW	2:28:14	0.08492334	4.27951389		0 nsample10	śt	-1
	2 6	2795.5 UNC	1.79127911		4777-1.RAW	2:38:29	•	3.96322338		0 nsamnlat0	5 2	-ULCOPJ 1
1B0001E-01	20	200 3.3622 4.0793836	68.95187037		4778-1.RAW	2:48:45	4.73093171	26.4970486	1.12158565	0 nsamnlat0	ŚČ	7677014 T
	5 -	2205.2 UUCZ	2810.093574		4779-1.RAW	2:59:01	0	191.931597		0 peample10	śt	167707J T
		2202 3.3622 0	4083.96502		4780-1.RAW	3:09:16	2.70202913	277.41386		0 resminat0	5 t	1677011
		0 7795.5 0007	5501.16101		4781-1.RAW	3:19:32	1.58559959	379.224248	C	0 resminat0	τt	1677n11
	10	z500 3.3622 90.924814	463.3816818		4782-1.RAW	3:29:48	9.46365741	34.4571181		0 neamplet0	5 č	1677011 -
	0	2305.2 DUC2	946.505293		4783-1.RAW	3:40:03	2.42337176	66 876794		o postelenero	5 t	/677NT1 T
ID-NZUNUAL	56	500 3.3622 3.1933091	1046.32322		4784-1.RAW	3-50-18	A ARSERAGE	254 476100		o hsatiripitato	5	T P102297
1B0024-01	810	500 3.3622	10.15909058		4785-1 RAW	4-00-24		PETONLE 2	2 0	n naiduiesd	5	I F102297
1B00025-01	811	500 3.3622	2.559068716 0		4786-1 DAW	A-10-E0				u psampleiu	ŏ	F102297
SEQ-CCV6 1	812	1 3.3622	0.476451094	95.41	4797-1 DAW	DC'DT'4	2	4.22U83333	1.51805556	0 psample10	ð	1 F102297
SEQ-CCB6	813	3.3622	C00454000			GD:T2:+	D	83.2920139	0	0 psample10	Ե	*1
				00.0	4/88-1.KAW	4:31:21	6	3.43518519	0	0 psample10	ŏ	1

MHg27001-210204-1

WS	A1	F102295-BSD	L B18		
HP	A 2	F102295-BLK1	819		
HP	A3	F102295-BLK2	B20		
· P	A4	F102295-BLK3	821		
P	A5	1B00004-01	C1		
P	A6	F102295-MS1	C2	e 2.15/22	
WS	A7	F102295-MS2	P C3	201210	
WS	A 8	0L00108-06RE	C4	•	
SEQ-IBL1	A9	1A00094-01RE	C5		
SEQ-CAL1	A 10	SEQ-CCV2	C6		
SEQ-CAL2	A11	SEQ-CCB2	C7		
SEQ-CAL3	A12	F102295-MS2	C8		
SEQ-CAL4	A13	F102295-MSD2	2 C9	*	
SEQ-CAL5	A14	1A00004-01RE	C10		
SEQ-ICV1	A15	1A00004-02RE	C11		
SEQ-ICB1	A16	1A00004-03PE	C12		
WS	A17	1A00004-04RE	C13		
WS	A18	1A00019-01RE	C14	1800001-02	A14
WS	A19	1400019-02RE	C15	1B00007-02	A15
WS	A20	1A00019-03RE	C16	1800007-03	A16
WS	A21	1A00019-04RE	C17	1800007-04	A17
WS	B1	SEQ-CCV3	C18	1B00007-05	A18
WS	82	SEQ-CCB3	C19	1800007-06	A19
WS	B 3	1A00094-02RE	C20	1800007-07	A20
WS	B4	F012297-BS1	C21	SEQ-CCV5	A21
W/S	B5	F012297-BSD1	A1	SEQ-CCB5	B1
WS	B6	F012297-BLK1	AZ	1800008-01	82
WS	B7	F012297-BLK2	A3	1800009-01	B3
WS	B8	F012297-BLK3	A4	1800015-01	84
WS	B9	1800007-01	A5	1800015-02	B5
WS	B10	F012297-MS1	A6	1800015-03	B6
WS	811	F012297-MSD1	A7	1800017-01	B7
WS	B12	1800022-01	A8	18000 19-0 1	B8
WS	B13	SEQ-CCV4	A9	1800020-01	B9
WS	B14	SEQ-CCB4	A10	1B00024-01	B 10
SEQ-CCV1	B15	F012297-MS2	A11	1800025-01	B11
SEQ-CCB1	B16	F012297-MSD2	A12	SEQ-CCV6	B12
F102295-BS1	B17	1B00001-01	A13	SEQ-CCB6	B13

Verified by: 2/5/21

CVAFS Detector (mV) ° Extra Peaks []] MainPeak baseline

Name	Area	Start Tin	ne EndTime	StartValue	228.82	Peak Max	PeakHeight	Flags	Baseline	BlDev	B1Shift	Comment
SEQ-IBL1 Hg0	4.250	49.8	65.0	228.77	228.82	58.8	0.073	OK	220.7681	0,00	0.01	
SEQ-IBL1 MHg	3.362	76.2	96.1	228.82	228.81	84.4	0.031	OK	228.7681	0.00	0.01	

🔤 CVAFS Detector (mV) ° Extra Peaks 💭 MainPeak basellne

Name	Area	Start Time	e EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
SEQ-CAL1 Hg0	2.544	48.3	63.2	228.74	228.79	58.5	0.064	OK	228.7559	0.00	0.01	
SEQ-CAL1 MHg	11.790	75.0	100.9	228.79	228.80	84.2	0.088	OK	228.7559	0.00	0.01	

Name	Area	Start Time	e EndTime	StartValue	e EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
SEQ-CAL2 Hg9	2.935	49.2	74.2	228.71	228.78	73.3	0.067	OK	228.7217	0.00	0.02	
SEQ-CAL2 MHg	38.469	76.0	113.1	228.77	228.78	85.0	0.272	OK	228.7217	0.00	0.02	

Name	Area	Start Tim	e EndTime	StartValu	e EndValue	Peak Max	PeakHeight	: Flags	Baseline	BlDev	BlShift	Comment
SEQ-CAL3 Hg0	3.064	49.2	62.0	228.71	228.76	55.9	0.072	OK	228.7168	0.00	0.04	
SEQ-CAL3 MHg	165.319	76.0	119.0	228.78	228.81	84.9	1.124	CT	228.7168	0.00	0.04	

CVAFS Detector (mV) * Extra Peaks T MainPeak baseline

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
SEQ-CAL4 Hg0	7.454	48.7	67.2	228.71	228,78	58.0	0.110	OK	228.7100	0.00	0.05	
STQ-CAL4 MHg	336.280	75.0	119.0	228.79	228.91	84.7	2.276	CT	228.7100	0.00	0.05	

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
SEQ-CAL5 Hg0	22.258	46.5	75.0	228.71	228.79	57.3	0.225	CT	228.7106	0.00	0.04	
SEQ-CAL5 MHg	668.546	75.0	119.0	228.79	229,04	85.0	4.530	CT	228.7106	0.00	0.04	

CVAFS Detector (mV) ° Extra Peaks [____ MainPeak baseline

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
SEQ-ICV1 Hg0	4.174	47.5	66.4	228.73	228.77	57.4	0.064	OK	228.7423	0.00	0.01	
SEQ-ICV1 MHg	93.658	75.2	119.0	228.79	228.81	85.2	0.641	CT	228.7423	0.00	0.01	

NainPeak baseline (mV) ° Extra Peaks 📋 MainPeak baseline

Namo Area Start Time EndTime StartValue EndValue Peak Max PeakHeight Flags Baseline BlDev BlShift Comme	Name	Area	Start Tim	ne EndTime	StartValu	e EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
SEQ-ICB1 2.703 75.3 93.3 228.79 228.79 84.5 0.031 OK 228.7326 0.00 0.04	SEQ-ICB1	2.703	75.3	93.3	228.79	228.79	84.5	0.031	OK	228.7326	0.00	0.04	

CVAFS Detector (mV) * Extra Peaks [...] MainPeak baseline

Name	Area	Start Time	e EndTime	StartValu	e EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment.
SEQ-CCV1	84.450	75.0	119.0	228.77	228.78	85.4	0.567	CT	228.7054	0.00	0.05	

CVAFS Detector (mV) * Extra Peaks [MainPeak baseline

Name	Area	Start Ti	me EndTime	StartValu	e EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
SEQ-CCB1 Hg0	1.296	50.1	74.7	228.74	228.78	73.5	0.044	OK	228.7353	0.00	0.04	
SEQ-CCB1 MHg	2.120	78.3	99.2	228.78	228.78	86.1	0.017	OK	228.7353	0.00	0.04	

CVAFS Detector (mV) ° Extra Peaks

Name Area	Start Tim	e EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
F102295-BS1 Hg0 5.751	47,9	67.7	228.75	228.79	55.9	0.078	OK	228.7495	0.00	0.03	F102295
F102295-BS1 MHg 133.067	75.4	118.6	228.81	228.85	85.1	0.881	OK	228.7495	0.00	0.03	F102295

Name F102295-BSD1 Hg	Area 9.023	Start Time 47.1	EndTime 67.0	StartValue 228.73	EndValue 228.80	Peak Max 55.4	PeakHeight	Flags OK	Baseline 228.7390	BlDev 0.00	BlShift D.07	Comment F102295
F102295-BSD1 MH F102295-BSD1 Hg	132.879 361.067	75,0 119.0	115.9 179.0	228.82 228.97	228.87 228.82	85.2 130.4	0.908	OK OK	228.7390 228.7390	0.00	0.07 0.07	F102295

Name Area	Start Time	e EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
F102295-BLK1 Hg 1,000	45.8	74.9	228.76	228.83	74.3	0.068	OK	228.7597	0.00	0.05	F102295
F102295-BLK1 MH 3.583	78.7	100.1	228.83	228.83	86.5	0.031	OK	228.7597	0.00	0.05	F102295
F102295-BLK1 Hg 10,340	120.7	153.7	228.81	228.81	129.3	0.058	OK	228.7597	0.00	0.05	F102295

CVAFS Detector (mV) ° Extra Peaks | MainPeak baseline

Name Area Start Time EndTime StartValue En	ndValue Peak Max PeakHeight	Stags Baseline BlDev BlShift Com DK 228.7583 0.00 0.04 F100 DK 228.7583 0.00 0.04 F100	iment
F102295-KLK2 MH 2.446 76.9 97.3 228.82 22	28,83 83.2 0.021)2295
F102295-KLK2 Hg 2.977 121.0 140.2 228.81 22	28,81 126,9 0.032) 22 95

Name F102295-BLK3 MH (F102295-BLK3 Hg (Area 2.532 10.946	Start Time 75.0 119.3	EndTime 91.4 151.0	StartValue 228.81 228.80	EndValue 228.82 228.80	Peak Max 82.2 129.5	PeakHeight 0.029 0.077	Flags OK OK	Baseline 220.7457 228.7457	BlDev 0.00 0.00	Bishift 0.04 0.04	Comment F102295 F102295
---	-------------------------	-----------------------------	--------------------------	--------------------------------	------------------------------	---------------------------	------------------------------	-------------------	----------------------------------	-----------------------	-------------------------	-------------------------------

CVAFS Delector (mV) * Extra Peaks [__] MainPeak baseline

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1B00004-01 Hg0	6.201	47.4	68.1	228.75	228.79	56.6	0.086	OK	228.7504	0.00	0.02	F102295
1B00004-01 MHg	4.092	77.0	97.4	228.81	228.81	87.4	0.036	OK	228,7504	0.00	0.02	F102295
1B00004-01 HgI	153.952	119.0	173.6	228.79	228,80	131.9	0,686	OK	228.7504	0.00	0.02	F102295

[📑] CVAFS Delector (mV) ° Extra Peaks 📄 MainPeak baseline

Name Area	Start Time #	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
F102295-MS1 MHg 155,106	75.9 1	119.0	228,81	228.87	85.2	1.037	CT	228.7461	0.00	0.02	F102255
F102295-MS1 Hg1 2,523	124.9 1	140.9	228.87	228.83	130.8	0.016	OK	228.7461	0.00	0.02	F102295

📰 CVAFS Detector (mV) ² Extra Peaks 📋 MainPeak baseline

Namu Area	Start T	ime EndTime	StartValu	e EndValue	Peak Max	PeakHeigh	t Flags	Baseline	BlDev	BlShift	Comment
F102295-MS2 Hg0 7.784	48.8	70.8	228.78	228.82	57.2	0.086	OK	228.7762	0.00	0.04	F102295
F102295-MS2 MHg 152.102	75,6	119.0	228.83	228.89	85.4	1.009	CT	228.7762	0.00	0.04	F102295

Name A	irea	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
0L00103-06RE1 M 6	1,891	75.9	100.8	228.84	228,84	85,2	0.055	OK	228.7900	0.00	0.05	F102295
0L00108-06RE1 H 3	1,081	119.0	138.2	228.83	228.83	126.6	0.029	OK	228.7900	0.00	0.05	F102295

[💭] CVAFS Detector (mV) ° Extra Peaks 🦳 MainPeak baseline

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1A00094-01RE1	H 3,529	49.3	75.0	228.78	228.84	74.2	0,058	CT	228.7941	0.00	0.01	F102295
1A00094-01RE1	M 51.082	75.1	115.5	228.84	228.85	84.5	0.337	OK	228.7941	0.00	0.01	F102295
1A00094-01RE1	H 3.277	119.0	139.0	228.85	228.86	127.0	0.031	OK	228.7941		0.01	F102295

Name	Area	Start Time	e EndTime	StartValu	e EndValue	Peak Max	PeakHeigh	t Flags	Baseline	BlDev	BlShift	Comment.
SEQ-CCV2	86.661	75.6	119.0	228.80	228.83	84.8	0.580	CT	228.7643	0.00	0.01	

CVAFS Detector (mV) * Extra Peaks [____MainPeak baseline

SEQCCB2 1.528 78.0 93.9 228.80 228.80 86.8 0.020 OK 228.7474 0.00 0.04	Name SEQ~CCB2	Area 1.528	Start Time 78.0	EndTime 93.9	StartValue 228.80	e EndValue 228.80	Peak Max 86.8	PeakHeight 0,020	Flags OK	Baseline 228.7474	BlDev 0.00	Blshift 0.04	Comment
--	------------------	---------------	--------------------	-----------------	----------------------	----------------------	------------------	---------------------	-------------	----------------------	---------------	-----------------	---------

Name Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
F102295-M52 Hg0 0.335	42.4	75.0	228.76	228.82	74.3	0.059	CT	228.7559	0.00	0.05	F102295
F102295-M52 MHg 165.398	75.7	118.3	228.82	228.87	85.2	1.126	OK	228.7559	0.00	0.05	F102295
F102295-M52 Hg1 2.173	123.6	136.8	228.88	228.86	127.7	0.020	OK	228.7559	0.00	0.05	F102295
FIU2230-M52 Hgt 2,173	123.0	130.0	228.88	228,80	121.1	0.020	OK	228.7559	0.00	0,05	F10229

Name	Area	Start Time	EndTime	StartValue 228.77	EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
F102295-MSD2 Hg	12,051	47.3	70.9		228.83	56.3	0.134	OK	228.7813	0.00	0.06	F102295
F102295-MSD2 MH	164.086	75.4	114.3	228.84	228.92	85.3	1.149	OK	228.7813	0.00	0.06	F102295
F102295-MSD2 Hg	151.880	119.0	168.8	229.01	228.68	129.0	0.708	OK	228,7813		0.06	F102295

CVAFS Detector (mV) * Extra Peaks : MainPeak baseline

Nama Area	Start Time	e EndTime	StartValue	EndValue	Pcak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
3A00004+01RE1 M 6.339	77.3	108.6	228.65	228.85	88.5	0.040	OK	228.8013	0.00	0.04	F102295
1A00004-01RE1 H 2.817	120.7	137.4	228.86	228.86	130.1	0.028	OK	228.8013	0.00	0.04	F102295

Manne Static fille Static fille Static fille F	ak Max PeakHeight Flags Baseline Bibev Hishift .8 0.098 OK 228,8057 0.00 -0.01 .4 0.127 OK 228,8057 0.00 -0.01 0.6 0.535 OK 228,8057 0.00 -0.01	Comment F102295 F102295 F102295
--	---	--

1A00001-03RE1 H 18.267 119.0 174.6 228.86 228.84 130.6 0.513 0K 228.7910 0.00 (1A00004-03RE1 M 5.254 76.6 1A00004-03RE1 H 118.267 119.0	100.2 228.85 174.6 228.86	228.84 228.85 228.84	56.5 85.7 130.6	0.042 0.513	OK OK	228.7910 228.7910 228.7910	0.00 0.00 0.00	0.04 0.04 0.04	F102295 F102295 F102295
---	---	------------------------------	----------------------------	-----------------------	----------------	----------	----------------------------------	----------------------	----------------------	-------------------------------

CVAFS Detector (mV) * Extra Peaks []] MainPeak baseline

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1A00004-04RE1 H	3,058	48.4	65.4	228.81	228.84	60.8	0,051	OK	228,8100	0,00	0.03	F102295
1A00004~04RE1 M	11.754	75.2	106.8	228.85	228.86	83.6	0,083	OK	228.8100	0.00	0.03	F102295
1A00004-04RE1 H	12.156	119.0	147.2	228.86	228,87	128.2	0.086	OK	228,8100	0.00	0.03	F102295

CVAFS Detector (mV) * Extra Peaks MainPeak baseline

Name A	1784 5	Start Time	EndTimc	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1A00019-01RE1 H 0	1.736 5	50.9	75.0	228.83	228.87	74.4	0.037	CT	228.8302	0.00	0.04	F102295
1A00019-01RE1 M 2	1.450 7	76.5	99.0	228.87	228.87	81.4	0.022	OK	228.8302	0.00	0.04	F102295
1A00019-01RE1 H 1	1.797 1	122.1	137.7	228.88	228.88	130.5	0.017	OK	228.8302	0.00	0.04	F102295

Name 1A00019-02RE1 H	Area 17,844	Start Time 45.9	EndTime 70.3	StartValue 228,83	EndValue 228.89	Peak Max 56.2	PeakHeight 0.191	Flags OK	Baseline 228.8379	BlDev 0.00	11111	Comment F102295
1A00019-02RE1 M 1A00019-02RE1 H	531.748 452.082	75.5 119.0	115.8 179.4	228.90 229.40	229.21 228.94	85.6 129.1	3.716 2.022	OK OK	228.8379 228.8379	0.00	101	F102295 F102295

CVAFS Detector (mV) * Extra Peaks [___ MainPeak baseline

Name Area Statt line Statt vite Statt vite Statt vite 1A00019-03RE1 M 3.838 76.1 116.3 228.87 228.88 1A00019-03RE1 M 3.3321 119.0 153.6 228.90 228.91	Peak Max PeakHeight 85.1 0.291 128.3 0.204	CK 228,8134 OK 228,8134	81Dev 0.00 0.00	0.02 7 0.02	Comment F102295 F102295
---	--	----------------------------	-----------------------	----------------	-------------------------------

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	B1Shift	Comment
1A00019-04RE1 M	38.492	75.8	114.8	228.85	228.35	84.6	0.260	OK	228.7802	0.00	0,05	F102295
1A00013-04RE1 N	28.915	119.0	152.9	228.88	228.88	128.8	0.169	OK	228.7802	0.00	0.05	F102295

Name	Area	Start Tim	e EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
SEQ-CCV3 Hg0	2.223	49.6	74,7	228.81	228.85	73.9	0.045	OK	228.8083	0.00	0.06	
SEQ-CCV3 MHg	90.510	75.8	119.0	228.85	228.88	85.0	0.610	CT	228.8083	0.00	0.06	

🞬 CVAFS Detector (mV) ° Extra Peaks 📋 MainPeak baseline

Nama Ax	rea S	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDav	BlShift	Comment
1A00094-02RE1 M 72	2.833 7	75.3	119.0	228.85	228.87	84.7	0,493	CT	228.8018	0.00	0.03	F102295
1A00094-02RE1 H 10	2.831 1	120.8	144.8	228.88	228.87	129.3	0.079	OK	228.8018	0.00	0.03	F102295

Name Area	Start Tin	ne EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
F01229/-BSD1 Hg 5,358	47.6	66.7	228.82	228.85	55.5	0.073	OK	228.8139	0,00	0.07	F102297
F012297-BSD1 MH 352,627	75.0	119.0	228.88	229.03	85.0	2.402	CT	228.8139	0.00	0.07	F102297
F012297-BSD1 Hg 13,662	120.8	147.1	229.02	228.95	128.8	0.084	OK	228.8139	0.00	0.07	F102297

CVAFS Detector (mV) ° Extra Peaks MainPeak baseline

Name Area	Start Ti	me EndTime	StartValu	e EndValue	Peak Max	PeakHeigh	t Flags	Baseline	BlDev	BlShift	Comment
F012297-BLK1 MH 5.32	3 75.8	102.3	228.87	228.87	86.9	0.047	OK	228.8183	0.00	0.01	F102297
F012297-BLK1 Hg 3.41	6 119.4	139.9	228.86	228.87	128.2	0.028	OK	228.8183	0.00	0.01	F102297

CVAFS Detector (mV) ° Extra Peaks (``` MainPeak baseline

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
F012297-BLK2 MP	2.796	76,2	99.4	228.87	228.87	87.5	0.023	OK	228.8082	0,00	0.04	F102297
F012297-BLK2 Hç	1.960	121.8	137.8	228.86	228.86	128.3	0.021	OK	228.8082	0.00	0.04	F102297

CVAFS Detector (mV) ° Extra Peaks C MainPeak baseline

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
F012297-BLK3 MH	5.210	76.8	113.5	228.88	228.88	88.8	0.032	OK	228.8400	0.00	0.05	F102297
F012297-BLK3 Hg	2.449	120.2	137.9	228.89	228.89	125.9	0.027	OK	228.8400	0.00	0.05	F102297

Namu	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1809007-01 Hg0	5.088	47.8	67.0	228.88	228,92	56.5	0.069	OK	228,8951	0.00	0.02	F102297
1800007-01 MHg	643.998	75.0	119.0	228.93	229.21	85.0	4.360	CT	228,8951	0.00	0.02	F102297

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
F012297-MS1	759.923	75.0	119.0	228.88	229.17	84.8	5,144	CT	228.8314	0.00	0.04	F102297

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
F012297-MSD1 Hg	10,733	48.5	69.9	228.84	228.39	54.9	0,117	OK	228.8436	0.00	0.05	F102297
F012297-MSD1 MH	737.855	75.0	119.0	228.90	229.19	84.7	4.976	CT	228.8436	0.00	0.05	F102297

Hg0 MHg	Area 4.511 630.462	Start Time 40.2 75.0	EndTime 66.1 119.0	StartValue 228.84 228.90	EndValue 228.89 229.14	Peak Max 55.6 84.6	PeakHeight 0.069 4.281	Flags OK CT	Baseline 228,8531 228.8531	BiDev 0.00 0.00	BlShift 0.03 0.03	Comment F102297 F102297
------------	--------------------------	----------------------------	--------------------------	--------------------------------	------------------------------	--------------------------	------------------------------	-------------------	----------------------------------	-----------------------	-------------------------	-------------------------------

Name	Area	Start Tìm	e EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
SEQ-CCV4 Hg0	3.186	48.7	64.0	228.85	228.88	56,3	0.059	OK	228.8519	0.00	0.00	
SEQ-CCV4 MNg	99.543	75.8	119.0	228.90	228.92	84,9	0.643	CT	228.8519	0.00	0.00	

CVAFS Detector (mV) * Extra Peaks [] MainPeak baseline

Name	Area	Start Tim	e EndTime	StartValu	e EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
SEÇ-CCB4	5.446	75.8	102.0	228.88	228.89	82.5	0.042	OK	228,8265	0.00	0.05	

CVAFS Detector (mV) ° Extra Peaks [MainPeak baseline

Namu A	rea	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BiShift	Comment
F012297-MS2 Hg0 4	.210	48.8	62.5	228.86	228,89	55.7	0.072	OK	228.8576	0.00	0.04	F102297
F012297-MS2 MHg 8	16.105	75.0	119.0	228.91	229,22	84.4	5.533	CT	228.8576	0.00	0.04	F102297

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
F012297-MSD2 Hg	6.819	48.0	67.7	228.86	228.90	55,5	0.089	OK	228.8609	0.00	0.04	F102297
F012297-MSD2 MH	593.303	75.2	119.0	228.92	229.17	85.4	4.081	CT	228.8609	0.00	0.04	F102297

CVAFS Detector (mV) ° Extra Peaks [___ MainPeak baseline

Name 1800001-01 Hg0	Area 5,245	Start Time 47.8	EndTime 63.5	StartValue	EndValue 228.86	Peak Max	PeakHeight	Flags	Baseline 228 8373	BlDev 0.00	BlShift 0.02	Comment F102297
1B00001-01 MHg 1B00001-01 HgII	11.918 3.551	75.0 119.6	105.2 140.0	228.88 228.88	228.88	85.9 127.9	0.078	OK	228.8373 228.8373	0.00	0.02	F102297 F102297

CVAFS Detector (mV) ° Extra Peaks I MainPeak baseline

Name	Area	Start Ti	me EndTime	StartValı	e EndValue	Peak Max	PeakHeigh	t Flags	Baseline	BlDev	BlShift	Comment
1300001-02	8.741	75.0	111.4	228,89	228.88	86.5	0.045	OK	228.8465	0.00	0.03	F102297

100000/=02 ngii 27/20 120/0 120/0 120/0 250/27 250/24 122/2 0.0X2 OK 258/26/0 0.00 0.04 1055	Name 1800007-02 Hg0 1800007-02 MHg 1800007-02 HgII	Area 8.326 179.188 3.730	Start Time 47.7 75.0 120.0	EndTime 68.7 118.9 139.8	StartValue 228.86 228.91 228.97	EndValue 228.90 228.97 228.94	Peak Max 56.7 84.8 125.9	PeakHeight 0.098 1.221 0.025	Flags OK OK OK	Baseline 228.8670 228.8670 228.8670 228.8670	BlDev 0.00 0.00 0.00	BlShift 0.04 0.04 0.04	Comment F102297 F102297 F102297
--	---	-----------------------------------	-------------------------------------	-----------------------------------	--	--	-----------------------------------	---------------------------------------	-------------------------	--	-------------------------------	---------------------------------	--

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	B1Shift	Comment
1800007-03 Hg0	4.103	49.2	64.8	228.87	228.89	55.7	0.049	OK	228.8757	0.00	0.03	F102297
1800007-03 MHg	177.389	75.3	119.0	228.91	228.99	84.9	1.210	CT	228.8757	0.00	0.03	F102297

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDe**	B1Shift	Comment
1800007-04 Hg0	4.260	47.9	68.2	220.88	228.90	55.8	0.056	OK	228.8811	0.00	0.02	F102297
1800007-04 MHg	231.052	75.0	119.0	228.92	229.01	84.9	1.567	CT	228.8811	0.00	0.02	F102297

1B00007-05 MHg 311.203 75.2 119.0 228.92 229.04 84.6 2.119 CT 228.8879 0.000 0.04	00007-05 Hg0 3.7 000007-05 MHg 311	3.767 48.6 311.203 75.2	73.9 119.0	228.87 228.92	228.92 229.04	72.8 84.6	0.058 2.119	OK CT	228,8879 228,8679	0.00	0.04	F102297 F102297
---	---------------------------------------	----------------------------	---------------	------------------	------------------	--------------	----------------	----------	----------------------	------	------	--------------------

CVAFS Detector (mV) ° Extra Peaks [___ MainPeak baseline

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	B1Shift	Comment
1800007-06 Hg0	8,469	47.9	73.3	228.87	228,91	55.0	0.087	OK	228.8832	0.00	0.01	F102297
1800007-06 MHg	279.700	75.0	119.0	228.91	229.03	84.9	1.897	CT	228.8832	0.00	0.01	F102297

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Pageline	BlDev	Blshift	Comment
1800007-07	264.226	75.0	119.0	228,90	228.99	84.9	1,766	CT	228.8525	0.00	0.03	F102297

Name	Area	Start Time	e EndTime	StartValue	a EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
SEC-CCV5 Hg0	3.606	47,4	64.8	228.85	228,89	56.7	0.062	OK	228.8673	0.00	0.05	
SEQ-CCV5 MHg	98.835	75.8	118.2	228.91	228,95	85.0	0.670	OK	228.8673	0.00	0.05	

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
SEQ-CCB5 Hg0	0.085	54.7	75.0	228.91	228.93	74.7	0.023	CT	220.9055	0.00	-0.01	
SEQ-CCB5 MNg	4.280	76.4	99,9	228.94	228.94	83.3	0.036	OK	228.9055	0.00	-0.01	

CVAFS Delector (mV) ° Extra Peaks 🦳 MainPeak baseline

Name	Area	Start Tim	ne EndTime	StartValu	e EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
1800008-01	3.224	75.8	96.5	228.91	228.91	86.0	0.028	OK	228.8662	0.00	0.03	F102297

CVAFS Delector (mV) ° Extra Peaks Aan Peak baseline

Namo	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1800009-01 Hg0	4.703	47.7	65.5	228.87	228.91	55.5	0.072	OK	228.8739	0.00	0.03	F102297
1800009-01 MHg	26.497	75.0	111.7	228.93	228.94	85.1	0.182	OK	228.8739	0.00	0.03	F102297
1800009-01 HgII	1.051	119.4	133.6	228.93	228.94	126.2	0.015	OK	228.8739	0.00	0.03	F102297

CVAFS Delector (mV) ° Extra Peaks []] MainPeak baseline

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	Blshift	Comment
1800015-01	191.932	75.5	119.0	228,95	229.02	85.1	1.294	CT	228.9063	0.00	0.00	F102297

CVAFS Detector (mV) * Extra Peaks 📜 MainPeak baseline

Namu	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	B1Sh1ft	Comment
1800015-02 Hg0	2.723	48.0	74.8	228.87	228.93	72.4	0.057	OK	228.8757	0.00	0.02	F102297
1800015-02 MHg	277.414	75.0	119.0	228.93	229.01	84.8	1.891	CT	228.8757	0.00	0.02	F102297

Name	Area	Start Time	EndTime	StartValue	e EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
1800015-03 Hg0	1.588	46.7	75.0	228.88	228.94	74.9	0.055	CT	228.8820	0,00	0.05	F102297
1800015-03 MNg	379.224	75.0	119.0	228.94	229.07	84.8	2.566	CT	228.8820	0.00	0.05	F102297

CVAFS Detector (mV) * Extra Peaks

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1800017-01 Hg0	9.464	47.3	71.7	228,90	228.95	56.5	0.104	OK	228.9093	0.00	0.01	F102297
1800017-01 MHg	34.457	76.3	112.8	228,95	228.96	85.1	0.235	OK	228.9093	0.00	0.01	F102297

CVAFS Detector (mV) * Extra Peaks [] MainPeak baseline

Name	Area	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
1800019-01 Hg0	2.423	49.4	66.5	228.88	228.91	55.2	0.039	OK	228.8767	0.00	0.04	F102297
1800019-01 MHg	66.877	75.0	119.0	228.92	228.95	84.6	0.447	CT	228.8767	0.00	0.04	F102297

CVAFS Detector (mV) ° Extra Peaks [_____ MainPeak baseline

Namo	Arca	Start Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	B1Dev	BlShift	Comment
1800020-01 Hg0	4.434	47.3	62.4	228.87	228.93	56.6	0,085	OK	228.8866	0.00	0.04	F102297
1800020-01 MHg	354.426	75.0	119.0	228.94	229.07	85.0	2,425	CT	228.8866	0.00	0.04	F102297

CVAFS Delector (mV) * Extra Peaks

Name	Area	Start Tíme	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	BlShift	Comment
1B00024-01	6.771	77.2	105.8	228.97	228.96	83.5	0.040	OK	228.9253	0.00	0.01	F102297

```
Page 94 of 116
```


CVAFS Detector (mV) * Extra Peaks [__ MainPeak baseline

Name Are	ea St.	art Time	EndTime	StartValue	EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	0:0:0:0:1	Comment
1809025-01 MHg 4.2	221 75	.8	104.4	228.92	228.92	87.2	0.032	OK	228.8765	0.00	0:0:0	F102297
1800025-01 HgII 1.2	318 11	9.5	133.9	228.90	228.90	124.1	0.017	OK	228.8765	0.00	0:00	F102297

CVAFS Detector (mV) * Extra Peaks

Name Area	Start Time EndTime	StartValue EndValue	Peak Max	PeakHeight Flags	Baseline	BlDev	BlShift	Comment
SEQ-CCV6 83.292	75.0 119.0	228.94 228.96	85.1	0.576 CT	228.8912	0,00	0.03	

CVAFS Detector (mV) ° Extra Peaks 厂 MainPeak baseline

Name	Area	Start Tim	e EndTime	StartValu	e EndValue	Peak Max	PeakHeight	Flags	Baseline	BlDev	Blshift	Comment
SEQ-CC36	3.435	78.5	102.1	228.95	228.95	83.0	0.023	OK	228.9003	0.00	0.04	

1B12001

Analyzed with 1 BIZOOZ

Instrument: Hg2600-3

Calibration ID: UNASSIGNED

				T	Analyzed: 2/11/202
Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
1B12001-IBL1	QC	1			
1B12001-IBL2	QC	2			
1B12001-IBL3	QC	3			QUALITY HEED PANCE
1B12001-CAL1	QC	4	2100111		and man have been been it is him of it is have been
1B12001-CAL2	QC	5	2100112		I have been tool to the been by the same been by
1B12001-CAL3	QC	6	2100078		INITIALO, DIC
1B12001-CAL4	QC	7	2100079		
1B12001-CAL5	QC	8	2100080		
1B12001-ICV1	QC	9	2002777		
1B12001-ICB1	QC	10	┼──┤		
1B00053-01	Hg-CVAFS-W-1631	11	<u>†</u> −−−†	+	
1B00053-01RE1	Hg-CVAFS-W-1631	12			Added 2/10/2021 by MES
1B00053-01RE2	Hg-CVAFS-W-1631	13	<u>├──</u> ┤	-+	Added 2/10/2021 by MES
1B00053-02	Hg-CVAFS-W-1631	14	├─── <u></u> ┼	+	110000 2/10/2021 by MFS
1B00053-02RE1	Hg-CVAFS-W-1631	15			Added 2/10/2021 by MPS
1B00053-02RE2	Hg-CVAFS-W-1631	16			Added 2/10/2021 by MES
1B00053-03	Hg-CVAFS-W-1631	17			
1B00053-03RE1	Hg-CVAFS-W-1631	18		-+	Added 2/10/2021 by MES
B00053-03RE2	Hg-CVAFS-W-1631	19			Added 2/10/2021 by MFS
B12001-CCV1	QC	20	2002777	-+	
B12001-CCB1	QC	21	+		
B12001-CCV2	QC	22	2002777		
B12001-CCB2	QC	23			
B12001-CCV3	QC	24	2002777		
B12001-CCB3	QC	25			
B12001-CCV4	QC	26	2002777		
B12001-CCB4	QC	27			
B12001-CCV5	QC	28	2002777		
312001-CCB5	QC	29			
312001-CCV6	QC	30 2	2002777		
312001-CCB6	QC	31			
02311-BS1	QC	32			
02311-BSD1	QC	33			
02311-BLK1	QC	34			
02311-BLK2	QC	35		<u> </u>	
02311-BLK3	00	36			

Page 98 of 116

1B12001

Instrument: Hg2600-3

Calibration ID: UNASSIGNED

					Analyzed: 2/11/202
Lab Number	Analysis	Orde	er STD I	D ISTD I	
F102311-BLK4	QC	37		+	Comments
F102311-BLK5	QC	38		+	
IA00113-08RE1	Hg-CVAFS-W-1631	39		+	Bashoo
1A00113-08RE1	Hg-CVAFS-W-1631 DOD	40		+	
1A00113-08RE1	Hg-CVAFS-W-1631-WI DNR	41		+	BatchQC
F102311-MS1	QC	42	+		IUA: E MFS 2/9/21
1B12001-CCV7	QC	43	2002777	/	
1B12001-CCB7	QC	44		+	
F102311-MSD1	QC	45	+		
1B00004-01	Hg-CVAFS-W-1631	46	+		
1B00027-02	Hg-CVAFS-W-1631	47	+		
1B00027-04	Hg-CVAFS-W-1631	48			
1B00027-06	Hg-CVAFS-W-1631	49	+		
1B00045-01	Hg-CVAFS-W-1631 DOD	50			
1B00045-02	Hg-CVAFS-W-1631 DOD	51			
1B00045-03	Hg-CVAFS-W-1631 DOD	52	+		
B00045-04	Hg-CVAFS-W-1631 DOD	53			
B00050-01	Hg-CVAFS-W-1631	54	┼───┤		
B12001-CCV8	QC	55	2002777		
B12001-CCB8	QC	56			
B00050-02	Hg-CVAFS-W-1631	57	╞──┤		
B00050-03	Hg-CVAFS-W-1631	58	┝───┼		
B00050-03	Hg-CVAFS-W-1631 DOD	59			
300050-03	Hg-CVAFS-W-1631-WI DNR	60	├───┼		BatchQC
02311-MS2	QC	61			BatchQC
02311-MSD2	OC	62			
800050-04	Hg-CVAFS-W-1631	63			
000050-05	Hg-CVAFS-W-1631	64			
00050-06	Hg-CVAFS-W-1631	65			
12001-CCV9	00	66	2002777		
12001-CCB9	00	67	2002///		
		0/	1		

Samples Loaded By

2/nt1 Date

<u>Jel 1/12/71</u> Date

Peer Review Check List for THg by 2600 CV-AFS (SOP2822) 2016 Rev 1 (04/1/2016)

Analyst:	KG/ MFS (DE) S	equence(s) #:	1B12001
Reviewer:	D	ataset ID(s):	THg26003-210211-3
Date:	<u>2/12/2021</u> W	/O (s) #:	Multiple
Batch #(s):	<u>F102307, F102311</u>		

Select the correct preparation method.

Analyte	Prep Method		Matrix
П ТНд	EFAFS-T-AFS-SOP2985	FSTM Trap 70:30 Digest	Air/Gas
П ТН9	EFAFS-T-AFS-SOP2807	Modified Cold Aqua Regla	Sed/Soil
П тнд	EFAFS-T-AFS-SOP2821	Shared Bomb- HF/HNO3/HCI Digest	Sed/Soil
П тня	EFTM-T-TM-SOP2825	Nitric Acid Oven Bomb	Sed/Soil
🗆 тнg	EFAFS-T-AFS-SOP2795	70:30 Digest	Tissue
П ТНд	EFAFS-T-AFS-SOP2800	KCI Trap BrCI Oxidation	Air/Gas
TH0	EFTM-T-TM-SOP2837	Shared Nitric	Tissue
THg	EFSR-P-SP-SOP2796	BrCI Oxidation	Water
Hg0	NA	NA	Water
Inorg Hg	NA	NA	Water

Analyst Initials: M25	Review	s Pf	5	
 Compare SampleID with Benchsheet/Sequence/Raw Data (Have all samples been imported?) Check for transcription errors from Excel spreadsheet (or Prep Benchsheet)/Raw data (a) On raw data (instrument point or b) (YES			-
 (a) On Yaw data (instrument print-out), does correct file (dataset ID#) name appear in description? Naming convention: THg26001-yymmdd-1 or THg26002-yymmdd-1 (b) Check 5% of transcription from Instrument print-out and Excel file Compare the "Dilute" and "Doels (or ymmune) in the second	YES			
 (c) Check standards & reagents in sequence & bench sheet for correct usage (expiries). (d) Check and compare masses (review prep benchsheet) (e) Check & compare initial & final volumes (f) Do aliquots and dilutions written on benchsheet match those in Excel? 50 ml / aliquot = Excel dilution value 	VES VES VES	- NO - NO - NO - NO	N/A N/A N/A N/A	
 (g) Is the sequence #, analyst, date, and instrument # on the QC page? (h) Is the analysis status correct? (analyzed/initial review/reviewed) (i) Original prep bench sheet added to data package? (j) Benchsheet prep date MUST match actual prep date (check if re-shot vs re-extract) 3. High QA? 	YES YES YES	NO NO NO NO NO		
 4. Client specific QC? (if Yes, refer to Project Notes/LIMS) (a) Have the QC requirements been met for all WO#s? (b) Prep blanks corrections/assigned properly 	YES			
 5a. 20 or fewer samples in batch? (i) 3 PBs, 1 LCS(or BS), 1 LCSD(or BSD), 1 DUP/Batch 1 MS/MSD (or AS/ASD)/10 samples? (ii) 1 CCV and 1 CCB every 10 analytical runs? 	Ves			

2(

2016 Rev 1 (04/1/2016	Peer R	Review C	heck List for	THg by	2600 CV-AFS	(SOP2822)	2016 Rev 1	(04/1/2016)
-----------------------	--------	----------	---------------	--------	-------------	-----------	------------	-------------

Analyst:	KG/MFS (DE)	Converse (a) de ADAgaga			
Reviewer:			0244.9		
Date:	2/12/2021	WO (s) # Multiple	0211-3		
Batch #(s):	F102307, F102311				
			Reviewer		
		Analyst Initials	Initiais	<u>}</u>	_
5b. Has the B	/C section data been uploaded?		TYES TNO	N/A	
QA/QC Data (Checked			La Ma	
6. RSD <u>C</u> F (≤	15%)				
Comments	۲		L PASS L PAIL		
7. The calibrati	ion curve included a minimum of 5 Standards				
Comments:					
8. 1st Calibration	on Standard % Recoveries EPA 1631E (75-12	(5%)			
9. ICV and CCV	V % Recoveries EPA 1631E (77-123%)				
Comments:					
10. Do all calibr	ration points pass acceptance criteria?		VEC TI		_
Comments:					
11.Are qualifier:	s consistant with the data review flowcharts?		YES NO		
Comments:			· · · · ·		<u> </u>
12. Explain any	items on the failed data report from Element				
Comments:		_			L
3. Are the individ	dual Preparation Blanks < PQL or <2.2xMDL for W	(refer to appropriate prep method PQI (ist)			
(a) If not < PC	QL or <2.2xMDL for WI, note which PB(s) are a	above control limit:			
(b) Is the mea	in PB < PQL or <2.2xMDL for WI (for appropria	ate qualification)?			
(c) Was a BrC	Blank analyzed for each preservation level?	•		—	
(d) Are Prepar	ration Blanks summarized on QC page?			L] N/A	
4. Filtration Blar	nk Prepared (if yes, use FB qualifier)				
(a) Filtration B	lank prep date same as associated samples' p	prep date			
(b) Filtration Bl	lank absolute value < PQL or <2.2xMDL for W	1			
5. IBLs (3 minim	num) individually < 0.50 ng/L, mean < 0.25 ng	I/L and STD of 0.10 ng/L?			
Comments:					LI
. CCBs individu	ally < 0.50 ng/L or 2.2 x MDL for WI?		PASS T FAT		
Comments:					
. Have Total So	lids been applied? (If NO, please ensure that	they are done or nearly done)			
. Is the correct '	Source' designated for MD/MS/MSD?	,		<u></u> N/A	
. For digested p	reps: was there a spike witness signature & da	ate on the prep bench sheet?			
		1 - P		N/A	

2

Peer Review Check List for	THg by 2600 CV-AFS ((SOP2822) 2016	Rev 1 (04/1/2016)

Analyet						
Reviewer:	KG/ MFS (DE)	Sequence(s) #: 1B12001				
Date	2/12/2021	Dataset ID(s):THg26003-210211-3				
Batch #(s):	E102307, E102311	WO (s) #: Multiple				
		Analyst Initials	Review	er ph	\$	
20. MS/MSD	Spiked at least 1-5 X ambient or 5x MRL (w	whichever is higher) ?				-
Comments:			4			L
21. Are all sar	nples within instrument calibration range? (Or at minimum dilution size)		EAT!		
Comments:						
22. Are the sa	mples run at the correct dilution level for the	e method?	VES			
Comments:	_		123			
23. Dissolved	< Total (if applicable)					
Comments:					M/A	
24. Effluent < 1	Influent (visually confirm if needed)					
Comments:	· · · · · · · · · · · · · · · · · · ·		Laries		L N/A	
25. Are re-runs	noted with reason?					
Comments:			. 🛃 TES	LI NO	N/A	
26. FSTM Data	sets: Check to ensure the 'Response' & 'Ini	itial Result' columns match in both the Excel dataset & LIMS	for YES			
the FSTM A (in	sequence) & B/C (in batch) traps?				L_ N/A	
Comments:						
27. Is the B tra	ıp <5% A Traps		YES	NO	□ N/A	
Comments:						
28. Are spiked t	trap recoveries75-125% of true value?		YES	NO NO	N/A	
Comments:						
29.Have non-re	eportable samples been imported into LIMS	and clicked to non-reportable?	YES	NO NO	N/A	
Comments:						
0. Have re-extr	racts been created for non-reportable sampl	les?	YES	NO	N/A	
 Are there an office before sca 	iy HIGH QA projects within the data? If so, ; inning.	place data package in QA	YES	NO	N/A	
2. Does the dat	ta set need scanning?		YES		N/A	
3. Does the dat	taset have an LOQ/LOQ or DOC?		YES		N/A	
4. Water sampl	es: has the preservation log been included i	in dataset for final volume verification?	YES	🗌 NO	N/A	
5. Water sampl	es-is the final volume correct in the sequen	ice?	YES	NO NO		
iles located at	: \\Cuprum\gen_admin\Quality Assuranc	e\Training Master\DOCs			L	
3. Date of analy	st IDOC/CDOC: 1/22/2	IDOC/CDOC within last 12 month	s? YES			
7. Date of analy	st's SOP reading for method:		H2 YES			
. Date of LOD:		122(2) LOD within last 3 months	2 VES			
J. Date of LOQ:		122(2) 100 within last 3 months	2 TES			
			of 🗡 –			

Data can not be reported without a current IDOC/CDOC, LOD or LOQ.

	Peer Review Check List	for THg by 26	00 CV-AFS (SOP2822) 2016 Rev 1 (04/1/2016)
Analyst:	KG/ MFS (DE)	Sequence(s) #:	1B12001
Reviewer:		_Dataset ID(s):	THg26003-210211-3
Date:	2/12/2021	WO (s) #:	Multiple
Batch #(s):	F102307, F102311	-	

40. Peer Reviewer's comments (use Peer Review Checklist Additional Comments form if necessary):

Additional Page (s)?

1	105	to 06 ət	Pag				
		alifier					
		φ					
		au					
		Failt					
		Dver Cal	0				
		PD					
		0 8 J					
Ľ		E. RI	NI				
		E. Re					
		tec. LC Re					
		ts %					
		e Cui	Peer I				
		ce Tru lt Valı	,				
		p Sour ult Rest					
		L Du	2				
		ult MR	Date				
		Res	à				
	2001						
	- 1B1		N N				
	keport	Analysis	By				
	Data R		viewed				
	l guiliu	ple ID	lalyst Re				
	Fa	Sam	AI A			Page 10	4 of 116

Page 1 of 1

PREPARATION BENCH SHEET

F102307

Eurofins Frontier Global Sciences, LLC

Prepared: 2/10/2021 Added 2/10/2021 by MFS Added 2/10/2021 by MFS Added 2/10/2021 by MFS Added 2/10/2021 by MFS Added 2/10/2021 by MFS Added 2/10/2021 by MFS Analysis Comments Hg Lab Added 2/10/2021 by MFS Added 2/10/2021 by MFS Added 2/10/2021 by MFS Hg Lab Added 2/10/2021 by MFS Added 2/10/2021 by MFS Hg Lab Added 2/10/2021 by MFS Sample Comments Prepared using: Trace Metals - EFGS SOP2796 EPA 1631 Oxidation Hg Lab Hg Lab Hg Lab Sample Location Specs. Hg Lab Hg Lab Hg Lab ı . ŧ ī i ı QC Sample ī i . i Final 50.5 50.5 (mL) 50.5 50.5 50.5 50.5 50.5 50.5 50.5 Initial (mL) 50 50 50 20 50 20 50 ŝ 20 BrCl Lot Test 2100335 Bottle 1 BrCl Lot Test 2100335 Bottle 3 BrCl Lot Test 2100335 Bottle 1 BrCl Lot Test 2100335 Bottle 3 BrCl Lot Test 2100335 Bottle 3 BrCl Lot Test 2100335 Bottle 4 BrCl Lot Test 2100335 Bottle 1 BrCl Lot Test 2100335 Bottle 4 BrCl Lot Test 2100335 Bottle 4 Sample ID Matrix: Water 1B00053-01RE2 1B00053-03RE2 1B00053-01RE1 1B00053-02REI 1B00053-02RE2 1B00053-03RE1 Lab Number 1B00053-01 1B00053-02 1B00053-03

MA WALCE. ALLARY CEACH DOTTIC IN UTDICATE - MFS 2/10/21

PREPARATION BENCH SHEET

Eurofins Frontier Global Sciences, LLC F102307

Matrix: Water

L

Prepared using: Trace Metals - EFGS SOP2796 EPA 1631 Oxidation

ſ

								Prepared: 2/10/2021
Lab Number	Sample ID	Initial (mI)	Final	QC Sample	Sample Specs	Location		
1B0052-01	D-MIT-IT INTONE	(mm)	(-mm)				Sample Comments	Analysis Comments
In-conner	DICI LOT JEST 2100335 Bottle 1	50	50.5	1		Hg Lab		
1B00053-01RE1	BrCl Lot Test 2100335 Bottle 1	05	5.0.5		Ť	Ť		
		Ś	r.0c	•	ı	Hg Lab	Added 2/10/2021 by MFS	Added 2/10/2021 by MFS
1B00053-01RE2	BrCl Lot Test 2100335 Bottle 1	50	50.5		ſ	T		
					,	Hg Lab	Added 2/10/2021 by MFS	Added 2/10/2021 by MFS
11500053-02	BrCl Lot Test 2100335 Bottle 3	50	50.5					
1 D0061 0001	1 50				-	Hg Lab		
TONZO-CCOOMT	BICI Lot Test 2100335 Bottle 3	50	50.5	'	-		Added 2/10/2001 1 - 2000	
1B00052 02854					_	ug ran	SHW & 1707/01/7 mmm	Added 2/10/2021 by MFS
73N20-CC000GT	BTCI LOT lest 2100335 Bottle 3	50	50.5		•	1-1-1	Added 2/10/00011. Lance	
1 DOVES 03	i I I				_	מוצרו אנט	SHW fg 1707/01/2 manner	Added 2/10/2021 by MFS
CD-CCARACT	BICI LOT LEST 2100335 Bottle 4	50	50.5	•	,	Ho Lah		
1B00053-03RF1	Brfl I of Tout 1100325 P	T				and de		
	1017 FOI 1021 7100333 120116 4	20	50.5	•		In Lob	Added 2/10/2021 1 MTC	
1B0062 03BE0					-	UBJ ST	SJW 60 1707/01 7 100000	Added 2/10/2021 by MFS
TD00000-03KEZ	BTCI Lot Test 2100335 Bottle 4	50	50.5	•			Adda 2/10/2014 Long Padda	
					-	15 140	SJW 60 1707/01 7 mmm	Added 2/10/2021 by MFS
				Ċ		1		

mL 0.21N DICI + 30UL Hyd. HCI -> 50 mL F.V. MQ Water. Analyze each bottle in triplicate - MFS 2/10/21

PREPARATION BENCH SHEET

F102311

Eurofins Frontier Global Sciences, LLC

Matrix: Wate	repared usi	ng: Trace I	Metals - EF	GS SOP279)6 EPA 1631	l Oxidation		Prepared: 2/11//	/2021
Lab Number	Sample ID and Source Sample	Imitial (mL)	Final (mL)	Smikel ID	μl Snikel	CI Carlino	μl Sait-o		
F102311-BLK1	Blank	50	50.5	ar yound	Instruction		ZONIC	DAUACHOR CORDINERTS	
F102311-BLK2	Blank	50	50.5						Τ
F102311-BLK3	Blank	50	50.5						
F102311-BLK4	WI-DNR Preservation Blank	50	50.5						
F102311-BLK5	5% Method Blank	50	50.5						
F102311-BS1	ICS	50	50.5	2100046	25				
F102311-BSD1	LCS Dup	50	50.5	2100046	25				
F102311-MS1	Matrix Spike [1A00113-08RE1]	0.4950495	0.5	2100046	25			[Sok] 50m[>50.5m] : 0.5m]0.5m]	2
F102311-MS2	Matrix Spike [1B00050-03]	50	50.5	2100046	25			IIIC'O TANIda Suttana antina bertana antina E.J.I	
F102311-MSD1	Matrix Spike Dup [1A00113-08RE1]	0.4950495	0.5	2100046	25			[Spk] 50m[~>50.5m[/ 0.5m] ->0.5m[· Snibed 0.5m	
F102311-MSD2	Matrix Spike Dup [1B00050-03]	50	50.5	2100046	25			IIIC'O INVIDA PANINCIO A TATACIO LA TATACIO A TATACIO DE LA TATA	

<u>Expiration:</u> 05-Jun-21 00:00	06-Jul-21 00:00		05-Jun-21 00:00		11-Jul-21 00:00
Description: 25% Hydroxylamine-HCI working solution	0.2 N BRCL JANUARY 2021	THg 2% BrCI	THg Washstation (0.5% BrCl)	3% SnCl2 THg reductant	2% Preservation Blank
<u>Reagent ID(s):</u> 2003452	2100063	2100103	2100104	2100281	2100343
<u>Expiration:</u> 05-Apr-21 00:00					
<u>Description:</u> THg 10ng/mL Calibration Standard					
<u>Standard ID(s):</u> 2100046					

25

2100046
PREPARATION BENCH SHEET

F102311

Eurofins Frontier Global Sciences, LLC

Prepared using: Trace Metals - EFGS SOP2796 EPA 1631 Oxidation

Matrix: Water

Prepared: 2/11/2021

ah Niimher	Greenlo ID	Initial	Final	QC Sample	Sample Specs.	Location		
1A00113-08RE1	GW Influent (500-194237-8)	20 (m)	(mr)	•			Sample Comments	Analysis Comments
		S		,		010402	Requires Preservation Blank - DM 1/29	
1B00004-01	EB_DeconlinerHSBowl_020121_SED_QC	50	50.5	•	1	010402		
1B00027-02	Field Blank	50	50.5	•	'	010402		
1B00027-04	YRWWTP Effluent	50	50.5		1	010402		
1B00027-06	YRWWTP Influent	50	50.5		•	010402		
1B00045-01	MTF-UW-015	50	50.5	ı		020501		
1B00045-02	MTF-TW-026	50	50.5			020501		
1B00045-03	MTF-TW-027	50	50.5		 	020501		
1B00045-04	MTF-TB-015	50	50.5			020501		
1B00050-01	001	50	50.5	'		020501		
1B00050-02	001 Field Blank	50	50.5	τ		020501		
1B00050-03	002	50	50.5			020501	BatchQC	Added for BatchQC in: F102311
1B00050-04	002 Field Blank	50	50.5			020501		
1B00050-05	A-149	50	50.5	•		020501		
1B00050-06	A-149 Field Blank	50	50.5	•		020501		

PREPARATION BENCH SHEET

Ţ
Ţ
33
Ö
Ţ
Н

Eurofins Frontier Global Sciences, LLC

Prepared using: Trace Metals - EFGS SOP2796 EPA 1631 Oxidation

Matrix: Water

Prepared: 2/11/2021

m
- 1 ⁶
11
1
È.
9
1
Ni.
- 1° -
m.
6
~
2
yo.
Ci.
~

Page 96 of 102

🔅 eurofins

Frontier Global Sciences

Analysis Datasheet for Total Mercury Date of Analysis: February 11, 2021 Instrument #: Hg2600-3 LIMS Sequence #: 11812001, 11812002

Analyst: KG Units ng/L

Calibration Statistics:

		116.6%Rec 107.8%Rec 91.7%Rec 91.0%Rec 91.0%Rec	
	Corrected Recorrect Factor	145.21 145.21 114.14 115.57 113.29	
	Corrected Peak Height	72.61 units 134.26 units 570.72 units 2311.30 units 4531.80 units	
Uncorrected	Response	261.37 192.34 118.47 114.75	
	Area	130.68 units 192.34 units 628.79 units 2369.88 units 4589.88 units	Uncorr. Nean RF 162.54
	True Val	0.50 ng/L 1.00 ng/L 5.00 ng/L 20.00 ng/L 40.00 ng/L	Corr. RSD CF 11.6% RSD
	c		Corr. St Dev RF +/- 14.46
	LabNumber	SEQ-CAL1 SEQ-CAL2 SEQ-CAL3 SEQ-CAL4 SEQ-CAL5 SEQ-CAL5 SEQ-CAL5 SEQ-CAL5 SEQ-CAL5 SEQ-CAL9 SEQ-CAL9	Corr, Mean RF 124.49

	Std Dev (na/L)	±0.06
	Mean (ng/L)	0.36 ng/L
	Std Dev	±10.21
	Mean	58.08 units
	c	m
<u>Blanks:</u>	LabNumber	SEQ-IBL

Preparation Blanks Sample Type

		-	Mean	Std Dev
BLK	T		0.000 mm/l	
BLK	N		31 725 no/i	TE JUC
BLK	m	יי נ	3/11EB mo/1	
BLK	Ť	n u	-0.036 ma/l	±6,351
BLK	'n	10	-0.000 mg/L	¥0.09/
BLK	6	0	0.000 ng/L	

Page 110 of 116

	Inits Comment										F102307	F102307	F102307	F102307	E102307	F102307	F102307	F102307	F101436			F101436	E101436	F101436	F101436	F101436	F101436	F101436	F101436			F101436		F101436	F101436	F101437	F101437	F101437	F101437	F101437	LTU145/								
	InitialU	1/6u	1/62						1/60	1/60	1/6u	1/6u	1/6u	1/60				1/Du	ng/L	1/60	1/60		1/00		ng/L	1/6u	1/6	100	1/00	l/ou	1/6u		1/6			1/Bu	1/bu	T/Bu	1/6		1/60		1/DU	ng/L	1/6u	1/6u	ud/L		1 ML
1	FinalResult	-0.059	-0.034	0.094	0200	4 584	18.566	36.402	5.053	0.148	-0.158	-0.216	-0.099	07T'0-	0.069	0.058	-0.225	-0.124	1832.152	4.848	-0.046	1804.130	29.005	28.441	110.888	13,364	-25.222	-26 157	-21.352	4.874	-0.015	74896.712	74210.3/0	24106.940	23912.374	26134.224	36969.210	35677,096	547.929	582.878	-0.041	7763.665	6668.372	1743.688	1757.090	33.712	18.253	31 035	000170
1	InttialResult	-0.059	-0.034	0 503	1 178	4.584	18.566	36.402	5.053	0.148	-0.158	-0.216	660.0-	07T'0-	-0,069	0.058	-0.225	-0.124	4.580	4.848	040'0-	1377	0.290	0.284	1.109	0.134	-0.252	-0.267	-0.214	4.874	-0.015	29,959	24.668	24.107	23.912	26.134	14.788	14.271	0.548	0.583	0.041	7.764	6.668	4.359	4.393	0.337	0.705	012.0	2122
	RESP	-7.4	1 1 1	77.6	134 3	570.7	2311.3	4531.8	629.1	18.4	-19.7	-26.8	-15.0	-20.3	-8.6	7.3	-28.0	-15.4	580.1	6U3.5	1.003	47.0	36.1	35.4	177.5	56.1	4.14	6.9	12.9	606.8	-1.9	3/31.3	3074.9	3005.1	2980.9	3257.5	1842.6	1778.2	12.2	0119	-5.1	970.5	834.1	550.2	554.4	42.0	22./ 75. E	68.7	
No PB																									4																					+		i	-
Batch										+.	-			-	1	1	-	-	7		0	1	2	2	7	20	7 0	1 7	2	1		7	10	2	2	2	~		7 r	v -		2	7	m	mr	n n	0 0	'n	1
Uncorrected Response		0/-00	80.74	130.68	192.34	628.79	2369.38	4589.88	687.17	78.51	38.39	31.25	42.14	37.81	49.46	65.34	30.08	42.70	030.16	100 00	648.14	105.05	94.19	93.49	235.62	114.21	70.23	65.02	20.99	664.89	56.15	3755.16	3132.99	3063.20	3038.98	3315.59	1900.64	1630.30	130.24	869.03	53.00	1028.56	892.20	608.30	612.4r	08.08	83.61	126.79	
RunEnd	11-28-07 AM	11-20-15 AM	11-33-24 AM	11:37:33 AM	11:41:41 AM	11:45:50 AM	11:49:59 AM	11:54:08 AM	11:58:18 AM	12:02:27 PM	MH 00:30 HW	12-14-54 DM	12:19:04 PM	12:23:13 PM	12:27:22 PM	12:31:31 PM	12:35:40 PM	12:39:49 PM	12-48-08 PM	12:52:17 PM	12:56:26 PM	1:00:36 PM	1:04:45 PM	1:08:54 PM	1:13:04 PM	MH 2171711	1:25:32 PM	1:29:41 PM	1:33:50 PM	1:37:59 PM	1:42:09 PM	1:50:27 PM	1:54:37 PM	1:58:46 PM	2:02:56 PM	2:07:05 PM	Z:11:15 PM	2-10-24 PM	MJ 50-0-0	2:27:52 PM	2:32:02 PM	2:36:11 PM	2:40:21 PM	2:44:31 PM	2:45:40 PM	2-56-50 PM	3:01:09 PM	3:05:18 PM	
FileID	4827-1.RAW	4828-1 RAW	4829-1.RAW	4830-1.RAW	4831-1.RAW	4832-1.RAW	4833-1.RAW	4834-1.RAW	4835-1.RAW	4030-1.FAW	48-38-1 PAW	4839-1 RAW	4840-1.RAW	4841-1.RAW	4842-1.RAW	4843-1.RAW	4844-1.KAW	WAN-1-0404	4847-1 RAW	4848-1.RAW	4849-1.RAW	4850-1.RAW	4851-1.RAW	4852-1.RAW	4853-1.KAW	4855-1 RAW	4856-1.RAW	4857-1.RAW	4858-1.RAW	4859-1.RAW	4860-1.KAW	4862-1.RAW	4863-1.RAW	4864-1.RAW	4865-1.RAW	4866-1.RAW	400/-1.FAW	4869-1 RAW	4870-1.RAW	4871-1.RAW	4872-1.RAW	4873-1.RAW	4874-1.RAW	48/5-1.HAW	4010-1.MAW	4878-1.RAW	4879-1.RAW	4880-1.RAW	
Analyzed	2/11/2021 11:25:07 1	2/11/2021 11:29:15 1	2/11/2021 11:33:24 1	2/11/2021 11:37:33 1	2/11/2021 11:41:41 1	2/11/2021 11:45:50 1	2/11/2021 11:49:59 1	2/11/2021 11:54:08 1	1 81:86:11 1202/11/2	1 12:20:21 12:0211 12	2/11/2021 12:00:30	2/11/2021 12:14:54 1	2/11/2021 12:19:04 1	2/11/2021 12:23:13 1	2/11/2021 12:27:22 1	2/11/2021 12:31:31 1	1 04:02:21 12:35:40 4	1 84-60-61 1202/11/2	2/11/2021 12:48:08 1	2/11/2021 12:52:17 1	2/11/2021 12:56:26 1	2/11/2021 13:00:36 1	2/11/2021 13:04:45 1	2/11/2021 13:08:54 1	2/11/2021 13:13:04 1	2/11/2021 13:21:23 1	2/11/2021 13:25:32 1	2/11/2021 13:29:41 1	2/11/2021 13:33:50 1	2/11/2021 13:37:59 1	2/11/2021 13:42:09 1	2/11/2021 13:50:27 1	2/11/2021 13:54:37 1	2/11/2021 13:58:46 1	2/11/2021 14:02:56 1	2/11/2021 14:07:05 1	2/11/2021 14-15-24 1	2/11/2021 14:19:34 1	2/11/2021 14:23:43 1	2/11/2021 14:27:52 1	2/11/2021 14:32:02 1	2/11/2021 14:36:11 1	2/11/2021 14:40:21 1	1 10:44:41 1202/11/2	2/11/2021 14:52:50 1	2/11/2021 14:56:59 1	2/11/2021 15:01:09 1	2/11/2021 15:05:18.1	
Dilution	-	-	-	-	-							-	-	-				400		-	400	9	100	8 6	100	100	100	100	100		2500	2500	1000	1000	1000	2500	2500	1000	1000	-	-	1000	0001	400	100	1001	100	100	641
LabNumber	SEQ-IBL1	SEQ-IBL2	SEQ-IBL3	SEQ-CAL1	SECHCAL2	SEC-CALS	SECLALS	SEC-URIS	SEQ-ICB1	1B00053-01	1B00053-01RE1	1B00053-01RE2	1B00053-02	1B00053-02RE1	100003-02KEZ	1B00053-03RF1	1B00053-03RE2	F101436-BS1	SEQ-CCV1	SEQ-CCB1	F101436-BSD1	F101436-BLK1	F101430-BLK2	1A00086-018	1A00086-02B	1A00103-01B	1A00103-02B	1A00103-03B	CEO-CrV/0	SFO-CCR9	1A00086-01C	1A00086-02C	1A00103-01C	1AUU103-02C	1A00103-03C	1A00086-01A	1A00086-02A	1A00103-01A	1A00103-02A	SEQ-CCV3	SEQ-CCB3	1A00103-03A	F101437-RS1	=101437-BSD1	F101437-BLK1	F101437-BLK2	F101437-BLK3	1A00111-01B	
Type	g	G	₫	ਡੋ ਹ	3	33	512	513	র	SAM	SAM	SAM	SAM	NAM	CAM	SAM	SAM	SAM	R	R	SAM	BLK		SAM	SAM	SAM	SAM	MMS	LAN IN	53	SAM	SAM	SAM	NVS	WWS	SAM	SAM	SAM	NAR	ষ্ঠ	5	CAM	SAM	SAM	BLK	BLK	BLK	NW	CAMP IN
Analyst	8	8	8	88	3 8	3 8	3 8	38	8	8	8	8	8	Ba	38	88	8	8	8	8	8	88	3 8	88	8	8	8	88	88	8	8	8	88	3 8	38	8	8	8	8	8	8 8	38	38	00	8	8	8	88	
strument	g2600-3	g2600-3	92600-3	92600-3	C-00076	10000	02600-3	02600-3	lg2600-3	g2600-3	g2600-3	g2600-3	g2600-3	5-000-3	02600-3	92600-3	g2600-3	g2600-3	g2600-3	92600-3	g2600-3	g2600-3	02600-3	g2600-3	92600-3	12600-3	12600-3	12600-3	2600-3	2600-3	32600-3	2600-3	92600-3	2000-3	02600-3	92600-3	g2600-3	92600-3	32600-3	j2600-3	5-002	2-0007	2600-3	12600-3	92600-3	g2600-3	g2600-3	g2600-3	0/MJ-5

05

Page 1 of 3

Printed: 2/12/2021

	Comments		01437	01437	01437	01437	0143/	01437	01437	16710	01437			01437	01437	01437	U143/	11437	01437	01437	01437	01437			01437	11520	11271	12311	12311	12311	12311	12311	12311		2311	12311	12311	12311		1162	7311	2311	2311			2311	2311	1157	2311	2311	2311	1437	
	InitialUnits	ng/L	ng/L F1	<u>ng/L</u> F1							ng/L FI	ng/L	ng/L	ng/L F1	ng/L F1				ng/L F1	ng/L F1	ng/L F1	ng/L F1(1 <u>0</u> 1	ng/L				ng/L F10	ng/L F10	ng/L F10	ng/L F10	ng/L [F10			ng/L F10	ng/L F10	ng/L F10	P0/L F10			Da/L F10	ng/L F10	ng/L F10	ng/L	ng/L	ng/L F10	ng/L F10	ng/L F10		ng/L F10	ng/L F10	ng/L F10	ng/L
	FinalResult	-0.105	6657.959	14,933	7.0/3	27,470	75597 177	25405.118	13997.998	5945.208	26374.469	4.760	-0.152	26046.996	74106.746	1497 063	1367 947	13061.917	5511.257	1425.525	1465.063	34241.171	4.721	-0.05	4 540	4.370	0.079	-0.016	-0.048	-0.006	-0.188	105.912	4.422	-0.126	583.563	0.071	-0.163	4./85	228.760	102.850	106.338	0.339	2.412	4.347	-0.109	-0.083	0.550	9.714	-0.100	23.843	-0.042	6246.103	4.189
	InitialResult	-0.105	66.580	647.0	0.335	0.777	25.597	25.405	13.998	5,945	26.374	4.760	-0.152	26.047	70,603	1.497	1.363	13.062	5.511	1.426	1.465	13.696	4.721		4.549	4.370	0.079	-0.016	-0.048	0.006	-0.188	CP3 2	4.422	-0.126	5.836	0.071	-0.163	1 535	4.575	2.057	2.127	0.339	2.412	4.347	-0.109	-0.083	9,550	9.714	-0.100	2.384	-0.042	6.246	4.189
	RESP	-13.1	6518.8 48.7	30.6	71.8	58.3	3189.7	3165.8	1745.7	743.2	3286.5	592.6	-19.0	3243./	3697.8	189.4	172.7	1629.1	689.1	180.5	185.4	L/Ub.3	1.100	1535.8	561.9	539.6	9.9	-1.9	-6.0	8.0	206 5	702.3	550.5	-15.7	726.5	4.3	501 3	190.6	569.5	256.0	264.7	37.7	295.8	541.1	-13.5	741.3	1184.5	1204.9	-16.9	296.4	-9.6	/80.6	521.5
No PB	orrection?											-																			İ						2					_											
Batch	₽	0	n m	m	m	m	e	m	m	m	m		~	n n	m	m	m	é	m		<u>,</u>	-		m	4	4	4	4	*	4 4	4	4			4 4	≠ 	4	4	4	4	4	4	4		4	4	4	4	4	4	4 r	2	
Uncorrected	Kesponse	8376.03	106.75	97.71	129.83	116.38	3247.79	3223.88	1803.76	801.23	3344.554567	11.05	117-60	3749.63	3755.89	247.46	230.77	1687.22	747.21	95.852	1764.41	645.83	51.43	1593.92	620.00	597.69	67.97	50.14	01.75	34.66	264.59	760.41	608.60	42,41	/64,54 51,41	24.20	649.36	248.67	627.58	314.08	322.76	95.79	233.88	22.92C	86.64	799.35	1242.57	1262.99	41.20	354.46	10,40	570.67	71.7.7
Rinfad	Numeric	3.28-06 PM	3:30:16 PM	3:34:25 PM	3:38:35 PM	3:42:45 PM	3:46:54 PM	3:51:04 PM	3:55:14 PM	3:59:23 PM	4-07-49 DM	4-11-53 PM	4:16:02 PM	4:20:12 PM	4:24:22 PM	4:28:32 PM	4:32:42 PM	4:36:52 PM	4:41:02 PM	Md 10:00-7	4:53-30 PM	4:57:40 PM	5:01:50 PM	5:05:59 PM	5:10:09 PM	5:14:19 PM	5:18:29 PM	Md 60:22:5	5-30-58 PM	5:35:08 PM	5:39:18 PM	5:43:28 PM	5:47:38 PM	5:51:48 PM	M- 00-00-9	6:04:17 PM	6:08:27 PM	6:12:37 PM	6:16:46 PM	6:20:57 PM	6:25:07 PM	Md /T:67:0	6:37:36 DM	6-41-46 DM	6:45:56 PM	6:50:06 PM	6:54:16 PM	6:58:26 PM	7:02:36 PM	7:10:55 PM	7-15-05 DM	7:19:15 PM	
Eiler D	7114884-1 RAW	3 14885-1.RAW	3 14886-1.RAW	5 14887-1.RAW	5 14888-1.RAW	5 14889-1.RAW	1 14890-1.RAW	WAY.1-18241 4	14092-1.1AW	14804-1 DAW	14895-1.RAW	14896-1.RAW	14897-1.RAW	14898-1.RAW	14899-1.RAW	14900-1.RAW	14901-1.KAW	14007-1 DAW	14904-1 RAW	14905-1.RAW	14906-1.RAW	14907-1.RAW	14908-1.RAW	14909-1.RAW	14910-1.RAW	14911-1.RAW	14912-1.KAW	14914-1.RAW	14915-1.RAW	14916-1.RAW	14917-1.RAW	14918-1.RAW	14919-1.RAW	14920-1.KAW	14922-1.RAW	14923-1.RAW	14924-1.RAW	14925-1.RAW	14926-1.RAW	1492/-1.KAW	14020-1 DAM	14930-1 RAW	14931-1.RAW	14932-1.RAW	14933-1.RAW	14934-1.RAW	14935-1.RAW	14936-1.RAW	1493/-1.KAW	14939-1.RAW	14940-1.RAW	14941-1.RAW	TANA 1 CAON
Analyzed	2/11/2021 15:21:5:	2/11/2021 15:26:06	2/11/2021 15:30:16	2/11/2021 15:34:26	2/11/2021 15:38:36	2/11/2021 15:42:45	2/11/2UZ1 15:46:54	101101011071107	2/11/2021 15:50-23	2/11/2021 16-03-33	2/11/2021 16:07:43	2/11/2021 16:11:53	2/11/2021 16:16:02	2/11/2021 16:20:12	2/11/2021 16:24:22	2/11/2021 16:28:32	2/11/2021 10:32:42	2/11/2021 10:30:02	2/11/2021 16:45:11	2/11/2021 16:49:21	2/11/2021 16:53:30	2/11/2021 16:57:40	2/11/2021 17:01:50	2/11/2021 17:05:59	2/11/2021 17:10:09	00:01:120211202112	2/11/2021 17:70:29	2/11/2021 17:26:49	2/11/2021 17:30:58	2/11/2021 17:35:08	2/11/2021 17:39:18	2/11/2021 17:43:28	2/11/2021 17:47:38	2/11/2021 17:55:58	2/11/2021 18:00:08	2/11/2021 18:04:17	2/11/2021 18:08:27	2/11/2021 18:12:37	2/11/2021 18:16:46	70:3C-81 1202/11/2	2/11/2021 18-20-17	2/11/2021 18:33:26	2/11/2021 18:37:36	2/11/2021 18:41:46	2/11/2021 18:45:56	2/11/2021 18:50:06	2/11/2021 18:54:16	2/11/2021 18:58:26	2/11/2021 12:02:30	2/11/2021 19:10:55	2/11/2021 19:15:05	2/11/2021 19:19:15	2/11/2021 10-23-2E
Dilution	1	100	100	00		1000	1000	1000	1000	1000	-	-	1000	2500	1000	TUUU	1000	1000	1000	1000	2500	1	1	10007		7		1	1		100	1001	4	100	1	1		A S	8 6	205		-	-	1	F	1	-	4	10	1	1000		T
LabNumber	SEQ-CCB4	1A00111-04B	1A00111-05B	1400117-018	1A00117-02B	1A00111-01C	1AD0111-02C	1A00111-03C	1A00111-D4C	1A00111-05C	SEQ-CCV5	SEQ-CCB5	1A00111-06B	1400117-01B	1A00111-01A	1A00111-02A	1A00111-03A	1A00111-04A	1A00111-05A	1A00111-06A	1A00117-01A	SEU-LCVB	550-500 12-020	F107311-R51	F102311-BSD1	F102311-BLK1	F102311-BLK2	F102311-BLK3	F102311-BLK4	F102311-BLK5	107211_MC1	SEO-CCV7	SEQ-CCB7	102311-MSD1	1B00004-01	1800027-02	B0002/-04	B00045-01	B00045-02	B00045-03	B00045-04	B00050-01	JEQ-CCV8	JEQ-CCB8	B00050-02	102311-MC2	102311-MSD2	B00050-04	B00050-05	B00050-06	A00111-04B	EQ-CCV9	EQ-CCB9
Sample	GI	SAM AM	SAM	8 B	5	SAM	CAM	NAS	SAM	SAM	SAM	SAM	SAM	NWS	513	SAM	SAM	SAM	BLK	BLK	BLK		BLK	MAS	3	R	SAM	SAM	WW	AMM N	SAM	SAM 1	SAM 1	SAM	SAM 1	3	3	SAM	NAS	SAM	SAM 1	SAM 1	SAM 1	SAM 1	S S	2 Z							
Analyst	8	B	38	8	8	8	8	8	8	8	8 8	3 8	3 8	8 8	88	8	8	8	8	8 8	3 8	3 8	38	8	8	8	8	88	3 8	3 8	88	8	8	8	88	3.8	38	8	8	8	8	8	8 8	B	3 8	38	8	8	8	8	8 8	B	3
nstrument	Hg2600-3	HAZGOU-3	Hg2600-3	Hq2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg2b00-3	H42600 2	Ha7600-3	Ha2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	H92600-3	C-00260H	Hn2600-3	Hq2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	5-0026	102600-3	iq2600-3	lg2600-3	lg2600-3	lg2600-3	102600-3 102600 3	10.2600-3	02600-3	g2600-3	92600-3	g2600-3	g2600-3	g2600-3	07500 2	6-0026	02600-3	g2600-3	g2600-3	g2600-3	lg2600-3	92600-3	92500-3	C-0026	C-0020

Page 2 of 3

		ut Conme il													10000	F102307	E102207	F102807	F102307	F102307	F102307	F102307	F102307	F101436		F101436	F101436	F101436	F101436	F101436	F101436 E404426	E101438	F101430	F101436			F101436	F101436	F101436	F101436	F101436	F101436	F101436	F101436	F101436	F101430
		RUNCIN	- ,					-	Ļ	-	~						Ŧ			-	-			-		*	*	-							-	1	-	-		-	-	-	<u>ب</u>		, ,	
	****	Flags		5 8	δð	ő	ð	ð	ð	ð	Š	ð ð	58	5 8	5 2	ă	ð	ð	ð	ð	ð	ðð	5 ð	бð	šð	ð	ð	Š	ð ð	5 8	őð	őð	ŏð	ð	ð	ð	ð	ð	ð	ð	Š	8 g	ð ð	5 8	5 ð	50
		D DD Clean	36.34 Sample	37.92 Sample	36.19 Sample	50.70	53.80 Sample	69.74 Sample	130.68 Sample	192.34 Sample		4589 88 Sample	687 17 Sample	76.51 Sample	38.39 Sample	31.25 Sample	45.78 Sample	42.14 Sample	37.81 Sample	49.46 Sample	65.34 Sample	40 70 Comple	638.18 Sample	661.57 Sample	52.34 Sample	648.14 Sample	105.05 Sample	94.19 Sample	235.62 Sample	114.21 Sample	66.17 Sample	70.23 Sample	65.02 Sample	70.99 Sample	664.89 Sample	56.15 Sample	3789.34 Sample	3755.16 Sample	3132.99 Sample	3063.20 Sample	3038.98 Sample		1836.30 Sample	130 24 Sample	134 50 Sample	
10.2144925 17.58715638 14.46363438	11.61791979	11:08:33	11:12:41	11:16:50	11:20:58	11:25:07	11:29:15	11:33:24	11:37:33	11:41:41	11-40-50	11:54:08	11:58:18	12:02:27	12:06:36	12:10:46	12:14:54	12:19:04	12:23:13	12:27:22	12:31:31	12:39:49	12:43:58	12:48:08	12:52:17	12:56:26	13:00:36	13:04:45	13:13:04	13:17:13	13:21:23	13:25:32	13:29:41	13:33:50	13:37:59	13:42:09	13:46:18	13:50:27	13:04:37	13.38.46	14.02.00	14-11-15	14:15:24	14:19:34	14:23:43	14-27-50
Blank SD; Blank RSD%; CF SD;	CF RSD%: RewData	14823-1.RAW	14824-1.RAW	14825-1.RAW	14826-1.RAW	14827-1.RAW	14828-1.RAW	14829-1.RAW	14831-1 RAM	14832-1.RAW	14833-1.RAW	14834-1.RAW	14835-1.RAW	14836-1.RAW	14837-1.RAW	14838-1.RAW	14839-1.RAW	14840-1.RAW	14841-1.RAW	14642-1.KAW 14843-1.PAW	14844-1.RAW	14845-1.RAW	14846-1.RAW	14847-1.RAW	14848-1.RAW	14849-1.RAW	14851-1 PAIN	14852-1.RAW	14853-1.RAW	14854-1.RAW	14855-1.RAW	14856-1.RAW	14857-1.RAW	14858-1.RAW	14659-1.KAW	14860-1.RAW	14861-1.RAW	4002-1.FAW	4864-1 DAVA	4865-1 RAW	4866-1.RAW	4867-1.RAW	4868-1.RAW	4869-1.RAW	4870-1.RAW	4871-1.RAW
2/11/2021 11:05:40	8																													-								- •	- •				-	-		*
Conc = (Area-58.07 Run Date: QC Warnings:5/QC E Run Time: 0.9999	MB% FinalCurs Rec%							116 64	107.84	91.69	92.83	91.00	101.06	0.00										96.95	0.00									07.40		0.00										CL'BR
calib Eqn: Status: R2;	Conc (ppt)	6	00.0	00.0	0.00	0.43	0.56	0.58	1.08	4.58	18.57	36.40	5.05	0.15 0.00	00.0	00.0	00.0	0.00	0.00	0.06	00'0	0.00	1863.88	4.80	1895.86	37.73	29.01	28.44	142.61	40.US	976	5.57	10.37	4.87	0.00	74928.44	74242.09	24699.24	24138.66	23944.10	26165.95	37000.93	35708.82	579.65	614.60	10.1
58.079 124.49 1	alank (58.09	58.08	58.08	00.0	0.00	0.00	58.08	58.08	58.08	58.08	20,05	20.00	58 0.8	58.08	58.08	58.08	58.08	58.08	58.08	58.08	56.08	20.UQ	58.08	58.08	58.08	58.08	58.08	20.05	58.08	58.08	58.08	58.08	58.08	58.08	58.08	58.08	58.08	58.08	58.08	58.08	58.08	20.05	20.00	20.00	~~~~~
G BlankS 192601 CaffbFa 1### R: 1426003-1021	nse billute					-	F	-				•••		4	- 5-		Ċ			+					400	100	100	100	96	1001	100	100	100	~	-	2500	2500	1000	1000	1000	1000	0092	2000		+	
Operatu K(Worksł Tr Method # Descrip Tr	Lacation P				A1	A2	A3	A4	A5	40 70	AR AR	00V	A10	A11	A12	A13	A14	A15	A16	A17	A18	A20	A21	B1	B2	B3	4 7 7	ц Бо	B7	88	B9	B10	B11	B12	B13	B14	B15	B16	512	13 010		R21	10	5 6	18	
TotalMercury EPA1631	Sample/ID Clean	MS	SM	SM	SEQ-IBL1	SEQ-IBL2	SEQ-IBL3	SEQ-CAL1	SED-CAL2	SEQ-CALA	SEQ-CAL5	SEQ-ICV1	SEQ-ICB1	1B00053-01	1B00053-01RE1	1B00053-01RE2	1B00053-02	1B00053-02RE1	1B00053-02RE2	1B0003-03 1B0062 020E4	1B00053-03RE2	F101436-BS1	SEQ-CCV1	SEQ-CCB1	F101436-BSD1	F101436-BLK1	F101430-BLK2	1A00086-01B	1A00086-02B	1A00103-01B	1A00103-02B	1A00103-03B	1A00103-04B	SEQ-CCV2	SEQ-CCB2	1A00086-01C	1A00086-02C	1AUU1U3-01C	100103-020	1A00103-04C	1A00086-01A	1A00086-02A	1A00103-01A	A00103-02A	SEQ-CCV3	

	F101436 F101436	F101437	F101437	F101437	F101437	F101437	E101437			F101437	F101437	F101437	F101437	F101437	F101437	F101437	F101437		F101437	F101437	F101437	F101437	F101437	F101437	F101437	F101437		F101437	F102311	F102311 F102311	F102311	F102311	F102311	F102311	F102311	F102511		F102314	F102311	F102311	F102311 F102311
~		÷	.	• -	-	~ ~		**					5m 4		~	-	~ ,			~			<u>,</u>	- -		-					-	-	~ ·	, - 1		- 4-		· -	-	-	δ-
ð	ðð	Ň	ðð	Ň	Зă	Šč	ð	Хi	ð ð	58	ð	Зð	5 ð	őð	ð	о К	ŏð	Šð	Ň	ðð	5ð	Ň	8 g	5ð	šð	Š	ðð	Ň	56	Šð	ð	Хo	ðð	Śč	ŚŻ	őð	ð	ð	Š	ð ð	őð
53.00 Sample	1025.20 Sample 892.20 Sample	608.30 Sample	012.4/ Sample 100.05 Sample	80.80 Sample	83.61 Sample	121.47 Sample	97.92 Sample	650.96 Sample	8376 93 Sample	106.75 Sample	97.71 Sample	129.83 Sample 116.38 Sample	3247.79 Sample	3223.88 Sample	1803.76 Sample	801.23 Sample	650 66 Sample	39.11 Sample	3303.79 Sample	3749.63 Sample 3755 80 Sample	247.46 Sample	230.77 Sample	1687.22 Sample 747.21 Sample	238.56 Sample	243.48 Sample	1764.41 Sample	51.43 Sample	1593.92 Sample	597.69 Sample	67.97 Sample	56.14 Sample	52.10 Sample	34.66 Comple	264.59 Sample	760.41 Sample	608.60 Sample	42.41 Sample	784.54 Sample	62.42 Sample	oo.oo oampie 649.36 Sample	248.67 Sample
14:32:02	14.40.21	14:44:31	14:52:50	14:56:59	15:05:18	15:09:28	15:13:37	15:17:47 15:01:57	15:26:06	15:30:16	15:34:25	15:38:35	15:46:54	15:51:04	15:55:14	16-03-20	16:07:43	16:11:53	16:16:02	16:24:22	16:28:32	16:32:42	16:36:52 16:41:02	16:45:11	16:49:21	16:53:30	17:01:50	17:05:59	17:14:19	17:18:29	17:22:39	17:20:49	17:35:08	17:39:18	17:43:28	17:47:38	17:51:48	17:55:58	18:00:08	18:08:27	18:12:37
14872-1.RAW 14873-1.RAW	14874-1.RAW	14876-1.RAW	14877-1.RAW	145/8-1.RAW	14880-1.RAW	14881-1.RAW	14882-1.RAW	14663-1.KAW 14884-1.RAW	14885-1.RAW	14886-1.RAW	14887-1.RAW	14889-1.RAW	14890-1.RAW	14891-1.RAW	14692-1.KAW	14894-1.RAW	14895-1.RAW	14896-1.RAW	14897-1.RAW	14899-1.RAW	14900-1.RAW	14901-1.RAW	14903-1.RAW	14904-1.RAW	14905-1.RAW	14907-1.RAW	14908-1.RAW	14909-1.RAW 14910-1 RAW	14911-1.RAW	14912-1.RAW	14913-1.RAW	14915-1 RAW	14916-1.RAW	14917-1.RAW	14918-1.RAW	14919-1.RAW	14920-1.RAW	14921-1.RAW	14922-1.KAW 14923-1 RAW	14924-1.RAW	14925-1.RAW
0.00							05 35	0.00									95.20	0.00								94.42	0.00								338,06	B8.44	0.00				
0.00	6700.10 1767.85	1781.25	33.71 18.25	20.51	55.19 55.19	32 D0	4.76	0.00	6682.12 30.00	31.83 31.83	57,63	46.83	20621.34 26400 00	14022.16	5969.37	26398.63	4.76	0.00 26071.15	74130,90	74256.76	1387 11	13086.08	5535.42	1448.08	34265.33	4.72	0.00 30841 68	4.51	4.33	0.00	0.00	0.00	0.00	100.88	004. I 3 A A 2		583.53	0.03	0.00	4.75	10.0
0 m r																																									
58.0	58.08 58.08	58.08	58.08	58.08	58.08 58.08	58.08	58.08	58.08 58.08	20.00 58 08	58.08	58.08	58.08 58.08	58.08	58.08	58.08	58.08	20.U5	58.08	58.08	58.08 58.08	58.08	58.08	58.08 58.08	58.08	58.08	58.08	58.08	58.08	80.00 80.08	8.08	8.08	8.08	20.02 0.02	0.00 8 0 8	8.08	8.08	8.08	8.08	8.08	8.08 8.08	
1000 58.00 1000 58.00	400 58.08	400 58.08	100 58.08	100 58.08	100 58.08 100 58.08	100 58.08	1 58.08	1 58.08	100 58 08	100 58.08	100 58.08	100 58.08 1000 58.08	1000 58.08	1000 58.08	1000 58.08	1000 58.08	1 - 26.08	1000 58.08	2500 58.08	2500 58.08 1000 58.08	1000 58.08	1000 58.08	1000 58.08 1000 58.08	1000 58.08	2500 58.08	1 58.08	2500 58.08	1 58.08	- 58.08 1 58.08	1 58.08	1 58.08	1 58.08	100 58.08	100 58.08	1 58.08	1 58.08	100 58.08	1 58.08	1 58,08	10 58 DR	
C4 C5 C5 C6 C6 C6 C6 C6 C6 C6 C6 C6 C6 C6 C6 C6	C7 400 58.08	C8 400 58.08	C10 100 58.08	C11 100 58.08	C13 100 58.08 C13 100 58.08	C14 100 58.08	C15 7 58.08	C16 1 58.08 C17 100 58.08	C18 100 58 08	C19 100 58.08	C20 100 58.08	A1 100 58.08	A2 1000 58.08	A3 1000 58.08	A4 1000 58.08	A6 1000 58.08	A7 1 59.06	: **** A8 1000 58.08	1 A9 2500 58.08	A10 2500 58.08 A11 1000 58.08	A12 1000 58.08	A13 1000 58.08	A14 1000 58.08 A15 1000 58.08	A16 1000 58.08	A17 2500 58.08	A16 1 58.08	A20 2500 58.08	A21 1 58.08	B2 1 58.08	B3 58.08	B4 1 58.08	E0 Be	B7 100 58.08	B8 100 58.08	B9 1 58.08	B10 1 58.08	B11 100 58.08	B12 1 58.08	B13 1 58,08	B15 10 58 08	

729

μ.

F102311 F102311 F102311 F102311	F102311	F102311 F102311 F102311 F102311 F102311 F102311	F101437 2100340 2100340
$r \leftarrow r \leftarrow r$	- - - 1993		$\nabla \nabla \nabla \nabla \nabla \nabla (\dot{e})$
89999	55555	55555	ŏŏŏŏŏ
527.58 Sample 314.08 Sample 322.76 Sample 95.57 Sample 353.88 Sample	599.22 Sample 44.53 Sample 43.28 Sample 799.35 Sample	1242-57 Sample 1262-99 Sample 41.20 Sample 354.46 Sample 48.46 Sample	838.69 Sample 579.62 Sample 49.42 Sample 570.22 Sample 504.00 Sample
18:16:46 18:20:57 18:25:07 18:29:17 18:33:26	18:37:36 18:41:46 18:45:56 18:50:06	18:54:16 18:58:26 19:05:36 19:10:55	19:15:05 19:19:15 19:23:25 19:27:35 19:31:45
14926-1.RAW 14927-1.RAW 14928-1.RAW 14928-1.RAW 14930-1.RAW	14831-1.RAW 14832-1.RAW 14933-1.RAW 14934-1.RAW	14835-1.RAW 14936-1.RAW 14937-1.RAW 14938-1.RAW 14938-1.RAW	14941-1.RAW 14942-1.RAW 14942-1.RAW 14943-1.RAW 14944-1.RAW
	86.93 0.00	119.61	83.78 0.00
228.72 102.81 106.30 0.30 2.38 2.38	4-0000 00000000000000000000000000000000	9.531 9.68 0.00 23.81 0.00 0.00 0270.26	4.19 0.00 4.11 4.39
58.08 58.08 58.08 58.08 58.08	28.08 58.08 58.08	58.08 58.08 58.08 58.08 58.08	58.08 58.08 58.08 58.08
2000 2000 2000	tr		
B16 B17 B18 B19 B20	2882	58588	63 23 23 23 23
1800045-01 1800045-02 1800045-03 1800045-04 1800050-01 SEQ-CCV8	SEQ-CCB8 1B00050-02 1B00050-03 F102311-MS2	F102311-MSD2 1B00050-04 1B00050-05 1B00050-05 1B00050-06 1A00111-048	seu-ccv9 SEQ-CCB9 TEST CAL 3 TEST CAL 3

Page 101 of 102

2,3

THg26003-210211-3

ANT # 02/12

SEQ-IBL1	: A1	1A00103-01C	B16	1A00117-02 5 C	A10)	
SEQ-IBL2	A2	1A00103-02C	B17	1A00111-01A	A11		
SEQ-IBL3	A3	1A00103-03C	B18	1A00111-02A	A12		
SEQ-CAL1	A4	1A00103-04C	B19	1A00111-03A	A13	l	
SEQ-CAL2	A5	1A00086-01A	820	1A00111-04A	A14		
SEQ-CAL3	A6	1A00086-02A	B21	1A00111-05A	A15		
SEQ-CAL4	A7	1A00103-01A	C1	1A00111-06A	A16		
SEQ-CAL5	A8	1A00103-02A	C2	1A00117-01A	A17		
SEQ-ICV1	A9	SEQ-CCV3	C3	SEQ-CCV6	A18		
SEQ-ICB1	A10	SEQ-CCB3	C4	SEQ-CCB6	A19		
1800053-01	A11	1A00103-03A	C5	1A00117-02A	A20		
1B00053-01RE1	A12	1A00103-04A	C6	F102311-BS1	A21		
1B00053-01RE2	A13	F101437-BS1	C7	F102311-BSD1	B1		
1800053-02	A14	F101437-BSD1	C8	F102311-BLK1	B2		
1800053-02RE1	A15	F101437-BLK1	C9	F102311-BLK2	83		
1B00053-02RE2	A16	F101437-BLK2	C10	F102311-BLK3	B4		
1800053-03	A17	F101437-BLK3	C11	F102311-BLK4	B5		
1B00053-03RE1	A18	1A00111-01B	C12	F102311-BLK5	B6		
1800053-03RE2	A19	1A00111-02B	C13	1A00113-08RE1	B7		
F101436-BS1	A20	1A00111-03B	C14	F102311-MS1	B8		
SEQ-CCV1	A21	SEQ-CCV4	C15	SEQ-CCV7	B9	4	
SEQ-CCB1	B1	SEQ-CCB4	C16	SEQ-CCB7	B10		
F101436-BSD1	B2	1A00111-04B	C17	F102311-MSD1	B11		
F101436-BLK1	B3	1A00111-05B	C18	1800004-01	B12		
F101436-BLK2	B4	1A00111-06B	C19	1800027-02	B13		
F101436-BLK3	B5	1A00117-01B	C20	1800027-04	B14		
1A00086-01B	86	1A00117-02B	C21	1800027-06	B15	F102311-MS2	C4
1A00086-028	B7	1A00111-01C	A1	1800045-01	B16	F102311-MSD2	C5
1A00103-01B	B8	1A00111-02C	A2	1B00045-02	B17	1800050-04	C6
1A00103-02B	B9	1A00111-03C	A3	1800045-03	B18	1800050-05	C7
1A00103-038	B10	1A00111-04C	A4	1800045-04	B19	1800050-06	C8
1A00103-04B	B11	1A00111-05C	A5	1800050-01	820	1A00111-04B	C9
SEQ-CCV2	B12	SEQ-CCV5	A6	SEQ-CCV8	B21	SEQ-CCV9	C10
SEQ-CCB2	B13	SEQ-CCB5	A7	SEQ-CC88	C1	SEQ-CCB9	C11
1A00086-01C	B14	1A00111-06 ¢ c	A8	1800050-02	C2	TEST CAL 3	C12
1A00086-02C	B15	1A00117-01 9 «	A9	1800050-03	C3	TEST CAL 3	C13

Verified by: And Hosh opticizi

Environment Testing America

ANALYTICAL REPORT

Job Number: 180-116528-1 Job Description: Wood Penobscot River Proposal

> For: Wood E&I Solutions Inc 271 Mill Road Chelmsford, MA 01824 Attention: Ms. Denise King

arw A. Cambu

Approved for release. Carrie L Gamber Senior Project Manager 2/5/2021 1:41 PM

Carrie L Gamber, Senior Project Manager 301 Alpha Drive, Pittsburgh, PA, 15238 (412)963-2428 Carrie.Gamber@Eurofinset.com 02/05/2021

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins TestAmerica and its client. All questions regarding this report should be directed to the Eurofins TestAmerica Project Manager or designee who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238 Tel (412) 963-7058 Fax (412) 963-2468 www.testamericainc.com

Table of Contents

Cover Title Page	1
Data Summaries	4
Definitions	4
Case Narrative	5
Detection Summary	6
Client Sample Results	7
Default Detection Limits	27
QC Sample Results	28
QC Association	30
Chronicle	31
Certification Summary	35
Method Summary	36
Sample Summary	37
Reagent Traceability	38
COAs	39
Inorganic Sample Data	46
General Chemistry Data	46
Gen Chem Cover Page	47
Gen Chem Sample Data	48
Gen Chem QC Data	58
Gen Chem ICV/CCV	58
Gen Chem Blanks	60
Gen Chem MS/MSD/PDS	61
Gen Chem LCS/LCSD	63
Gen Chem MDL	64
Gen Chem Analysis Run Log	68

Table of Contents

Gen Chem Prep Data	75
Gen Chem Raw Data	81
Shipping and Receiving Documents	293
Client Chain of Custody	294
Sample Receipt Checklist	297

Definitions/Glossary

Client: Wood E&I Solutions Inc Project/Site: Wood Penobscot River Proposal

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

CASE NARRATIVE

Client: Wood E&I Solutions Inc

Project: Wood Penobscot River Proposal

Report Number: 180-116528-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

RECEIPT

The samples were received on 01/28/2021; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.9 C.

TOTAL ORGANIC CARBON

The reporting limit for Lloyd Kahn TOC analysis is a nominal value and does not reflect adjustments in sample mass processed on an individual basis.

PERCENT SOLIDS

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Detection Summary

Client: Wood E&I Solutions Inc Project/Site: Wood Penobscot River Proposal

Job ID: 180-116528-1

Client Sample ID: MMBKD	-01_0125	21_SED	_00-01			Lab Sa	am	nple ID: 180 [.]	-116528-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Organic Carbon - Duplicates	94000		4000	3000	mg/Kg	1	Þ	EPA-Lloyd Kahn	Total/NA
Client Sample ID: MMBKD	-01_0125	21_SED	_01-03			Lab Sa	an	nple ID: 180	-116528-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Organic Carbon - Duplicates	54000		2500	1900	mg/Kg	1	₽	EPA-Lloyd Kahn	Total/NA
Client Sample ID: MMBKD	-01_0125	21_SED	_03-05			Lab Sa	an	nple ID: 180	-116528-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Organic Carbon - Duplicates	34000		1900	1400	mg/Kg	1	¢	EPA-Lloyd Kahn	Total/NA
Client Sample ID: MMBKD	-01_0125	21_SED	_01-03_DUI	Ρ		Lab Sa	an	nple ID: 180	-116528-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Organic Carbon - Duplicates	56000		2500	1900	mg/Kg	1	 ¢	EPA-Lloyd Kahn	Total/NA
Client Sample ID: FRB-02	_012621_\$	SED_00	-01			Lab Sa	an	nple ID: 180	-116528-5
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Organic Carbon - Duplicates	21000		2100	1500	mg/Kg	1	 ¢	EPA-Lloyd Kahn	Total/NA
Client Sample ID: FRB-02	_012621_\$	SED_01	-03			Lab Sa	an	nple ID: 180	-116528-6
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Organic Carbon - Duplicates	24000	duamor	2000	1500	mg/Kg	1	₽	EPA-Lloyd Kahn	Total/NA
Client Sample ID: FRB-02	_012621_\$	SED_03	-05			Lab Sa	an	nple ID: 180	-116528-7
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Organic Carbon - Duplicates	22000		1800	1300	mg/Kg	1	¢	EPA-Lloyd Kahn	Total/NA
Client Sample ID: ES-13_0)12621_SE	ED_00-0	1			Lab Sa	an	nple ID: 180	-116528-8
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Total Organic Carbon - Duplicates	66000		2400	1800	mg/Kg	1	 ¢	EPA-Lloyd Kahn	Total/NA
Client Sample ID: ES-13_0)12621_SE	ED_01-0	3			Lab Sa	an	nple ID: 180	-116528-9
Analyte	Result	Qualifier	RI	МП	Unit	Dil Fac	р	Method	Pren Tyne
Total Organic Carbon - Duplicates	44000		2000	1500	mg/Kg	1	_ ☆	EPA-Lloyd Kahn	Total/NA
Client Sample ID: ES-13 ()12621 SE	ED 03-0	5			Lab Sa	m	ole ID: 180-1	16528-10
	Bosult	Qualifier	Ы	МПІ	Unit	Dil Ess		Method	Bron Typo
Total Organic Carbon - Duplicates	12000	Quaimer	1400	1000	mg/Kg	<u></u>	<u>р</u>	EPA-Lloyd Kahn	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample ID: MMBKD-01_012521_SED_00-01 Date Collected: 01/25/21 15:25 Date Received: 01/28/21 08:30						Lab San	nple ID: 180-11 Matrix	6528-1 c: Solid
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	75.2	0.1	0.1	%			02/03/21 13:23	1
Percent Solids	24.8	0.1	0.1	%			02/03/21 13:23	1

Client Sample ID: MMBKD-01_(Lab Sar	nple ID: 180-11	6528-1			
Date Collected: 01/25/21 15:25						Watrix	: 50110		
Date Received: 01/28/21 08:30								Percent Solid	s: 24.8
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	94000		4000	3000	mg/Kg	¢		01/29/21 14:10	1

Client Sample ID: MMBKD-01_012521_SED_01-03 Date Collected: 01/25/21 15:35						Lab San	nple ID: 180-11 Matrix	6528-2 c: Solid
Date Received: 01/28/21 08:	30							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	60.4	0.1	0.1	%			02/03/21 10:43	1
Percent Solids	39.6	0.1	0.1	%			02/03/21 10:43	1

Client Sample ID: MMBKD-01_0				Lab Sar	nple ID: 180-11	6528-2			
Date Collected: 01/25/21 15:35						Matrix	: Solid		
Date Received: 01/28/21 08:30						Percent Solid	s: 39.6		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	54000		2500	1900	mg/Kg	¢		01/29/21 14:27	1

Client Sample ID: MMBKD-0 Date Collected: 01/25/21 15:4			Lab San	nple ID: 180-11 Matrix	6528-3 c: Solid			
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	47.4	0.1	0.1	%			02/03/21 10:43	1
Percent Solids	52.6	0.1	0.1	%			02/03/21 10:43	1

Client Sample ID: MMBKD-01_0				Lab Sar	nple ID: 180-11	6528-3			
Date Collected: 01/25/21 15:40						Matrix	: Solid		
Date Received: 01/28/21 08:30						Percent Solid	ls: 52.6		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	34000		1900	1400	mg/Kg	<u></u>		01/29/21 14:44	1

Client Sample ID: MMBKD-01_012521_SED_01-03_DUP							Lab Sample ID: 180-116528-4					
Date Collected: 01/25/21 12:00								Matrix	c: Solid			
Date Received: 01/28/21 08	:30											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Percent Moisture	60.7		0.1	0.1	%			02/03/21 10:43	1			
Percent Solids	39.3		0.1	0.1	%			02/03/21 10:43	1			

Client Sample ID: MMBKD-01_0	UP				Lab Sar	nple ID: 180-11	6528-4		
Date Collected: 01/25/21 12:00						Matrix	: Solid		
Date Received: 01/28/21 08:30						Percent Solid	s: 39.3		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	56000		2500	1900	mg/Kg	÷		01/29/21 15:06	1

Client Sample ID: FRB-02_012621_SED_00-01 Date Collected: 01/26/21 15:00 Date Received: 01/28/21 08:30						Lab San	nple ID: 180-11 Matrix	6528-5 c: Solid
Date Received: 01/28/21 08	3:30							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	51.7	0.1	0.1	%			02/03/21 11:23	1
Percent Solids	48.3	0.1	0.1	%			02/03/21 11:23	1

Client Sample ID: FRB-02_0126				Lab Sar	nple ID: 180-11	6528-5			
Date Collected: 01/26/21 15:00						Matrix	: Solid		
Date Received: 01/28/21 08:30								Percent Solid	s: 48.3
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	21000		2100	1500	mg/Kg	¢		01/29/21 15:36	1

Client Sample ID: FRB-02_012621_SED_01-03 Date Collected: 01/26/21 15:15						Lab San	nple ID: 180-11 Matrix	6528-6 c: Solid
Date Received: 01/28/21	08:30							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	49.7	0.1	0.1	%			02/03/21 11:23	1
Percent Solids	50.3	0.1	0.1	%			02/03/21 11:23	1

Client Sample ID: FRB-02_0126				Lab San	nple ID: 180-11	6528-6			
Date Collected: 01/26/21 15:15	Date Collected: 01/26/21 15:15							Matrix	: Solid
Date Received: 01/28/21 08:30								Percent Solid	s: 50.3
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	24000		2000	1500	mg/Kg			01/29/21 15:53	1

Client Sample ID: FRB-02_012621_SED_03-05 Lab Sam Date Collected: 01/26/21 15:30						ple ID: 180-11 Matrix	6528-7 c: Solid	
Date Received: 01/28/21 08:30								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	44.0	0.1	0.1	%			02/03/21 11:23	1
Percent Solids	56.0	0.1	0.1	%			02/03/21 11:23	1

Client Sample ID: FRB-02_0126				Lab San	nple ID: 180-11	6528-7			
Date Collected: 01/26/21 15:30	Date Collected: 01/26/21 15:30							Matrix	: Solid
Date Received: 01/28/21 08:30								Percent Solid	ls: 56.0
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	22000		1800	1300	mg/Kg	¢		01/29/21 16:16	1

Client Sample ID: ES-13_012621_SED_00-01 Date Collected: 01/26/21 18:45						Lab San	nple ID: 180-11 Matrix	6528-8 c: Solid
Date Received: 01/28/21 08:3	30							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	58.9	0.1	0.1	%			02/04/21 12:03	1
Percent Solids	41.1	0.1	0.1	%			02/04/21 12:03	1

Client Sample ID: ES-13_01262 Date Collected: 01/26/21 18:45	1_SED_00	-01					Lab San	nple ID: 180-11 Matrix	6528-8 : Solid
Date Received: 01/28/21 08:30								Percent Solid	ls: 41.1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	66000		2400	1800	mg/Kg	<u></u>		02/04/21 11:59	1

Client Sample ID: ES-13_012621_SED_01-03 Date Collected: 01/26/21 18:55						Lab San	nple ID: 180-11 Matrix	6528-9 c: Solid
Date Received: 01/28/21 08	3:30							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	50.0	0.1	0.1	%			02/04/21 12:03	1
Percent Solids	50.0	0.1	0.1	%			02/04/21 12:03	1

Client Sample ID: ES-13_01262				Lab San	nple ID: 180-11	6528-9			
Date Collected: 01/26/21 18:55	Date Collected: 01/26/21 18:55							Matrix	: Solid
Date Received: 01/28/21 08:30								Percent Solid	s: 50.0
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	44000		2000	1500	mg/Kg	\$		02/04/21 13:41	1

Client Sample ID: ES-13_01 Date Collected: 01/26/21 19	lient Sample ID: ES-13_012621_SED_03-05Lab Sample ID:ate Collected: 01/26/21 19:05						ole ID: 180-116 Matrix	528-10 c: Solid
Date Received: 01/28/21 08	:30							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	28.6	0.1	0.1	%			02/04/21 12:03	1
Percent Solids	71.4	0.1	0.1	%			02/04/21 12:03	1

Client Sample ID: ES-13_01262				Lab Sam	ple ID: 180-116	528-10			
Date Collected: 01/26/21 19:05								Matrix	: Solid
Date Received: 01/28/21 08:30								Percent Solid	s: 71.4
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total Organic Carbon - Duplicates	12000		1400	1000	mg/Kg			02/04/21 12:22	1

Default Detection Limits

Client: Wood E&I Solutions Inc Project/Site: Wood Penobscot River Proposal

Job ID:	180-116528-1
---------	--------------

Analyte	RL	MDL	Units
Percent Moisture	0.1	0.1	%
Percent Solids	0.1	0.1	%
Total Organic Carbon - Duplicates	1000	750	mg/Kg
Method: 2540G - SM 2540G

Lab Sample ID: 180-116528-	-5 DU						Clie	nt Sam	ple ID:	FRB-02	2_012621	SED	00-01
Matrix: Solid											Prep Ty	pe: To	tal/NA
Analysis Batch: 345426												- -	
-	Sample	Sample			DU	DU							RPD
Analyte	Result	Qualifier			Result	Qua	lifier	Unit	D			RPD	Limit
Percent Moisture	51.7				51.4			%				0.6	10
Percent Solids	48.3				48.6			%				0.6	10
Lab Sample ID: 180-116528-	-8 DU						Cli	ient Sar	nple II	D: ES-1:	3_012621	SED	00-01
Matrix: Solid									· ·		Prep Ty	pe: To	tal/NA
Analysis Batch: 345577													
-	Sample	Sample			DU	DU							RPD
Analyte	Result	Qualifier			Result	Qua	lifier	Unit	D			RPD	Limit
Percent Moisture	58.9				59.2			%				0.5	10
Percent Solids	41.1				40.8			%				0.7	10
Method: EPA-Lloyd Kah	n - Orga	nic Carbo	n, Tota	al (TC)))								
Lab Sample ID: MB 180-345	159/4								Clic	nt Sam		othod	Blank
Matrix: Solid	100/4								One	int Sam	Pron Tv		
Analysis Batch: 345159											i iep iy	pe. 10	
Analysis Datch. 545159													
Analyto	Pa	sult Qualifier		PI		мпі	Unit		n p	ronarod	Analy	zod	Dil Eac
Total Organia Carbon Dunliastos				1000		750			<u> </u>	repareu	- Allaly	12.21	
Iotal Organic Carbon - Duplicates		ND		1000		150	my/r	y			01/29/21	13.51	1
Lab Sample ID: LCS 180-34	5159/5							Clie	ent Sar	nole ID	: Lab Cor	ntrol S	ample
Matrix: Solid											Prep Tv	pe: To	tal/NA
Analysis Batch: 345159													
			Spike		LCS	LCS					%Rec.		
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits		
Total Organic Carbon -		·	37800		34800			ma/Ka	<u> </u>	92	75 - 125		
Duplicates													
							_	_					
Lab Sample ID: 180-116528-	-7 MS						Clie	nt Sam	ple ID:	FRB-02	2_012621	_SED	_03-05
Matrix: Solid											Prep Ty	pe: To	otal/NA
Analysis Batch: 345159													
	Sample	Sample	Spike		MS	MS					%Rec.		
Analyte	Result	Qualifier	Added		Result	Qua	lifier	Unit	D	%Rec	Limits		
Total Organic Carbon - Duplicates	22000		39300		58100			mg/Kg	¢	93	75 - 125		
	7 1100						0.11				040004	055	00.0-
Lab Sample ID: 180-116528	-7 MSD						Cile	nt Sam	pie iD:	FRB-02	2_012621	_SED	_03-05
Matrix: Solid											Prep Ty	pe: Io	otal/NA
Analysis Batch: 345159							_						
	Sample	Sample	Spike		MSD	MSE)				%Rec.		RPD
Analyte	Result	Qualifier	Added		Result	Qua	lifier	Unit	D	%Rec	Limits	RPD	Limit
Total Organic Carbon - Duplicates	22000		37700		59400			mg/Kg	¢	100	75 - 125	2	20
	CECIA								0.			a tha a cl	Diants
Lab Sample ID: NIB 180-345	000/4								CIIE	ant Sam			
watrix: Solid											Prep ly	pe: 10	οται/ΝΑ
Analysis Batch: 345656													
Analyta	-			-			11 14				A •	I	
	Re			KL			Unit		<u>р</u>	repared	Analy		DII Fac
Iotal Organic Carbon - Duplicates		ND		1000		750	mg/K	g			02/04/21	11:37	1

Method: EPA-Lloyd Kahn - Organic Carbon, Total (TOC) (Continued)

Lab Sample ID: LCS 180-34 Matrix: Solid Analysis Batch: 345656			Client Sample ID: Lab Co Prep Ty					itrol Sa pe: Tot	ample al/NA		
-			Spike	LCS	LCS				%Rec.		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Total Organic Carbon - Duplicates			37800	38300		mg/Kg		101	75 - 125		
Lab Sample ID: 180-116528 Matrix: Solid	-10 MS				CI	ient Sam	ple II	D: ES-1	3_012621 Prep Ty	_SED_ pe: Tot	03-05 al/NA
Analysis Batch: 345656	Samplo	Samplo	Sniko	MS	MS				%Pac		
Analyte	Rosult	Oualifior		Result	Qualifier	Unit	п	%Rec	l imits		
Total Organic Carbon - Duplicates	12000		32900	42100	Quanner	mg/Kg	 ‡	90	75 - 125		
Lab Sample ID: 180-116528 Matrix: Solid Analysis Batch: 345656	-10 MSD				CI	ient Sam	ple II	D: ES-1	3_012621 Prep Ty	_SED_ pe: Tot	03-05 al/NA
· · · · · · , · · · · · · · · · · · · · · · · · · ·	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Organic Carbon - Duplicates	12000		31900	42900		mg/Kg		96	75 - 125	2	20

Client: Wood E&I Solutions Inc Project/Site: Wood Penobscot River Proposal

Analysis Batch: 345159

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-116528-1	MMBKD-01_012521_SED_00-01	Iotal/INA	Solia	EPA-Lloyd Kann	
180-116528-2	MMBKD-01_012521_SED_01-03	Total/NA	Solid	EPA-Lloyd Kahn	
180-116528-3	MMBKD-01_012521_SED_03-05	Total/NA	Solid	EPA-Lloyd Kahn	
180-116528-4	MMBKD-01_012521_SED_01-03_DUP	Total/NA	Solid	EPA-Lloyd Kahn	
180-116528-5	FRB-02_012621_SED_00-01	Total/NA	Solid	EPA-Lloyd Kahn	
180-116528-6	FRB-02_012621_SED_01-03	Total/NA	Solid	EPA-Lloyd Kahn	
180-116528-7	FRB-02_012621_SED_03-05	Total/NA	Solid	EPA-Lloyd Kahn	
MB 180-345159/4	Method Blank	Total/NA	Solid	EPA-Lloyd Kahn	
LCS 180-345159/5	Lab Control Sample	Total/NA	Solid	EPA-Lloyd Kahn	
180-116528-7 MS	FRB-02_012621_SED_03-05	Total/NA	Solid	EPA-Lloyd Kahn	
180-116528-7 MSD	FRB-02_012621_SED_03-05	Total/NA	Solid	EPA-Lloyd Kahn	

Analysis Batch: 345415

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-116528-2	MMBKD-01_012521_SED_01-03	Total/NA	Solid	2540G	
180-116528-3	MMBKD-01_012521_SED_03-05	Total/NA	Solid	2540G	
180-116528-4	MMBKD-01_012521_SED_01-03_DUP	Total/NA	Solid	2540G	

Analysis Batch: 345426

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-116528-5	FRB-02_012621_SED_00-01	Total/NA	Solid	2540G	
180-116528-6	FRB-02_012621_SED_01-03	Total/NA	Solid	2540G	
180-116528-7	FRB-02_012621_SED_03-05	Total/NA	Solid	2540G	
180-116528-5 DU	FRB-02_012621_SED_00-01	Total/NA	Solid	2540G	

Analysis Batch: 345455

Lab Sample ID	Client Sample ID	Prep Туре	Matrix	Method	Prep Batch
180-116528-1	MMBKD-01_012521_SED_00-01	Total/NA	Solid	2540G	

Analysis Batch: 345577

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-116528-8	ES-13_012621_SED_00-01	Total/NA	Solid	2540G	
180-116528-9	ES-13_012621_SED_01-03	Total/NA	Solid	2540G	
180-116528-10	ES-13_012621_SED_03-05	Total/NA	Solid	2540G	
180-116528-8 DU	ES-13_012621_SED_00-01	Total/NA	Solid	2540G	

Analysis Batch: 345656

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-116528-8	ES-13_012621_SED_00-01	Total/NA	Solid	EPA-Lloyd Kahn	
180-116528-9	ES-13_012621_SED_01-03	Total/NA	Solid	EPA-Lloyd Kahn	
180-116528-10	ES-13_012621_SED_03-05	Total/NA	Solid	EPA-Lloyd Kahn	
MB 180-345656/4	Method Blank	Total/NA	Solid	EPA-Lloyd Kahn	
LCS 180-345656/5	Lab Control Sample	Total/NA	Solid	EPA-Lloyd Kahn	
180-116528-10 MS	ES-13_012621_SED_03-05	Total/NA	Solid	EPA-Lloyd Kahn	
180-116528-10 MSD	ES-13_012621_SED_03-05	Total/NA	Solid	EPA-Lloyd Kahn	

Client Samp	le ID: MM	BKD-01_0125	521_S	ED_00-(01		La	b Sample I	D: 180-	116528-1
Date Collected Date Received	l: 01/25/21 1 : 01/28/21 0	5:25 8:30							Ma	atrix: Solid
Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analvzed	Analvst	Lab
Total/NA	Analysis	2540G		1			345455	02/03/21 13:23	MM1	TAL PIT
	Instrumer	nt ID: NOEQUIP								
Client Samp	Ie ID' MM	BKD-01 0125	521 S	FD 00-0)1		La	b Sample I	D· 180-	116528-1
Date Collected	: 01/25/21 1	5:25					20		D. 100 M	atrix: Solid
Date Received	: 01/28/21 0	8:30						Р	ercent S	olids: 24.8
Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA-Lloyd Kahn		1			345159	01/29/21 14:10	DLF	TAL PIT
L	Instrumer	nt ID: FLASHEA								
Client Samp	le ID: MM	BKD-01_0125	521_S	ED_01-(03		La	b Sample I	D: 180-	116528-2
Date Collected Date Received	l: 01/25/21 1 : 01/28/21 0	5:35 8:30							M	atrix: Solid
[Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	2540G nt ID: NOEQUIP		1			345415	02/03/21 10:43	MM1	TAL PIT
Client Samp Date Collected Date Received	le ID: MM 1: 01/25/21 1 : 01/28/21 0	BKD-01_0125 5:35 8:30	521_S	ED_01-()3		La	b Sample I P	D: 180- Ma ercent S	116528-2 atrix: Solid solids: 39.6
	Patab	Batab		Dil	Initial	Final	Batab	Droporod		
Pren Tyne	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analvet	lah
Total/NA	Analysis Instrumer	EPA-Lloyd Kahn t ID: FLASHEA		1	Amount		345159	01/29/21 14:27	DLF	TAL PIT
Client Samp	le ID: MM	BKD-01 0125	521 S	ED 03-0)5		La	b Sample I	D: 180-	116528-3
Date Collected Date Received	I: 01/25/21 1 : 01/28/21 0	5:40 8:30							Ma	atrix: Solid
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	2540G		1			345415	02/03/21 10:43	MM1	TAL PIT
L	Instrumer	nt ID: NOEQUIP								
Client Samp	le ID: MM	BKD-01_0125	521_S	ED_03-0)5		La	b Sample I	D: 180-	116528-3
Date Collected	: 01/25/21 1	5:40						_	M	atrix: Solid
Date Received	: 01/28/21 0	8:30						P	ercent S	olids: 52.6
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	EPA-Lloyd Kahn nt ID: FLASHEA		1			345159	01/29/21 14:44	DLF	TAL PIT

Client Sample Date Collected:	D: MMI	BKD-01_0125 2:00	521_S	ED_01-(03_DUP		La	b Sample I	D: 180- Ma	116528-4 atrix: Solid
Date Received:	01/28/21 08	3:30								
Prep Type Total/NA	Batch Type Analysis Instrument	Batch Method 2540G t ID: NOEQUIP	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 345415	Prepared or Analyzed 02/03/21 10:43	Analyst MM1	Lab TAL PIT
Client Sample	D: MMI	BKD-01_0125	521_S	ED_01-0	03_DUP		La	b Sample I	D: 180-	116528-4
Date Collected:	01/25/21 12	2:00	_	_	_				Ма	atrix: Solid
Date Received:	01/28/21 08	3:30						Р	ercent S	olids: 39.3
Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrument	EPA-Lloyd Kahn ID: FLASHEA		1			345159	01/29/21 15:06	DLF	TAL PIT
Client Sample	D: FRB	-02 012621	SED	00-01			La	b Sample I	D: 180-	116528-5
Date Collected:	01/26/21 1	5:00							Ma	atrix: Solid
Date Received:	01/28/21 08	3:30								
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrument	2540G ID: NOEQUIP		1			345426	02/03/21 11:23	MM1	TAL PIT
Client Sample Date Collected: Date Received:	D: FRB 01/26/21 1 01/28/21 08	3 -02_012621_ 5:00 3:30	SED_	00-01			La	b Sample I P	D: 180- Ma ercent S	116528-5 atrix: Solid olids: 48.3
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrument	EPA-Lloyd Kahn ID: FLASHEA		1			345159	01/29/21 15:36	DLF	TAL PIT
Client Sample Date Collected:	e ID: FRB 01/26/21 1	3 -02_012621_ 5:15	SED_	01-03			La	b Sample I	D: 180- Ma	116528-6 atrix: Solid
Date Received:	01/28/21 08	3:30								
Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis Instrument	2540G ID: NOEQUIP		1			345426	02/03/21 11:23	MM1	TAL PIT
Client Sample Date Collected: Date Received:	e ID: FRB 01/26/21 1 01/28/21 08	3 -02_012621_ 5:15 3:30	SED_	01-03			La	b Sample I P	D: 180- Ma ercent S	116528-6 atrix: Solid olids: 50.3
Г	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analvzed	Analvst	Lab
Total/NA	Analysis	EPA-Lloyd Kahn		1			345159	01/29/21 15:53	DLF	TAL PIT

Client Samp Date Collected	le ID: FRI : 01/26/21 1	B-02_012621_ 15:30	SED_	03-05			La	ib Sample I	D: 180- Ma	116528-7 atrix: Solid
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	2540G nt ID: NOEQUIP		1			345426	02/03/21 11:23	MM1	TAL PIT
Client Samp	le ID: FRI	B-02_012621_	SED_	03-05			La	b Sample I	D: 180-	116528-7
Date Collected	: 01/26/21 1 : 01/28/21 0	5:30 8:30						Р	Ma ercent S	atrix: Solid olids: 56.0
	Batch	Batch		Dil	Initial	Final	Batch	Propared		
Pren Tyne	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	∆nalvst	Lah
Total/NA	Analysis Instrumer	EPA-Lloyd Kahn nt ID: FLASHEA		1	14.6 mg	14.6 mg	345159	01/29/21 16:16	DLF	TAL PIT
Client Samp	le ID: ES-	13_012621_S	ED_0	0-01			La	b Sample I	D: 180-	116528-8
Date Collected	: 01/26/21 1 : 01/28/21 0	8:45 8:30							Ма	atrix: Solid
	Datah	Datah		Dil	luciti e l	Final	Detab	Duou ouo d		
	Batch	Batch	Dum	Dii	Initial	Finai	Batch	Prepared	Analyst	Lah
Total/NA	Iype Analysis Instrumer	2540G nt ID:NOEQUIP	Run	1	Amount	Amount	345577	02/04/21 12:03	KMM	TAL PIT
		42 040004 0		0.04				h Comula I	D. 400	440500.0
Date Collected	IE ID: ES- · 01/26/21 1	·13_012621_5 18·45	כם_0	0-01			La	io Sample I	D: 160- Ma	110020-0
Date Received:	01/28/21 0	8:30						Р	ercent S	olids: 41.1
Г	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	EPA-Lloyd Kahn nt ID: FLASHEA		1			345656	02/04/21 11:59	DLF	TAL PIT
Client Samp	le ID: ES-	13 012621 S	ED 0	1-03			La	b Sample I	D: 180-	116528-9
Date Collected	: 01/26/21 1	18:55							Ма	atrix: Solid
Date Received:	01/28/21 0	8:30								
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	2540G nt ID: NOEQUIP		1			345577	02/04/21 12:03	КММ	TAL PIT
Client Samp	le ID: ES-	13_012621_S	ED_0	1-03			La	b Sample I	D: 180-	116528-9
Date Collected	: 01/26/21 1	8:55						_	Ма	atrix: Solid
Date Received:	01/28/21 0	8:30						Р	ercent S	olids: 50.0
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	EPA-Lloyd Kahn nt ID: FLASHEA		1			345656	02/04/21 13:41	DLF	TAL PIT

Matrix: Solid

Percent Solids: 71.4

Client Sample ID: ES-13_012621_SED_03-05 Date Collected: 01/26/21 19:05 Date Received: 01/28/21 08:30

Lab Sample ID: 180-116528-10 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	2540G		1			345577	02/04/21 12:03	KMM	TAL PIT
L	Instrumen	t ID: NOEQUIP								
Client Sam	ple ID: ES-	13 012621	SED 0	3-05			Lab	Sample ID	: 180-1	16528-10

Client Sample ID: ES-13_012621_SED_03-05 Date Collected: 01/26/21 19:05 Date Received: 01/28/21 08:30

-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	EPA-Lloyd Kahn		1	14.7 mg	14.7 mg	345656	02/04/21 12:22	DLF	TAL PIT
	Instrumen	nt ID: FLASHEA								

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Analyst References:

Lab: TAL PIT

Batch Type: Analysis

DLF = Donald Ferguson

KMM = Kendric Moore

MM1 = Mary Beth Miller

Client: Wood E&I Solutions Inc Project/Site: Wood Penobscot River Proposal

Laboratory: Eurofins TestAmerica, Pittsburgh

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program	Identification Number	Expiration Date
Maine	State	PA00164	03-06-22

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
2540G		Solid	Percent Moisture
2540G		Solid	Percent Solids
EPA-Lloyd Kahn		Solid	Total Organic Carbon - Duplicates

Client: Wood E&I Solutions Inc Project/Site: Wood Penobscot River Proposal

Method	Method Description	Protocol	Laboratory
2540G	SM 2540G	SM22	TAL PIT
EPA-Lloyd Kahn	Organic Carbon, Total (TOC)	EPA	TAL PIT

Protocol References:

EPA = US Environmental Protection Agency

SM22 = Standard Methods For The Examination Of Water And Wastewater, 22nd Edition

Laboratory References:

TAL PIT = Eurofins TestAmerica, Pittsburgh, 301 Alpha Drive, RIDC Park, Pittsburgh, PA 15238, TEL (412)963-7058

Sample Summary

Client: Wood E&I Solutions Inc Project/Site: Wood Penobscot River Proposal

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
180-116528-1	MMBKD-01_012521_SED_00-01	Solid	01/25/21 15:25	01/28/21 08:30	
180-116528-2	MMBKD-01_012521_SED_01-03	Solid	01/25/21 15:35	01/28/21 08:30	
180-116528-3	MMBKD-01_012521_SED_03-05	Solid	01/25/21 15:40	01/28/21 08:30	
180-116528-4	MMBKD-01_012521_SED_01-03_DUP	Solid	01/25/21 12:00	01/28/21 08:30	
180-116528-5	FRB-02_012621_SED_00-01	Solid	01/26/21 15:00	01/28/21 08:30	
180-116528-6	FRB-02_012621_SED_01-03	Solid	01/26/21 15:15	01/28/21 08:30	
180-116528-7	FRB-02_012621_SED_03-05	Solid	01/26/21 15:30	01/28/21 08:30	
180-116528-8	ES-13_012621_SED_00-01	Solid	01/26/21 18:45	01/28/21 08:30	
180-116528-9	ES-13_012621_SED_01-03	Solid	01/26/21 18:55	01/28/21 08:30	
180-116528-10	ES-13_012621_SED_03-05	Solid	01/26/21 19:05	01/28/21 08:30	

REAGENT TRACEABILITY SUMMARY

Lab Name: Eurofins TestAmerica, Pittsburgh Job No.: 180-116528-1

SDG No.:

				Reagent.	Parent Reager	ıt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
LKTOCKHPL1_00030	05/10/21	11/10/20	DI Water, Lot na	100 mL	LKTOCKHP_00014	2.128 g	Total Organic Carbon - Duplicates	10022.9 mg/L
.LKTOCKHP_00014	01/28/25	Fror	tier Scientific, Lot LH9	0592	(Purchased Reag	ent)	Total Organic Carbon - Duplicates	47.1 %
LKTOCSRM_00040	09/28/22		CE Elantech, Lot 020718		(Purchased Reag	ent)	Total Organic Carbon - Duplicates	37790 mg/Kg

Reagent LKTOCKHP_00014

CERTIFICATE OF ANALYSIS

Catalog No.	:	141482		Lot Number :	LH90S92
Product Name	:	Potassium hydrogen phtha	llate, 99%		
CAS	:	877-24-7			
Version	:	1.2			
Molecular Formula	:	C8H5KO4			
Molecular Weight	:	204.22		Issue Date :	2018-09-17
Appearance		: \	White crystals		
IR		: (Conforms to structure		
Assay		: 9	99.96%		

4.0 (0.05 M soln. at 25 °C)

:

рΗ

Issued by QC Manager

This is the computer generated page without signature,

Nancy

Frontier	0	Scientific
	ADVANCED DISCOVERY CHEMICALS	

Frontier Scientific P.O. Box 31 Logan,Utah 84323 (p) 1-435-753-1901 (f) 1-435-753-6731 www.frontiersci.com sales@frontiersci.com

Date	1/24/2020	Shipping Address	Test America Pittsbur PO# DR2551163/Ref#30	Fest America Pittsburgh DR2551163/Ref#3068005		
PO#	DR2551163		301 Alpha Dr			
Order#	3088009		Attn: Shawn Clemente			
Series ID			Pittsburgh,PA 15238-2907			
Description	Research Samples in ml vial(s) Note:Single msds.doc for all compounds.		Number of Samples	1		

	Catalog Number	Weight (g)	Name
1	JK141482	500.1	Potassium hydrogen phthalate, 99%

uk /		Page 1/7
Sa Sa	afety Data Shee	et
	acc. to OSHA HCS	
nting data 08/04/2017	Version 4	Reviewed on 12/31/2012
		company/undertaking
1.1 Product identifier		
Product name :	Potassium hydrogen phthalate	
CAS-No. :	877-24-7	
Synonyma:	Monopolassium phihalate	
1,2 Rejevant identified uses o	f the substance or mixture and us	ies advised against
Identified uses :	Laboratory chemicals, Manufacture of a	substances
1.3 Details of the supplier of t	ihe safety data sheet	
Manufacturer/Supplier:	J&K Scientific LLC	
	601 Interchange Blvd, Newark, DE 197	11
	Telephone/Fax: +1 952 942 3333 / +1	9bz 84z 3322
	E-mail addressi: jikualggk-ectemunic.com	I
	AFF 18/F Bidg-D Malesty Garden 6 Be	-SI-Kuan-Zhong Rd, Selling
	Telephone/Fax: +66 10 6284 6533 / +6	6 10 8284 8933
	E-mail address: jkinfo@jkchemical.com	m
Preparation information:	Product safety department	
Emergency telephone number:	+1 800 424 9300 (for USA & Canada)	
the second second second	The second by the	
2.1 Classification of the		
substance or mixture		
GHS Classification in		
accordance with 29 CFR 1910	3	
(OSHA HCS)	The substance is not classified acc	ording to the Globally Harmonized
	System (GHS),	
2.2 Label elementa		
GHS label elements	Not regulated	
Hazard pictograms	Not regulated	
Signal Word	Not regulated	
Pre-entionery statements	Do not get in eves, on skin, or on clothi	ina.
Classification system		
NFPA ratings (scale 0 - 4)	Health = 0	
	Fina = 0	
	Reactivity = 0	
Libilit, extinger (nonin f) - 4)	Health = 0	
Time-rearge (scele c - 4)	Fire = 0	
	0 Reactivity = 0	
	REACTIVITY	
2.3 Other hazards	Contraction and Contraction	
Results of PBT and vPvB states	Nine and Same	
PBT:	Not applicable. Not applicable	
	(When among billing and	

www.lic-solantilic.com

S	afety Data Sheet	
	acc. to OSHA HCS	
Printing data 08/04/2017	Version 4	Reviewed on 12/31/2012
Product name : Potassium hydroge	n phthalate	
66 B. 6		
6.3 Reference to other		
SECTIONS	No dangarous substances are released. See Section 7 for information on safe har See Section 8 for information on persona See Section 13 for disposal information.	ding. I protection equipment.
Protective Action Criteria for	Chemicals	
PAC-1:	S-B-mgtm3	
PAC-2:	110 mgm/4	
PAC-s:	610 mg/m3	
THankling and storage		
T,1 Handling		
Processions for each handling	No special precautions are necessary if u Avoid formation of dust and aerosol ventilation at places where dust is forme fire protection	sed convectly. Ls.Provide appropriate exhaust d.Normat measures for preventive
Information about protection		
egainst explosions and fires 7.2 Storage	No special measures required.	
Including any incompetibilities	Store in a cool place. Keep container ventilated place. Containers which are c and kept upright to prevent leakage. LGK 13: Non-combustible solids that c	tightly closed in a dry end well- pened must be carefully rescaled
	above storage classes	
A Departmente controla por	nonen production	
8.1 Control parameters		
Components with limit values		
that require monitoring at the		
workplace	Not required.	1
Additional information:	The lists that were valid during the create	Wale raded as Dares.
Exposure controls		
8.2 Personal protective equipm	snt	
Centeral protective and myglettic	The your presentency measures to	r handling chemicals shauld be
	followed.	in nandning chemicale and its be
Breathing aguipment:	Not required.	
Protection of handle:	Protective gloves	
	Salection of the glove m penetration times, rates of d	eteriat on consideration of the Musion and the degradation
Restored of gloves ;	but also on further marks of quality a	s not only depend on the material, and varies from manufacturer to

Penstration time of glove meterial. The exact break through time has to be found out by the manufacturer of the protective gloves and has to be observed.

Safety Data Sheet

acc. to OSHA HCS Printing data 05/04/2017 Version 4 Reviewed on 12/31/2012 Product name : Potassium hydrogen phthetate 3 Colemporariaon Britonnakkon on Ingradianta

Chemical characterization: Si	ibetances
ME-	CRHEKOM
MINA/:	204.23 g/mol
CAS-No. Description	877-24-7 Potassium hydrogen phthatate
identification number(s)	
EC nomber:	212-889-4
C	
4.1 Description of first aid me	esures
General information:	Consult a physician. Show this safety data sheet to the doctor in attendance.
After Inhelation:	If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.
After skin contect:	Wash off with soap and plenty of water. Consult a physician.
After eye contect:	Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.
After ewallowing:	Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.
4.2 Information for doctor	
Host Important symptoms and	
effects, both souts and delayed	To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.
indication of any immediate medical	
attention and special treatment	his data mailable
needed	140 GRIN MANUNDIA
S.F. Colling measures	the second second in the second
8,1 Extinguishing mean	the set of the transferred down day showing an analysis disudate
Subble extinguishing agents:	Use water spray, alconorrests ant loam, dry chemical or carbon dioxide.
5.2 apeciar nezeros anang	
from the substance of	and the man of the
	Carbon cxides, Polaisium cxides
6.3 Advice for firefighters	Wear self contained breathing apparatus for the tighting it necessary.
V Application research and	
6.1 Personal precautions, protective equipment and	
amernancy procedurat	Use personal protective equipment. Avoid dust formation, Avoid breathing
anna gana) prosessor	vapors, mist or gas, Ensure adequate ventilation. Avoid breathing dust.Remove persons from danger area.
Environmental precautions:	Do not allow to enter sewars/ surface or ground water.
6.2 Methods and material for	
	and the bit to an element of the and elements of an homendation month.

Keep in suitable, closed containers for disposal.

Page 3/7

Safety Data Sheet Version 4

Page 4/7

Page 2/7

acc, to OSHA HCS

Reviewed on 12/31/2012

Product name : Potassium hydrogen phthalate

Printing date 08/04/2017

Complete suit protecting against chemicals. The type of protective equipment must be selected according to the concentration and amount of the despercus substance at the specific workplace. Body protection:

 Preparent and chemical properties
Information on basic physical and chemical properties
General information Gene

a eserit functured	
Appearance	
Form;	Powder
Color:	White
Odor:	No data available
Odor threshold:	Not determined.
pH-value:	Not applicable.
Change in condition	
Neiting point/Metting range:	295-300 °C (563-672 °F)
Bolling point/Bolling range:	Undetermined.
Flash point:	Not applicable.
Flammability (solid, gaseous):	Product is not fiammable.
ignition temperature:	
Decomposition temperature:	Not determined.
Auto Innitinu:	Not determined.
Danger of explosion:	Product dows not present an explosion hazard.
Evaluation limite	
	Not determined
Linual P	Not determined.
Manar Second	Net applicable
Demolter of QE 10 (77 SEL	1.84 giano (19.592 lim/org)
Denery in 20 C(77 T):	1.04 gent (13.000 mmgai)
Balation demails	Biotechnical
Manager Constitu	Not applicable
Europer destination	Not applicable.
rs - ball, 196a for f Billion fis Hidra and the	and approximiter
Solidinity in a winecipility with	Not determined
Partiles assistant in asimalia	whether black determined
Participal continuum (mooranon4	allery: Plot cloud finition.
Alscoald.	Mat
Dynamic:	PROL Approximation
Panentera;	nu approximation.
Other Information	UC OBUSI EVENADES
The second second second why	
10.1 Reactivity	No data avaitable
10.2 Chemical stability	Stable under recommended storage conditions.
10.3 Possibility of hazardous	
reactions	No dancersus reactions known.
40.4 Conditions to world	No data svallable
40.6 Incompatible sectoriale	Closes addition anoth
10's meanibagine meraline	ocruit issersuit afterna

	acc, to OSHA HCS
nting data 08/04/2017	Version 4 Reviewed on 12/31/2012
duct name : Potassium hydrogen	pityinalattas
10,6 Hazardous	
decomposition products	Carbon oxides, Potassium oxides
11.1 Information on toxicologi	CILI STIECU
Primary Internet effect	No irritant effect.
	No Initiating effect.
Sensitization:	No sensitizing effects known,
Cercinogenic categories LARC (International Agency for	
Research on Cancer)	Substance is not listed.
NTP (Mational Toxicology Program)	Substance is not water.
OSHA-Ga (Occupations safety &	Substance la not listed.
RTECS-No.:	CZ4326000
	Stand States of Market 2
12.1 Toxicity	A1 A-A
Aquatic toxicity	No date avaliable
12,2 Permistance and	an defe second-film
degradability	and and the second seco
12.3 Beliavior in environment	No dete susishin
Biotocomunities potenties -	No data avaluatio
An A Additional acological in	ornation
General notes:	Water hszard class 2 (Self-assessment): hazardous for water Do not sllow product to reach ground water, water course or sewage
	system. Descente drinking water if even small guantities leak into the ground.
40.6 Decults of DBT and uDd	Langer to service a street service ser
JZ0 KOLUNS OF POT AND APA	Not applicable.
vPuR:	Not applicable.
12.6 Other adverse effects :	No data available
13.1 Product	Offer surplus and non-recyclable solutions to b licensed disposal company. Contact a licensed professional wante disposal service to dispose of this material. Dissolve or mix the materials with a combustible solvent and burn in a chemical indinerator equipped with an afterburner and scrubber.
13.2 Contaminated packagin	Cispose of as unused product.
13.3 Recommendation	Disposal must be made according to official regulations.
14.1 UN-Number DOT. ADR. ADN. MOG. IATA	Not regulated

Safety Data Sheet

Page 6/7

Ja	lierà	Data Of	1001
	acc, t	to OSHA HCS	
Printing date 08/04/2017		Version 4	Reviewed on 12/31/2012
Product name : Potassium hydrogen (ohthalate		
14.2 UN proper shipping name		Not regulated	
14.3 Transport hazard class(et	0		
DOT, ADR, ADN, MIDG, IATA		Not regulated	
14.4 Packing group			
DOT, ADR, IMDG, IATA		Not regulated	
14,6 Environmental nazaros: Marine poliutado		No	
Special precautions for user		Not applicable.	
Transport in bulk according to	Annex II o	of	
MARPOL73/78 and the IBC Co	de	Not applicable.	
14.6 Transport/Additional Info	mation:	Not dangerous a	ccording to the above specifications.
UN "Model Regulation":		Not regulated	
and the second second second second second second second second second second second second second second secon	FT 7 347		
	nmental m	mulationa/legist	tion specific for the substance or
16.1 Samety, neutrand energy	III) Philoni 14		
Sara			
Section 355 (extremely hexardous			
substances):	Substance	is not listed.	
Section 313 (Specific toxic chemical	Quintonce	in ant linbed.	
(latings): Tacta (Tavio Substancis	Supplation	III (IOL Nettori)	
Easted det):	Substance	iş listed.	
Proposition 55			
Chemicals known to cause carcer:	Substance	is not listed.	
Chemicals known to cause	the designment of	is not finted	
reproductive toxisity for females:	Substance	IS NOT INTO IN	
Chamicals known to cause	Substance	is not listed.	
Chemicals known to cause			
developmental toxicity:	Substance	i la not listed.	
Carcinogenic categories			
EPA (Environmental Protection	0.1.1.1	to ant listed	
Agentry)	Supatance	a la nocestera,	
TLY (Threshold Limit Value	Substance	a is not listed.	
entities of the local institute for	Gubaro ve		
Decupational Safety and Health)	Substance	a is not listed.	
GHS label elements	Not regula	ited	
Hazard pictograms	Not regula	beta	
Signal word	Not regula	bed	
Hezard statements	Not regula	ated	
	Do not not	the owner and skip of	r on ciolining.

Safety Data Sheet acc. to OSHA HCS

Version 4

Reviewed on 12/31/2012

Page 7/7

Printing date 06/04/2017

Product name : Potassium hydrogen phthalate

12.2 Chemical statisty assessment
A Chemical Statisty Assessment has not been carried out.
2.4 Chemical Statisty Assessment has not been carried out.
2.5 Chemical Statisty Assessment has not been carried out.
3.6 Chemical Statisty Assessment has not been carried out.
3.6 Chemical Statisty Assessment has not been carried out.
4.6 Statisty Assessment and toxicity information to at statisty and regulations of the organization, area and country where the products are too be used, which shall be given the first prioduly. The products are supposed to be used with specialized knowledge on those supportions and toxicity information of starage. The products should be treated with the mecognition of starage. The products should be treated with the mecognition of starage. The products are supposed to be used with specialized knowledge on those supportions insult be handled only by those who are familiar of the organization of the organization.
8.7 Between the support of the product of the products and user familiar of starage. The products are supposed in throughout use for out and on out the organized is throughout use for out the operations and disposed. State uses experiments or under the guidance of those specialistist hroughout use for out the operation and disposed. State uses and request a state state and the support of the support and the out counter the out and the out counter the out and the out 15.2 Chemical sufety A Chemical Safety Assessment has not been carried out.

Reagent LKTOCSRM_00040

CERTIFICATE OF ANALYSIS

ELEMENTAL ANALYSIS STANDARD REFERENCE MATERIAL

PRODUCT NAME: ARTICLE NO: APPEARANCE: LOT NUMBER: SOIL CNS REFERENCE MATERIAL SA33840025 Brown powder 020718

Lot Number 020718 is a highly purified and homogeneous lot of Soil NC. It is intended for use in checking micro chemical procedures for the determination of carbon, nitrogen and sulfur.

ORIGINAL MANUFACTURER ASSAY: Lot Number 020718

ELEMENTAL ANALYSIS (STATISTICAL EXPERIMENTAL VALUES)

CARBON:	3.779 %		RSD%: +/- 0.050
NITROGEN:	0.386 %	-	RSD%: +/- 0.050
SULFUR	0.070 %	2	RSD%: +/- 0.050

Verified via use of an NIST certified Montana Soil (NIST Std. Ref Mat. N. 2711 batch 1299). Statistical results of 9 samples of supplied material after calibration with NIST material.

Expiration Date:

This CRM is valid for two years from the date of opening.

Date 02/07/2018

GENERAL CHEMISTRY

COVER PAGE GENERAL CHEMISTRY

Lab	Name:	Eurofins	TestAmerica,	Pittsburgh
-----	-------	----------	--------------	------------

Job Number: 180-116528-1

SDG No.:

Project: Wood Penobscot River Proposal

Client Sample ID MMBKD-01_012521_SED_00-01 MMBKD-01_012521_SED_01-03 MMBKD-01_012521_SED_03-05 MMBKD-01_012521_SED_01-03_DUP FRB-02_012621_SED_00-01 FRB-02_012621_SED_03-05 ES-13_012621_SED_00-01 ES-13_012621_SED_01-03 ES-13_012621_SED_03-05 Lab Sample ID 180-116528-1 180-116528-2 180-116528-3 180-116528-4 180-116528-5 180-116528-6 180-116528-7 180-116528-8 180-116528-9 180-116528-10

Comments:

Client Sample I	D: MMBKD-01_012521_	SED_00-01		Lab Sample	ID: 180-	-116528-	1		
Lab Name: Euro	ofins TestAmerica, Pi	ttsburgh		Job No.: 180-116528-1					
SDG ID.:									
Matrix: Solid				Date Sampl	ed: 01/25	/2021	15 : 25		
Reporting Basis	: DRY			Date Recei	ved: 01/2	28/2021	08:30		
% Solids: 24.8	3								
				1		1	1		
CAS No.	Analyte	Result	RL	MDL	Units	C	Q	DIL	Method

4000

94000

mg/Kg

3000

EPA-Lloy d Kahn

1

Total Organic Carbon - Duplicates

Client Sample	ID: MMBKD-01_012521_S	ED_01-03		Lab Sample	ID: 180-	116528-	2		
Lab Name: Eur	ofins TestAmerica, Pit	tsburgh		Job No.:	180-116528	-1			
SDG ID.:									
Matrix: Solid				Date Sampl	ed: 01/25	/2021	15 : 35		
Reporting Basi	s: DRY			Date Recei	ved: 01/28/2021 08:30				
% Solids: 39.	6								
CAS No.	Analyte	Result	RL	MDL	Units	с	Q	DIL	Method

2500

1900

mg/Kg

54000

EPA-Lloy d Kahn

1

Total Organic Carbon - Duplicates

Client Sample I	D: MMBKD-01_012521_	SED_03-05		Lab Sample	ID: 180-	-116528-	3		
Lab Name: Euro	ofins TestAmerica, P:	Lttsburgh		Job No.: 180-116528-1					
SDG ID.:									
Matrix: Solid				Date Sampl	ed: 01/25	/2021	15 : 40		
Reporting Basis	: DRY			Date Recei	ved: 01/2	28/2021	08:30		
% Solids: 52.6	5								
		1				1			
CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method

1900

1400

mg/Kg

34000

EPA-Lloy d Kahn

1

FORM	IB-IN

Total Organic Carbon - Duplicates

Client Sample	ID: MMBKD-01_012521_SI		Lab Sample ID: 180-116528-4								
Lab Name: Eu	rofins TestAmerica, Pit		Job No.: 180-116528-1								
SDG ID.:											
Matrix: Solid	l			Date Sampl	ed: 01/25	/2021	12:00				
Reporting Basi	s: DRY			Date Received: 01/28/2021 08:30							
% Solids: 39	Solids: 39.3										
CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method		

2500

1900 mg/Kg

EPA-Lloy

d Kahn

1

56000

Total Organic Carbon - Duplicates

Client Samp	le ID: FRB-02_012621_SED		Lab Sample	ID: 180-	-116528-	5					
Lab Name:	Eurofins TestAmerica, Pit		Job No.: 180-116528-1								
SDG ID.:											
Matrix: Sol	.id			Date Sampl	ed: 01/26	/2021	15:00				
Reporting Ba	asis: DRY			Date Received: 01/28/2021 08:30							
% Solids:	48.3										
CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method		

2100

1500

mg/Kg

21000

EPA-Lloy d Kahn

1

FORM	IB-IN

Total Organic Carbon - Duplicates

Client Sample ID: FRB-02_012621_SED_01-03					Lab Sample ID: 180-116528-6							
Lab Name: Eurofins TestAmerica, Pittsburgh					Job No.: 180-116528-1							
SDG ID.:												
Matrix: Sc	olid				Date Sampl	ed: 01/26	/2021	15:15				
Reporting H	Basis: I	DRY			Date Received: 01/28/2021 08:30							
% Solids:	50.3											
CAS No.		Analyte	Result	RL	MDL	Units	С	Q	DIL	Method		

2000

24000

mg/Kg

1500

EPA-Lloy

d Kahn

1

FORM	KW IR-IN

Total Organic Carbon - Duplicates

Client Sample ID: FRB-02_012621_SED_03-05					Lab Sample ID: 180-116528-7							
Lab Name: Eurofins TestAmerica, Pittsburgh					Job No.: 180-116528-1							
SDG ID.:												
Matrix: Sc	olid				Date Sampl	ed: 01/26	/2021	15:30				
Reporting B	Basis: D	DRY			Date Received: 01/28/2021 08:30							
% Solids:	56.0											
CAS No.		Analyte	Result	RL	MDL	Units	С	Q	DIL	Method		

1800

22000

mg/Kg

1300

EPA-Lloy d Kahn

1

FORM IB-IN

Total Organic Carbon - Duplicates

Client Sample	ID:012621_SED_(Lab Sample ID: 180-116528-8								
Lab Name: Eu:	rofins TestAmerica, Pit		Job No.: 180-116528-1								
SDG ID.:											
Matrix: Solid	l			Date Sampl	ed: 01/26	/2021	18 : 45				
Reporting Basi	LS: DRY			Date Received: 01/28/2021 08:30							
% Solids: 41	.1										
CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method		

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon - Duplicates	66000	2400	1800	mg/Kg			1	EPA-Lloy d Kahn

Client Sample ID: ES-13_012621_SED_01-03					Lab Sample ID: 180-116528-9								
Lab Name: Eurofins TestAmerica, Pittsburgh					Job No.: 180-116528-1								
SDG ID.:													
Matrix: So	olid				Date Sampl	ed: 01/26	/2021	18:55					
Reporting	Basis: I	DRY			Date Received: 01/28/2021 08:30								
% Solids:	50.0												
CAS No.		Analyte	Result	RL	MDL	Units	С	Q	DIL	Method			

2000

44000

mg/Kg

1500

EPA-Lloy d Kahn

1

Total Organic Carbon - Duplicates

Client Sample ID: ES-13_012621_SED_03-05					Lab Sample ID: 180-116528-10								
Lab Name:	Eurof	ins TestAmerica, Pit	tsburgh		Job No.: 180-116528-1								
SDG ID.:													
Matrix: S	Solid				Date Sampled: 01/26/2021 19:05								
Reporting	Basis:	DRY			Date Recei	ved: 01/2	28/2021	08:30					
% Solids:	71.4												
CAS No	•	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method			

CAS No.	Analyte	Result	RL	MDL	Units	С	Q	DIL	Method
7440-44-0	Total Organic Carbon - Duplicates	12000	1400	1000	mg/Kg			1	EPA-Lloy d Kahn

2-IN CALIBRATION QUALITY CONTROL GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Pittsburgh				Job No	b.: <u>180-</u>	116528-1				
SDG No	.:									
Analyst: DLF						Batch	Start Da	ate: 01/2	29/20	21
Reporting Units: mg/Kg					Analytical Batch No.: 345159					
Sample Number	QC Туре	Time	Analyte		Result	Spike Amount	(%) Recovery	Limits	Qual	Reagent
2	CCV	13:18	Total Organic Ca Duplicates	arbon -	10100	10000	101	85-115		LKTOCKHPL1_00030
3	CCB	13:23	Total Organic Ca Duplicates	arbon -	ND					
16	CCV	15:23	Total Organic Ca Duplicates	arbon -	10200	10000	102	85-115		LKTOCKHPL1_00030
17	CCB	15:28	Total Organic Ca Duplicates	arbon -	ND					
30	CCV	17:28	Total Organic Ca Duplicates	arbon -	10200	10000	102	85-115		LKTOCKHPL1_00030
31	ССВ	17:34	Total Organic Ca Duplicates	arbon -	ND					

Note! Calculations are performed before rounding to avoid round-off errors in calculated results.

2-IN CALIBRATION QUALITY CONTROL GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Pittsburgh				Job No	o.: <u>180-</u>	116528-1				
SDG No	.:									
Analyst: DLF						Batch	Start D	ate: <u>02/</u>	04/20	21
Reporting Units: mg/Kg						Analy	tical Ba [.]	tch No.:	3456	56
Sample Number	QC Type	Time	Analyte		Result	Spike Amount	(%) Recovery	Limits	Qual	Reagent
2	CCV	11:25	Total Organic C Duplicates	Carbon -	10100	10000	100	85-115		LKTOCKHPL1_00030
3	CCB	11:31	Total Organic C Duplicates	Carbon -	ND					
14	CCV	13:29	Total Organic C Duplicates	Carbon -	10100	10000	101	85-115		LKTOCKHPL1_00030
15	CCB	13:35	Total Organic C Duplicates	Carbon -	ND					
24	CCV	14:48	Total Organic C Duplicates	Carbon -	10100	10000	101	85-115		LKTOCKHPL1_00030
25	ССВ	14:53	Total Organic C Duplicates	Carbon -	ND					

Note! Calculations are performed before rounding to avoid round-off errors in calculated results.

3-IN METHOD BLANK GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Pittsburgh Job No.: 180-116528-1

SDG No.:

Method	Lab Sample ID	Analyte	Result Qual	Units	RL	Dil
Batch ID:	345159 Date:	01/29/2021 13:31		ma/Ka	1000	1
Kahn	MB 100-345159/4	Duplicates	- IND	IIIg/Kg	1000	Ţ
Batch ID:	345656 Date:	02/04/2021 11:37				
EPA-Lloyd Kahn	MB 180-345656/4	Total Organic Carbon - Duplicates	- ND	mg/Kg	1000	1

5-IN MATRIX SPIKE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Pittsburgh Job No.: 180-116528-1

SDG No.:

Matrix: Solid

Method Lab Sample ID Analyte	Result (C Unit	Spike Amount	Pct. Rec.	Limits	RPD RPD Limit	Q
Batch ID: 345159 Date: 01/29/2021 16:32							
EPA-Llo 180-116528-7 Total Organic Carbon - vd Kahn Duplicates	22000	mg/Kg					
ĒPA-Llo 180-116528-7 Total Organic Carbon -	58100	mg/Kg	39300	93	75-125		
yd Kahn MS Duplicates							
Batch ID: 345656 Date: 02/04/2021 12:44							
EPA-Llo 180-116528-10 Total Organic Carbon -	12000	mg/Kg					
yd Kahn Duplicates							
EPA-Llo 180-116528-10 Total Organic Carbon -	42100	mg/Kg	32900	90	75-125		
yd Kahn MS Duplicates							

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

5-IN MATRIX SPIKE DUPLICATE SAMPLE RECOVERY GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Pittsburgh Job No.: 180-116528-1

SDG No.:

Matrix: Solid

Method Lab Sample ID Analyte	Result C Unit	Spike Amount	Pct. Rec.	Limits	RP RPD Limi	D t Q
Batch ID: 345159 Date: 01/29/2021 16:49 EPA-Llo 180-116528-7 Total Organic Carbon - yd Kahn MSD Duplicates	59400 mg/Kg	37700	100	75-125	2 2	0
Batch ID: 345656 Date: 02/04/2021 13:07 EPA-Llo 180-116528-10 Total Organic Carbon - yd Kahn MSD Duplicates	42900 mg/Kg	31900	96	75-125	2 2	0

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

7A-IN LAB CONTROL SAMPLE GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Pittsburgh Job No.: 180-116528-1

SDG No.:

Matrix: Solid

Method Lab Sample I	D Analyte	Result	C Unit	Spike Amount	Pct. Rec.	Limits	RPD RPD Limit	Q
Batch ID: 345159	Date: 01/29/2021 13:42		LCS	Source: I	KTOCSRI	M_00040		
EPA-Llo LCS yd Kahn 180-345159/5	Total Organic Carbon - Duplicates	34800	mg/Kg	37800	92	75-125		
Batch ID: 345656	Date: 02/04/2021 11:48		LCS	Source: I	KTOCSRI	M 00040		
EPA-Llo LCS yd Kahn 180-345656/5	Total Organic Carbon - Duplicates	38300	mg/Kg	37800	101	75-125		

Calculations are performed before rounding to avoid round-off errors in calculated results.
9-IN DETECTION LIMITS GENERAL CHEMISTRY

Lab Name	e: Eurofins TestAmerica,	Pittsburg	Job Number: 180-	116528-1
SDG Num	ber:			
Matrix:	Solid		Instrument ID: N	OEQUIP
Method:	2540G		RL Date: 01/31/	2010 13:27
	Analyte	Wavelength/ Mass	RL (%)	

0.1

0.1

Percent Moisture

Percent Solids

9-IN CALIBRATION BLANK DETECTION LIMITS GENERAL CHEMISTRY

Lab Name	e: Eurofins TestAmerica,	Pittsburg	Job Number:	180-	116528-1	
SDG Numl	oer:					
Matrix:	Solid		Instrument	ID: N	OEQUIP	
Method:	2540G		XRL Date:	01/31	/2010 13:31	
	Analyte	Wavelength/ Mass	XRL (%)			

0.1

0.1

Percent Moisture

Percent Solids

9-IN DETECTION LIMITS GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Pittsburg Job Number: 180-116528-1

SDG Number:

Matrix: Solid

Method: EPA-Lloyd Kahn

Instrument ID: FLASHEA

MDL Date: 03/09/2017 16:58

Analyte	Wavelength/	RL	MDL
	Mass	(mg/Kg)	(mg/Kg)
Total Organic Carbon - Duplicates		1000	746

9-IN CALIBRATION BLANK DETECTION LIMITS GENERAL CHEMISTRY

Lab Name: Eurofins TestAmerica, Pittsburg Job Number: 180-116528-1

SDG Number:

Matrix: Solid

Method: EPA-Lloyd Kahn

Instrument ID: FLASHEA

XMDL Date: 03/09/2017 16:58

Analyte	Wavelength/	XRL	XMDL
	Mass	(mg/Kg)	(mg/Kg)
Total Organic Carbon - Duplicates		1000	746

Lab Name: Eurofins TestAmerica, Pittsburgh								No	. :	:	18	80-	11	65	28-	-1								
SDG No.:																								
Instrument ID: NOEQUIP						A	na	lys	sis	5 N	1et	ho	d:	2.	54()G								
Start Date: 02/03/2021 10	:43					E	Ind	Da	ate	€:	02	2/0	3/3	202	21	-	L 0 :	43	3		 			
		Т												Ana	al	yte	es				 			
Lab Sample Id	D/F	У р е	Time	% S 0 1	M o i s t																			
ZZZZZ			10:43																					
ZZZZZ			10:43							1												-	+	
ZZZZZ			10:43																					
ZZZZZ			10:43							1												-	+	
ZZZZZ			10:43																					
ZZZZZ			10:43							1												-	+	
ZZZZZ			10:43							1												-	+	
ZZZZZ			10:43							1												-	+	
ZZZZZ			10:43							1												-	+	
ZZZZZ			10:43							1												-	-	
ZZZZZ			10:43																			-		+ -
ZZZZZ			10:43							1												-	+	
ZZZZZ			10:43							1												-	+	
ZZZZZ			10:43							1												-	+	
ZZZZZ			10:43																			-		+ -
ZZZZZ			10:43							1												-	-	$\neg \neg$
ZZZZZ			10:43							1												-	-	$\neg \neg$
ZZZZZ			10:43							1												-	+	
ZZZZZ			10:43																			+	\top	+ -
180-116528-2	1	T	10:43	X	X																	+	\top	+ -
180-116528-3	1	T	10:43	X	X																	+	\top	+ -
180-116528-4	1	T	10:43	X	X																	\top	\top	$\neg \neg$

180-116528-4 Prep Types:

T = Total/NA

Lab Name: Eurofins TestAme		Job No.:		180-	11	652	28-	1														
SDG No.:																						
Instrument ID: NOEQUIP						Analysis	M	letho	d:	2	540	G										
Start Date: 02/03/2021 11	:23					End Date:	:	02/0	3/	202	21	1	1:2	23								
		Т								Ana	aly	te	5									
Lab Sample Id	D/F	У р е	Time	% S 0 1	M o i s t																	
180-116528-5	1	T	11:23	X	X								T			Ŧ	<u> </u>	T	T			=
180-116528-5 DU	1	Т	11:23	X	Х										\square	+	-	+	+			
180-116528-6	1	Т	11:23	Х	Х										\square	+		+	1			
ZZZZZ			11:23												\square	+		+	1			
ZZZZZ			11:23										1			+	1	+	1			
ZZZZZ			11:23													+		+	1			
180-116528-7	1	Т	11:23	X	Х											+		+	1			
ZZZZZ			11:23										1			+	1	+	1			
ZZZZZ			11:23										1			+	1	+	1			
ZZZZZ			11:23													+		+	1			
ZZZZZ			11:23										1			+	1	+	1			
ZZZZZ			11:23										1			+	1	+	1			
ZZZZZ			11:23										1			+	1	+	1			
ZZZZZ			11:23										1			+	1	+	1			
ZZZZZ			11:23										1			+	1	+	1			
ZZZZZ			11:23										1			+	-	+	+			
ZZZZZ			11:23										1			+	-	+	+			
ZZZZZ			11:23										\top		\square	+		1	1	\square		
ZZZZZ		1	11:23												\square	+	1			\square		
ZZZZZ			11:23										\top		\square	+		1	1	\square		
ZZZZZ			11:23										\top		\square	+		1	1	\square		
ZZZZZ		1	11:23										1		\square	+	+	+	1	\square	\top	

 $\frac{\text{Prep Types:}}{\text{T = Total/NA}}$

Lab Name: Eurofins TestAmerica, Pittsburgh							b	No	.:	-	18)-1	.16	52	8-	1					 	
SDG No.:																	 					
Instrument ID: NOEQUIP						Aı	nal	ys	is	M	etl	noc	1:	25	40	G					 	
Start Date: 02/03/2021 13:	Start Date: 02/03/2021 13:23									: [02	/03	3/2	202	1	13	3:2	23			 	
									P	na	ly	tes	5		 	 	 					
Lab Sample Id D/F P Time 8 M 0 i 1 s t																						
ZZZZZ			13:23																			
ZZZZZ			13:23																			
ZZZZZ			13:23																			
ZZZZZ			13:23																			
ZZZZZ			13:23																			
ZZZZZ			13:23																			
ZZZZZZ																						
180-116528-1	1	T	13:23	X	Х																	

Prep Types:

T = Total/NA

Lab Name: Eurofins TestAn	nerica, Pi	.tt	sburgh	Job No.:	180-116528-1		
SDG No.:							
Instrument ID: NOEQUIP						Analysis :	Method: 2540G
Start Date: 02/04/2021 1	.2:03					End Date:	02/04/2021 12:03
		Т					Analytes
Lab Sample Id	D/F	У р е	Time	% S 0 1	M o i s t		
180-116528-8	1	Т	12:03	X	Х		
180-116528-8 DU	1	Т	12:03	Х	Х		
180-116528-9	1	Т	12:03	Х	Х		
180-116528-10	1	Т	12:03	Х	Х		
ZZZZZ			12:03				
ZZZZZ			12:03				
ZZZZZ			12:03				
ZZZZZ			12:03				
ZZZZZ			12:03				
ZZZZZ			12:03				
ZZZZZ			12:03				
ZZZZZ			12:03				
ZZZZZ			12:03				
ZZZZZ			12:03				
ZZZZZ			12:03				
ZZZZZ			12:03				
ZZZZZ			12:03				
ZZZZZ			12:03				

12:03

12:03

12:03

12:03

Prep Types:

ZZZZZZ ZZZZZ

ZZZZZ

ZZZZZ

T = Total/NA

Lab Name: Eurofins TestAmerica, Pittsbu

Pittsburgh Job No.: <u>180-11</u>6528-1

SDG No.:

Instrument ID: FLASHEA

Start Date: 01/29/2021 13:00 End Date: 02/01/2021 10:39

Analysis Method: EPA-Lloyd Kahn

		Т		Analytes
Lab Sample Id	D/F	У р е	Time	T O C D
RINSE 180-345159/1			13:00	
CCV 180-345159/2	1		13:18	X
CCB 180-345159/3	1		13:23	X
MB 180-345159/4	1	Т	13:31	X
LCS 180-345159/5	1	Т	13:42	X
ZZZZZ			13:53	
RINSE 180-345159/7			14:05	
180-116528-1	1	Т	14:10	X
RINSE 180-345159/9			14:21	
180-116528-2	1	Т	14:27	X
RINSE 180-345159/11			14:38	
180-116528-3	1	Т	14:44	X
RINSE 180-345159/13			14:55	
180-116528-4	1	Т	15:06	X
RINSE 180-345159/15			15:17	
CCV 180-345159/16	1		15:23	X
CCB 180-345159/17	1		15:28	X
180-116528-5	1	Т	15:36	X
RINSE 180-345159/19			15:48	
180-116528-6	1	Т	15:53	X
RINSE 180-345159/21			16:04	
180-116528-7	1	Т	16:16	X
RINSE 180-345159/23			16:27	
180-116528-7 MS	1	Т	16:32	X
RINSE 180-345159/25			16:43	
180-116528-7 MSD	1	Т	16:49	X
RINSE 180-345159/27			17:00	
ZZZZZ			17:11	
RINSE 180-345159/29			17:23	
CCV 180-345159/30	1		17:28	X
CCB 180-345159/31	1		17:34	X
ZZZZZ			17:39	
RINSE 180-345159/33			17:50	
ZZZZZ			17:56	
RINSE 180-345159/35			18:07	
ZZZZZZ			18:18	
RINSE 180-345159/37			18:30	
ZZZZZZ			18:35	
RINSE 180-345159/39			18:46	
ZZZZZZ			18:57	

|--|

SDG No.:

Instrument ID: FLASHEA

Start Date: 01/29/2021 13:00 End Date: 02/01/2021 10:39

Analysis Method: EPA-Lloyd Kahn

		Т							An	aly	∕t∈	es					
Lab Sample Id	D/F	У р е	Time	T O C D													
RINSE 180-345159/41			07:45													Τ	Τ
CCV 180-345159/42			07:56														
CCB 180-345159/43			08:02														
ZZZZZ			08:08														
RINSE 180-345159/45			08:20														
ZZZZZ			08:31														
RINSE 180-345159/47			08:42														
ZZZZZ			08:53														
RINSE 180-345159/49			09:04														
ZZZZZ			09:15														
RINSE 180-345159/51			09:27														
CCV 180-345159/52			09:38														
CCB 180-345159/53			09:43														
ZZZZZ			09:49														
RINSE 180-345159/55			10:00														
ZZZZZ			10:11														
RINSE 180-345159/57			10:22													1	
CCV 180-345159/58			10:33													1	
CCB 180-345159/59			10:39														

Prep Types:

T = Total/NA

|--|

Durgh Job No.: <u>180-116528-1</u>

SDG No.:

Instrument ID: FLASHEA

Start Date: 02/04/2021 11:19

Analysis Method: EPA-Lloyd Kahn

End Date: 02/04/2021 14:53

		Т								An	al	yt	es						
Lab Sample Id	D/F	р е	Time	T O C D															
RINSE 180-345656/1			11:19														\top	Τ	\top
CCV 180-345656/2	1		11:25	X															
CCB 180-345656/3	1		11:31	X															
MB 180-345656/4	1	Т	11:37	X															
LCS 180-345656/5	1	Т	11:48	X															
180-116528-8	1	Т	11:59	X															
RINSE 180-345656/7			12:11																
180-116528-10	1	Т	12:22	X															
RINSE 180-345656/9			12:33																
180-116528-10 MS	1	Т	12:44	X															
RINSE 180-345656/11			12:56																
180-116528-10 MSD	1	Т	13:07	X															
RINSE 180-345656/13			13:18																
CCV 180-345656/14	1		13:29	X															
CCB 180-345656/15	1		13:35	X															
180-116528-9	1	Т	13:41	X															
RINSE 180-345656/17			13:52																
RINSE 180-345656/18			13:57																
ZZZZZ			14:09																
RINSE 180-345656/20			14:20																
RINSE 180-345656/21			14:25																
RINSE 180-345656/22			14:31																
RINSE 180-345656/23			14:37																
CCV 180-345656/24	1		14:48	X															
CCB 180-345656/25	1		14:53	X															

Prep Types:

T = Total/NA

Lab Name: Eurofins TestAmerica, Pittsbur Job No.: 180-116528-1

SDG No.:

Batch Number: 345415

Batch Start Date: 02/03/21 12:50 Batch Analyst: Miller, Mary Beth

Batch Method: 2540G

Batch End Date: 02/04/21 01:00

Lab Sample ID	Client Sample ID	Method Chain	Basis	DISH#	DishWeight	SampleMassWet	SampleMassDry	
180-116528-A-2	MMBKD-01_012521_ SED 01-03	2540G	Т	42	1.02 g	9.60 g	4.42 g	
180-116528-A-3	MMBKD-01_012521_ SED 03-05	2540G	Т	43	1.00 g	7.67 g	4.51 g	
180-116528-A-4	MMBKD-01_012521_ SED 01-03 DUP	2540G	Т	44	1.01 g	10.32 g	4.67 g	

Batch	Batch Notes								
Balance ID	B738722774								
Batch Comment	completed by mbm								
Date and Time Samples in Desiccator	02/04/2021 09:00								
Date and Time Samples out of Desiccator	02/04/2021 09:30								
Date samples were placed in the oven	02/03/2021								
Oven Temp In	103 Degrees C								
Time samples were place in the oven	12:50								
Date samples were removed from oven	02/04/2021								
Oven Temp Out	104 Degrees C								
Time Samples were removed from oven	09:00								
Oven ID	5005								
Thermometer ID	Qc-12 cf=0								
Temperature - Start - Uncorrected	103 Degrees C								
Temperature - End - Uncorrected	104 Degrees C								

Basis	Basis	Description
Т	Total/NA	

Lab Name: Eurofins TestAmerica, Pittsbur Job No.: 180-116528-1

SDG No.:

Batch Number: 345426 Batch Start Date: 02/03/21 12:50 Batch Analyst: Miller, Mary Beth

Batch Method: 2540G

Batch End Date: 02/04/21 13:04

Lab Sample ID	Client Sample ID	Method Chain	Basis	DISH#	DishWeight	SampleMassWet	SampleMassDry	AnalysisComment	
100 11 6500 - 5			_		1	6.01	2.42		
180-116528-A-5	FRB-02 012621 SE	2540G	I T	45	1.00 g	6.01 g	3.42 g	tray 49	
	D 00-01								
180-116528-A-5	FRB-02 012621 SE	2540G	Т	46	1.01 g	6.03 q	3.45 g		
DU	D 00-01								
180-116528-A-6	FRB-02 012621 SE	2540G	Т	47	1.00 g	8.02 q	4.53 g		
	D 01-03								
180-116528-A-7	FRB-02 012621 SE	2540G	Т	51	1.01 g	8.22 g	5.05 g		
	D_03-05								

Batch	Batch Notes								
Balance ID	B738722774								
Batch Comment	completed by mbm								
Date and Time Samples in Desiccator	02/04/2021 09:00								
Date and Time Samples out of Desiccator	02/04/2021 09:30								
Date samples were placed in the oven	02/03/2021								
Oven Temp In	103 Degrees C								
Time samples were place in the oven	12:30								
Date samples were removed from oven	02/04/2021								
Oven Temp Out	104 Degrees C								
Time Samples were removed from oven	09:00								
Oven ID	5005								
Thermometer ID	QC-12 CF=0								
Temperature - Start - Uncorrected	103 Degrees C								
Temperature - End - Uncorrected	104 Degrees C								

Basis	Basis Description
Т	Total/NA

Lab Name: Eurofins TestAmerica, Pittsbur Job No.: 180-116528-1

SDG No.:

Batch Number: 345455 Batch Start Date: 02/03/21 13:23 Batch Analyst: Miller, Mary Beth

Batch Method: 2540G

Batch End Date: 02/04/21 13:07

Lab Sample ID	Client Sample ID	Method Chain	Basis	DISH#	DishWeight	SampleMassWet	SampleMassDry	
180-116528-A-1	MMBKD-01_012521_ SED 00-01	2540G	Т	76	1.00 g	8.38 g	2.83 g	

Batch	Batch Notes								
Balance ID	B738722774								
Batch Comment	completed by mbm								
Date and Time Samples in Desiccator	02/04/2021 09:00								
Date and Time Samples out of Desiccator	02/04/2021 09:30								
Date samples were placed in the oven	02/03/2021								
Oven Temp In	103 Degrees C								
Time samples were place in the oven	01:30								
Date samples were removed from oven	02/04/2021								
Oven Temp Out	104 Degrees C								
Time Samples were removed from oven	09:00								
Oven ID	5005								
Thermometer ID	qc-12 CF=0								
Temperature - Start - Uncorrected	103 Degrees C								
Temperature - End - Uncorrected	104 Degrees C								

Basis	Basis Description
Т	Total/NA

Lab Name: Eurofins TestAmerica, Pittsbur Job No.: 180-116528-1

SDG No.:

Batch Number: 345577 Batch Start Date: 02/04/21 12:03 Batch Analyst: Moore, Kendric M

Batch Method: 2540G

Batch End Date: 02/05/21 12:59

Lab Sample ID	Client Sample ID	Method Chain	Basis	DISH#	DishWeight	SampleMassWet	SampleMassDry	AnalysisComment	
180-116528-A-8	ES-13_012621_SED 00-01	2540G	T	1	1.04 g	6.34 g	3.22 g	Tray 0.2	
180-116528-A-8 DU	ES-13_012621_SED 00-01	2540G	Т	2	1.03 g	6.32 g	3.19 g		
180-116528-A-9	ES-13_012621_SED 01-03	2540G	Т	3	1.03 g	8.03 g	4.53 g		
180-116528-A-10	ES-13_012621_SED _03-05	2540G	Т	4	1.02 g	8.11 g	6.08 g		

Batch Notes				
Balance ID	8949			
Batch Comment	Desiccator 6			
Date and Time Samples in Desiccator	02/05/2021 11:25			
Date and Time Samples out of Desiccator	02/05/2021 12:49			
Date samples were placed in the oven	02/04/2021			
Oven Temp In	103 Degrees C			
Time samples were place in the oven	15:26			
Date samples were removed from oven	02/05/2021			
Oven Temp Out	103 Degrees C			
Time Samples were removed from oven	11:22			
Oven ID	5005			
Thermometer ID	qa back-up 12(tclp) cf=0			
Temperature - Start - Uncorrected	103 Degrees C			
Temperature - End - Uncorrected	103 Degrees C			

Basis	Basis Description
Т	Total/NA

Lab Name: Eurofins TestAmerica, Pittsbur Job No.: 180-116528-1

SDG No.:

Batch Number: 345159

Batch Start Date: 01/29/21 13:00 Batch Analyst: Ferguson, Donald

Batch Method: EPA-Lloyd Kahn Batch End Date:

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	LKTOCKHPL1 00030	LKTOCSRM 00040	
CCV		EPA-Lloyd				0.1 mL		
180-345159/2		Kahn						
MB 180-345159/4		EPA-Lloyd		23.55 mg	23.55 mg			
		Kahn						
LCS		EPA-Lloyd		9.75 mg	9.75 mg		9.75 mg	
180-345159/5		Kahn						
CCV		EPA-Lloyd				0.1 mL		
180-345159/16		Kahn						
180-116528-A-7	FRB-02 012621 SE	EPA-Lloyd	Т	14.6 mg	14.6 mg			
	D 03-05	Kahn						
180-116528-A-7	FRB-02_012621_SE	EPA-Lloyd	Т	13.4 mg	13.4 mg		7.8 mg	
MS	D 03-05	Kahn						
180-116528-A-7	FRB-02_012621_SE	EPA-Lloyd	Т	14.15 mg	14.15 mg		7.9 mg	
MSD	D 03-05	Kahn						
CCV		EPA-Lloyd				0.1 mL		
180-345159/30		Kahn						

Batch Notes				
Batch Comment Ottawa sand 3442271				
Phosphoric Acid ID	3958283			

Basis Basis Description	
-------------------------	--

Total/NA Т

Lab Name: Eurofins TestAmerica, Pittsbur Job No.: 180-116528-1

SDG No.:

Batch Number: 345656

Batch Start Date: 02/04/21 11:19 Batch Analyst: Ferguson, Donald

Batch Method: EPA-Lloyd Kahn _____ Batch End Date: _____

Lab Sample ID	Client Sample ID	Method Chain	Basis	InitialAmount	FinalAmount	LKTOCKHPL1 00030	LKTOCSRM 00040	
CCV		EPA-Lloyd				0.1 mL		
180-345656/2		Kahn						
MB 180-345656/4		EPA-Lloyd		20.2 mg	20.2 mg			
		Kahn						
LCS		EPA-Lloyd		10.45 mg	10.45 mg		10.45 mg	
180-345656/5		Kahn						
180-116528-B-10	ES-13_012621_SED	EPA-Lloyd	T	14.7 mg	14.7 mg			
	_03-05	Kahn						
180-116528-B-10	ES-13_012621_SED	EPA-Lloyd	T	13.05 mg	13.05 mg		8.1 mg	
MS	03-05	Kahn						
180-116528-B-10	ES-13_012621_SED	EPA-Lloyd	T	13.05 mg	13.05 mg		7.85 mg	
MSD	03-05	Kahn						
CCV		EPA-Lloyd				0.1 mL		
180-345656/14		Kahn						
CCV		EPA-Lloyd				0.1 mL		
180-345656/24		Kahn						

Batch Notes				
Batch Comment Ottawa sand 3442271				
Phosphoric Acid ID	3958283			

Basis	Basis Des	cription
-------	-----------	----------

Total/NA Т

Job ID: 180-116528-1

Batch: 345415 Method: 2540G

Analyst Initials: MM1 Instrument: No Equipment

Lab Sample ID: 180-116528-A-2

Analysis	Date:	Feb	03,	2021	10:43
----------	-------	-----	-----	------	-------

Analyte	Detector	Dilution	Raw Result	Unit
Percent Moisture	None	1	60.3729603729604	%
Percent Solids	None	1	39.6270396270396	%

Lab Sample ID: 180-116528-A-3

Analyte	Detector	Dilution	Raw Result	Unit
Percent Moisture	None	1	47.376311844078	%
Percent Solids	None	1	52.623688155922	%

Lab Sample ID: 180-116528-A-4

Analyte	Detector	Dilution	Raw Result	Unit
Percent Moisture	None	1	60.687432867884	%
Percent Solids	None	1	39.312567132116	%

Analysis Date: Feb 03, 2021 10:43

Analysis Date: Feb 03, 2021 10:43

Job ID: 180-116528-1

Batch: 345426 Method: 2540G

Analyst Initials: MM1 Instrument: No Equipment

Analysis Date: Feb 03, 2021 11:23

Analysis Date: Feb 03, 2021 11:23

Analysis Date: Feb 03, 2021 11:23

Lab Sample ID: 180-116528-A-5

Analyte	Detector	Dilution	Raw Result	Unit
Percent Moisture	None	1	51.6966067864271	%
Percent Solids	None	1	48.3033932135729	%

Lab Sample ID: 180-116528-A-5 DU

Analyte	Detector	Dilution	Raw Result	Unit
Percent Moisture	None	1	51.394422310757	%
Percent Solids	None	1	48.605577689243	%

Lab Sample ID: 180-116528-A-6

Analyte	Detector	Dilution	Raw Result	Unit
Percent Moisture	None	1	49.7150997150997	%
Percent Solids	None	1	50.2849002849003	%

Lab Sample ID: 180-116528-A-7

Analysis	Date:	Feb	03,	2021	11:23

Analyte	Detector	Dilution	Raw Result	Unit
Percent Moisture	None	1	43.9667128987517	%
Percent Solids	None	1	56.0332871012483	%

Batch: 345455 Method: 2540G

Analyst Initials: MM1 Instrument: No Equipment

Lab Sample ID: 180-116528-A-1

Analysis Date: Feb 03, 2021 13:23

Analyte	Detector	Dilution	Raw Result	Unit
Percent Moisture	None	1	75.2032520325203	%
Percent Solids	None	1	24.7967479674797	%

Job ID: 180-116528-1

Batch: 345577 Method: 2540G

Analyst Initials: KMM Instrument: No Equipment

Analysis Date: Feb 04, 2021 12:03

Analysis Date: Feb 04, 2021 12:03

Lab Sample ID: 180-116528-A-8

Analyte	Detector	Dilution	Raw Result	Unit
Percent Moisture	None	1	58.8679245283019	%
Percent Solids	None	1	41.1320754716981	%

Lab Sample ID: 180-116528-A-8 DU

Analyte	Detector	Dilution	Raw Result	Unit
Percent Moisture	None	1	59.1682419659735	%
Percent Solids	None	1	40.8317580340265	%

Lab Sample ID: 180-116528-A-9

Analyte	Detector	Dilution	Raw Result	Unit
Percent Moisture	None	1	50	%
Percent Solids	None	1	50	%

Lab Sample ID: 180-116528-A-10

Analyte	Detector	Dilution	Raw Result	Unit
Percent Moisture	None	1	28.6318758815233	%
Percent Solids	None	1	71.3681241184767	%

Analysis Date: Feb 04, 2021 12:03

Analysis Date: Feb 04, 2021 12:03

Eager Xperience

Method name : Lloyd Kahn Method filename : C:\data\January\092320A.mth

Sample table

Chromatogram overwrite : Enabled

#	Sample name	Filename	Туре	Weight	Hum. %
1	BYPASS	A092320006	ВуР	-	0
2	BLANK	A092320007	Blk	-	0
3	BLANK	A092320008	Blk	-	0
4	1,000 KHP CT#3785365	A092320009	Std	200	0
5	2,500 KHP CT#3785364	A092320010	Std	50	0
6	5,000 KHP CT#3785364	A092320011	Std	100	0
7	10,000 KHP CT#3785364	A092320012	Std	200	0
8	25,000 KHP CT#3785363	A092320013	Std	50	0
9	50,000 KHP CT#3785363	A092320014	Std	100	0
10	100,000 KHP CT#3785363	A092320015	Std	200	0
11	ICV 37,810 KHP CT#3742673	A092320016	Unk	11.6	0
12	CCV	A092320017	Unk	100	0
13	CCB	A092320018	Unk	20	0
14	MB	A092320019	Unk	21.1	0
15	MB	A092320020	Unk	24.4	0
16	LCS	A092320021	Unk	12.7	0
17	LCS	A092320022	Unk	9.8	0
18	180-110583-A-9	A092320023	Unk	18.2	0
19	180-110583-A-9	A092320024	Unk	18	0
20	Rinse	A092320025	Unk	1	0
21	180-110583-В-14	A092320026	Unk	10.6	0
22	180-110583-B-14	A092320027	Unk	7.4	0
23	Rinse	A092320028	Unk	1	0
24	180-110583-B-14 MS	A092320029	Unk	8.3	0
25	180-110583-B-14 MS	A092320030	Unk	6.6	0
26	Rinse	A092320031	Unk	1	0
27	180-110583-B-14 MSD	A092320032	Unk	7.7	0
28	180-110583-B-14 MSD	A092320033	Unk	7.8	0
29	Rinse	A092320034	Unk	1	0
30	180-110583-A-19	A092320035	Unk	13.1	0
31	180-110583-A-19	A092320036	Unk	16.6	0
32	Rinse	A092320037	Unk	1	0
33	CCV	A092320038	Unk	100	0
34	ССВ	A092320039	Unk	20	0
35	180-110583-A-20	A092320040	Unk	11.9	0
36	180-110583-A-20	A092320041	Unk	9.1	0
37	Rinse	A092320042	Unk	1	0

Environment Testing TestAmerica

Llyod Kahn %Readback Error Calculation Spreadsheet

ICAL Std (ppm)	ICAL ID	Average Area	% Actual Carbon of Std.	%Readback Error	%Readback Criteria
1000	092320LK_ICAL	99423	0.0073	27.364	≤50%
2500	092320LK_ICAL	247009	0.0856	14.411	≤30%
5000	092320LK_ICAL	499611	0.0912	8.825	≤30%
10000	092320LK_ICAL	1048607	0.0982	1.838	≤30%
25000	092320LK_ICAL	2561375	0.9721	2.787	≤30%
50000	092320LK_ICAL	5128187	0.9777	2.231	≤30%
100000	092320LK_ICAL	10456420	0.9991	0.090	≤30%

		Volume Cal	
Kb Value	Ke Value	Standard Injected	True Value Carbon Std in %
· The second of the second	· · · · · · · · · · · · · · · · · · ·	200	0.01
		50	0.10
		100	0.10
		200	0.10
		50	1.00
		100	1.00
		200	1.00

Eager 300 Report Page: 1 Sample: 1,000 KHP CT#3785365 (A092320009)

Method Name	:	Lloyd Kahn
Method File	:	C:\data\January\092320A.mth
Chromatogram	:	A092320009
Operator ID	:	DON FERGUSON Company Name : Eurofins TA Pitt
Analysed	:	09/23/2020 14:23 Printed : 9/23/2020 14:29
Sample ID	:	1,000 KHP CT#3785365 (# 4)
Instrument N.	:	Instrument #1
Analysis Type	•	Calibration (Area) Sample weight : 200
Calib. method	:	using 'Least Squares to Linear fit'
Element Name		% Ret.Time Area BC Area ratio K factor

FIGHEHC Name	6	Kec.IIme	ALCA	DC	ALEA LACIO	A LACLUL
			- 201			
Carbon	0.0100	251	99423	RS	1.000000	

Eager 300 Report Page: 1 Sample: 2,500 KHP CT#3785364 (A092320010)

Method Name	:	Lloyd Kahn
Method File	:	C:\data\January\092320A.mth
Chromatogram	:	A092320010
Operator ID	:	DON FERGUSON Company Name : Eurofins TA Pitt
Analysed	:	09/23/2020 14:29 Printed : 9/23/2020 14:34
Sample ID	:	2,500 KHP CT#3785364 (# 5)
Instrument N.	:	Instrument #1
Analysis Type	:	Calibration (Area) Sample weight : 50
Calib. method	:	using 'Least Squares to Linear fit'
Element Name		9 Det Time Area DC Area ratio V factor

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
		(a,b,a,a,b,a,a,a,a,a,a,a,a,a,a,a,a,a,a,a				
Carbon	0.1000	248	247009	RS	1.000000	

Eager 300 Report Page: 1 Sample: 5,000 KHP CT#3785364 (A092320011)

Method Name	:	Lloyd Kahn
Method File	:	C:\data\January\092320A.mth
Chromatogram	:	A092320011
Operator ID	:	DON FERGUSON Company Name : Eurofins TA Pitt
Analysed	:	09/23/2020 14:34 Printed : 9/23/2020 14:40
Sample ID	:	5,000 KHP CT#3785364 (# 6)
Instrument N.	:	Instrument #1
Analysis Type	:	Calibration (Area) Sample weight : 100
Calib. method	:	using 'Least Squares to Linear fit'

Element Name	80	Ret.Time	Area	BC	Area ratio	K factor
Carbon	0.1000	246	499611	RS	1.000000	

Eager 300 Report Page: 1 Sample: 10,000 KHP CT#3785364 (A092320012)

Method Name	:	Lloyd Kahn
Method File	:	C:\data\January\092320A.mth
Chromatogram	:	A092320012
Operator ID	:	DON FERGUSON Company Name : Eurofins TA Pitt
Analysed	:	09/23/2020 14:40 Printed : 9/23/2020 14:46
Sample ID	:	10,000 KHP CT#3785364 (# 7)
Instrument N.	:	Instrument #1
Analysis Type	:	Calibration (Area) Sample weight : 200
Calib. method	:	using 'Least Squares to Linear fit'
Element Nome		& Dot Time Area DC Area ratio V factor

FIGUEUL Name	6	Rec.IIme	Area	БC	Area fatio	K Lactor
	\sim \sim \sim -model and the second se		$\alpha = \alpha = \alpha = \alpha = \alpha$			
Carbon	0.1000	242	1048607	RS	1.000000	

Eager 300 Report Page: 1 Sample: 25,000 KHP CT#3785363 (A092320013)

Method Name	:	Lloyd Kahn				
Method File	:	C:\data\January\092320	A.mth			
Chromatogram	:	A092320013				
Operator ID	:	DON FERGUSON	Company N	ame	:	Eurofins TA Pitt
Analysed	:	09/23/2020 14:46	Printed		:	9/23/2020 14:51
Sample ID	:	25,000 KHP CT#3785363	(# 8)			
Instrument N.	:	Instrument #1				
Analysis Type	:	Calibration (Area)	Sample wei	ght	:	50

Calib. method : using 'Least Squares to Linear fit'

Element Name	\$	Ret.Time	Area	BC	Area ratio	K factor
			$-\infty \infty$			
Carbon	1.0000	237	2561375	RS	1.000000	

Eager 300 Report Page: 1 Sample: 50,000 KHP CT#3785363 (A092320014)

Method Name	:	Lloyd Kahn				
Method File	:	C:\data\January\092320A	.mth			
Chromatogram	:	A092320014				
Operator ID	:	DON FERGUSON	Company Na	ame	:	Eurofins TA Pitt
Analysed	:	09/23/2020 14:51	Printed		:	9/23/2020 14:57
Sample ID	:	50,000 KHP CT#3785363 ((# 9)			
Instrument N.	:	Instrument #1				
Analysis Type	:	Calibration (Area)	Sample weig	ght	:	100
Calib. method	:	using 'Least Squares to	Linear fit	t'		

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
		(m)=m(m)(m)=m=m				
Carbon	1.0000	232	5128187	RS	1.000000	

Eager 300 Report Page: 1 Sample: 100,000 KHP CT#3785363 (A092320015)

Method Name	:	Lloyd Kahn							
Method File	:	C:\data\January\092320A.m	\data\January\092320A.mth						
Chromatogram	:	A092320015							
Operator ID	:	DON FERGUSON Co	ompany Name :	Eurofins TA Pitt					
Analysed	:	09/23/2020 14:57 Pr	rinted :	9/23/2020 15:03					
Sample ID	:	100,000 KHP CT#3785363 (#	# 10)						
Instrument N.	:	Instrument #1							
Analysis Type	:	Calibration (Area) Sa	ample weight :	200					
Calib. method	:	using 'Least Squares to I	Linear fit'						
Hlement News		9. Dot Dimo	Amon DG	Amon mobile V forten					

Element Name	*	Ret.Time	Area	BC	Area ratio	K IACTOR
Carbon	1.0000	221	10456420	RS	1.000000	

Eager 300 Report Page: 1 Sample: ICV 37,810 KHP CT#3742673 (A092320016)

Method Name	:	Lloyd Kahn	
Method File	:	C:\data\January\0923204	A.mth
Chromatogram	:	A092320016	
Operator ID	:	DON FERGUSON	Company Name : Eurofins TA Pitt
Analysed	:	09/23/2020 15:03	Printed : 9/23/2020 15:08
Sample ID	:	ICV 37,810 KHP CT#37426	573 (# 11)
Instrument N.	:	Instrument #1	
Analysis Type	:	UnkNown (Area)	Sample weight : 11.6
Calib. method	:	using 'Least Squares to	b Linear fit'
Element Name	1	% Ret.Time	Area BC Area ratio K factor
Carbon		3.4865 240) 2087987 RS 1.000000

Eager 300 Report Page: 1 Sample: CCV (A092320017)

Method Name	:	Lloyd Kahn						
Method File	:	C:\data\January\092320.	A.mth					
Chromatogram	:	A092320017						
Operator ID	:	DON FERGUSON	Company	Name	:	Eurofins TA	A Pit	t
Analysed	:	09/23/2020 15:08	Printed		:	9/23/2020	15:1	L4
Sample ID	:	CCV (# 12)						
Instrument N.	:	Instrument #1						
Analysis Type	:	UnkNown (Area)	Sample we	eight	:	100		
Calib. method	:	using 'Least Squares to	o Linear f	fit				
Element Name	è	% Ret.Tim	e Area	вс		Area ratio	K	factor

FIGHEUC Name	ð	Ket.IIme	Area	DC	ALEA TALIO	K LACCOL
	$\cdots \cdots			-2(1-2)(1-2)(1-2)(1-2)(1-2)(1-2)(1-2)(1-	*	
Carbon	0.9923	230	5157272	RS	1.000000	

Page: 1 Sample: CCB (A092320018)

Method Name	:	Lloyd Kahn									
Method File	:	C:\data\January\092320A	:\data\January\092320A.mth								
Chromatogram	:	A092320018									
Operator ID	:	DON FERGUSON	Company Name	:	Eurofins TA Pitt						
Analysed	:	09/23/2020 15:14	Printed	:	9/23/2020 15:20						
Sample ID	:	CCB (# 13)									
Instrument N.	:	Instrument #1									
Analysis Type	:	UnkNown (Area)	Sample weight	:	20						
Calib. method	:	using 'Least Squares to	Linear fit'								

!!! Warning missing one or more peaks.

Element Name % Ret.Time Area BC Area ratio K factor

Eager Xperience

Method name : Lloyd Kahn Method filename : C:\data\January\012921A.mth

Sample table

Chromatogram overwrite : Enabled

Do	nFrenguson 1/29/:	21 BAT	CH :	34515	9
_ #	Sample name	Filename	Туре	Weight	Hum. %
_1	BYPASS	A092320006	ByP	-	0
_2	BLANK	A092320007	Blk	-	0
_3	BLANK	A092320008	Blk	_	0
_4	1,000 KHP CT#3785365	A092320009	Std	200	0
_5	2,500 KHP CT#3785364	A092320010	Std	50	0
6	5,000 KHP CT#3785364	A092320011	Std	100	0
7	10,000 KHP CT#3785364	A092320012	Std	200	0
8	25,000 KHP CT#3785363	A092320013	Std	50	0
9	50,000 KHP CT#3785363	A092320014	Std	100	0
10	100,000 KHP CT#3785363	A092320015	Std	200	0
11	ICV 37,810 KHP CT#3742673	A092320016	Unk	11.6	0
12	Rinse	A012921001	Unk	1	0
13	Rinse	A012921001B	Unk	1	0
14	CCV	A012921002	Unk	100	0
15	ССВ	A012921003	Unk	20	0
16	MB	A012921004	Unk	24.5	0
17	MB	A012921005	Unk	22.6	0
18	LCS	A012921006	Unk	9.7	0
19	LCS	A012921007	Unk	9.8	0
20	180-116461-A-7	A012921008	Unk	21.2	0
21	180-116461-A-7	A012921009	Unk	19.5	0
22	Rinse	A012921010	Unk	1	0
23	180-116528-A-1	A012921011	Unk	15.6	0
24	180-116528-A-1	A012921012	Unk	15.3	0
25	Rinse	A012921013	Unk	1	0
26	180-116528-A-2	A012921014	Unk	16.2	0
27	180-116528-A-2	A012921015	Unk	16.9	0
28	Rinse	A012921016	Unk	1	0
29	180-116528-A-3	A012921017	Unk	16.8	0
30	180-116528-A-3	A012921018	Unk	16.7	0
31	Rinse	A012921019	Unk	1	0
32	Rinse	A012921020	Unk	1	0
33	180-116528-A-4	A012921021	Unk	16.5	0
34	180-116528-A-4	A012921022	Unk	15.5	0
35	Rinse	A012921023	Unk	1	0
36	CCV	A012921024	Unk	100	0
37	CCB	A012921025	Unk	20	0

#	Sample name	Filename	Туре	Weight	Hum.%
38	180-116528-A-5	A012921026	Unk	16.8	0
39	180-116528-A-5	A012921027	Unk	16	0
40	Rinse	A012921028	Unk	1	0
41	180-116528-A-6	A012921029	Unk	16.5	0
42	180-116528-A-6	A012921030	Unk	16.3	0
43	Rinse	A012921031	Unk	1	0
44	Rinse	A012921032	Unk	1	0
45	180-116528-A-7	A012921033	Unk	13.9	0
46	180-116528-A-7	A012921034	Unk	15.3	0
47	Rinse	A012921035	Unk	1	0
48	180-116528-A-7 MS	A012921036	Unk	14.4	0
49	180-116528-A-7 MS	A012921037	Unk	12.4	0
50	Rinse	A012921038	Unk	1	0
51	180-116528-A-7 MSD	A012921039	Unk	13.9	0
52	180-116528-A-7 MSD	A012921040	Unk	14.4	0
53	Rinse	A012921041	Unk	1	0
54	Rinse	A012921042	Unk	1	0
55	180-116551-B-8	A012921043	Unk	19.9	0
56	180-116551-B-8	A012921044	Unk	19.7	0
57	Rinse	A012921045	Unk	1	0
58	CCV	A012921046	Unk	100	0
59	CCB	A012921047	Unk	20	0
60	180-116551-B-13	A012921048	Unk	17.9	0
61	180-116551-B-13	A012921049	Unk	17.4	0
62	Rinse	A012921050	Unk	1	0
63	180-116551-B-19	A012921051	Unk	18.8	0
64	180-116551-B-19	A012921052	Unk	21.1	0
65	Rinse	A012921053	Unk	1	0
66	Rinse	A012921054	Unk	1	0
67	180-116551-B-20	A012921055	Unk	17.6	0
68	180-116551-B-20	A012921056	Unk	16.5	0
69	Rinse	A012921057	Unk	1	0
70	180-116551-B-25	A012921058	Unk	19.2	0
<u>71</u>	180-116551-B-25	A012921059	Unk	18.5	0
72	Rinse	A012921060	Unk	1	0
73	Rinse	A012921061	Unk	1	0
74	180-116564-C-1	A012921062	Unk	9.3	0
75	180-116564-C-1	A012921063	Unk	8.1	0
76	Rinse	A012921064	Unk	1	0
77	Rinse	A012921065	Unk	1	0
78	CCV	A012921066	Unk	100	0
79	ССВ	A012921067	Unk	20	0
80	180-116564-B-3	A012921068	Unk	10.5	0
81	180-116564-B-3	A012921069	Unk	9.3	0
82	Rinse	A012921070	Unk	1	0
83	Rinse	A012921071	Unk	1	0

	1 11			1		
	#	Sample name	Filename	Type	Weight	Hum.%
	84	180-116564-B-4	A012921072	Unk	8.2	0
	85	180-116564-B-4	A012921073	Unk	7.5	0
	86	Rinse	A012921074	Unk	1	0
	87	Rinse	A012921075	Unk	1	0
	88	180-116564-B-5	A012921076	Unk	7.8	0
	89	180-116564-B-5	A012921077	Unk	7.4	0
	90	Rinse	A012921078	Unk	1	0
	91	Rinse	A012921079	Unk	1	0
	92	180-116564-B-7	A012921080	Unk	14.1	0
	93	180-116564-B-7	A012921081	Unk	13.7	0
	94	Rinse	A012921082	Unk	1	0
	95	Rinse	A012921083	Unk	1	0
	96	CCV	A012921084	Unk	100	0
	97	ССВ	A012921085	Unk	20	0
DETE	798	180-116526-B-1	A012921086	Unk	5.7	0
RADE	99	180-116526-B-1	A012921087	Unk	6.4	0
	100	Rinse	A012921088	Unk	1	0
	101	Rinse	A012921089	Unk	1	0
	102	180-116527-A-1	A012921090	Unk	6	0
	103	180-116527-A-1	A012921091	Unk	5.3	0
	104	Rinse	A012921092	Unk	1	0
	105	Rinse	A012921093	Unk	1	0
1	106	CCV	A012921094	Unk	100	0
1	107	ССВ	A012921095	Unk	20	0

П

THE LEADER IN ENVRONMENTAL TESTING

Ç)

Pittsburgh Leb Lloyd Kehn SRM Prep Log

ŧ

BATCH 345159

Analysi	"Don Fergerson	Date	1/29/21
Job No.	Sample ID	Weight (mg)	Average Weights
	MB	24.5	
	MB	22.6	23.55
	LCS	9.7	·
	LCS	9.8	9.75
180-116528-7	116528-7	13.9	
	-7	15.3	14.6
	116528-7M5	14.4+7.9	
	-7M5	12.4+7.7	13.4+7.8
	116528-7MSD	13.9+8.0	
	-7/150	14.4+7.8	14.15+ 7.9
· · ·			e

N:ISOPs/Forms/Lloyd Kahn Sample Prep form_Rev.1.doc Rev. 1, 06/13/11

Lloyd Kahn %RPD Replicate Calculation Spreadsheet

	Environment Testing TestAmerica			PT-GC-WS-003, R3 Effective: 5/8/2019		1/29/21
Units: mg/l	Lloyd Kahn %RPD Re	plicate Calculatio	on Spreads	sheet	BATCH	345159
Batch#	Sample#	Results	Average	RPD		
	MB	0				
	MB	0	0.000	#DIV/0!		
	LCS	3.29761195				
	LCS	3.66726923	3.482	10.61		
	180-116461-A-7	0.81781489				
	180-116461-A-7	0.7697503	0.794	6.06		
	180-116528-A-1	1.89850175				
	180-116528-A-1	2.78647232	2.342	37.91		
	180-116528-A-2	2.16105843				
	180-116528-A-2	2.1030643	2.132	2.72		
	180-116528-A-3	1.71678245				
	180-116528-A-3	1.83865702	1.778	6.86		
	180-116528-A-4	2.27882791				
	180-116528-A-4	2.15428042	2.217	5.62		
	180-116528-A-5	1.0046072				
	180-116528-A-5	1.0189662	1.012	1.42		
	180-116528-A-6	1.20383883				
	180-116528-A-6	1.21004975	1.207	0.51		
	180-116528-A-7	1.31756318				
	180-116528-A-7	1.11278844	1.215	16.85		
	180-116528-A-7 MS	3.36596942				
	180-116528-A-7 MS	3.14951658	3.258	6.64		
	180-116528-A-7 MSD	3.19769645				
	180-116528-A-7 MSD	3.46076369	3.329	7.90		
	180-116551-B-8	0.58511418				
	180-116551-B-8	0.55640584	0.571	5.03		
	180-116551-B-13	0.15937118				
	180-116551-B-13	0.21861075	0.189	31.35		
	180-116551-B-19	0.44499066				
	180-116551-B-19	0.48102891	0.463	7.78		
	180-116551-B-20	0.10138346				
	180-116551-B-20	0.09725357	0.099	4.16		
	180-116551-B-25	0.21199048				
	180-116551-B-25	0.17476811	0.193	19.25		
	180-116564-C-1	1.35551906				
	180-116564-C-1	1.57996118	1.468	15.29		
	180-116564-B-3	1.32210231				
	180-116564-B-3	1.26250529	1.292	4.61		
	180-116564-B-4	1.42882705				
	100-110504-B-4	1.24119186	1.335	14.05		
	100-110504-B-5	1.9645983				
	100-110504-B-5	1./2257888	1.844	13.13		
	180-116564 B 7	0.14985855				
	180 116526 P 4	0.16781029	0.159	11.30		
	100-110020-D-1	4.14871883				S Z S A
	180-116507 A 4	15.8348846	9.992	116.96	, RKJ	ECTEV
	180-116527-A-1	15.3016186	00.100			1
	100-110321-A-1	48.9498329	32.126	104.74	~	1
			//DI) //DI	//		
			#DIV/0!	#DIV/0!		

Llyod Kahn_RPD

Page: 1 Sample: CCV (A012921002)

Method Name: Lloyd Kahn
Method File: C:\data\January\012921A.mth
Chromatogram: A012921002
Operator ID: DON FERGUSON
DON FERGUSON
Company Name: Eurofins TA Pitt
AnalysedAnalysed: 01/29/2021
13:18Printed
: 2/1/2021
07:07: 2/1/2021
07:07Sample ID: CCV (# 14)
Instrument N.: Instrument #1
Analysis Type: UnkNown (Area)Calib. method: using 'Least Squares to Linear fit'Element Name%
%
Ret.Time
1.00792325238845 RS
238845 RSCarbon1.00792325238845 RS1.000000

Page: 1 Sample: CCB (A012921003)

Method Name : Lloyd Kahn Method File : C:\data\January\012921A.mth Chromatogram : A012921003 Operator ID : DON FERGUSON Company Name : Eurofins TA Pitt Analysed : 01/29/2021 13:23 Printed : 2/1/2021 07:08 Sample ID : CCB (# 15) Instrument N. : Instrument #1 Analysis Type : UnkNown (Area) Sample weight : 20 Calib. method : using 'Least Squares to Linear fit' !!! Warning missing one or more peaks. Element Name % Ret.Time Area BC Area ratio K factor

Page: 1 Sample: MB (A012921004)

Method Name : Lloyd Kahn Method File : C:\data\January\012921A.mth Chromatogram : A012921004 Operator ID : DON FERGUSON Company Name : Eurofins TA Pitt Analysed : 01/29/2021 13:31 Printed : 2/1/2021 07:08 Sample ID : MB (# 16) Instrument N. : Instrument #1 Analysis Type : UnkNown (Area) Sample weight : 24.5 Calib. method : using 'Least Squares to Linear fit' Element Name % Ret.Time Area BC Area ratio K factor

Page: 1 Sample: MB (A012921005)

Method Name : Lloyd Kahn Method File : C:\data\January\012921A.mth Chromatogram : A012921005 Operator ID : DON FERGUSON Company Name : Eurofins TA Pitt Analysed : 01/29/2021 13:37 Printed : 2/1/2021 07:08 Sample ID : MB (# 17) Instrument N. : Instrument #1 Analysis Type : UnkNown (Area) Sample weight : 22.6 Calib. method : using 'Least Squares to Linear fit' Element Name % Ret.Time Area BC Area ratio K factor

Page 121 of 297

Eager 300 Report Page: 1 Sample: LCS (A012921006)

	-			
Method Name Method File Chromatogram	•	Lloyd Kahn C:\data\January\01292 A012921006	lA.mth	
Operator ID Analysed Sample ID	:	DON FERGUSON 01/29/2021 13:42 LCS (# 18)	Company Name : Eurofins TA Pitt Printed : 2/1/2021 07:08	
Analysis Type Calib. method	: :	Instrument #1 UnkNown (Area) using 'Least Squares	Sample weight : 9.7	
Element Nam	.e	% Ret.Ti	me Area BC Area ratio K fa	ctor
Carbon		3.2976 2	43 1646490 RS 1.000000	

Page 123 of 297

Eager 300 Report Page: 1 Sample: LCS (A012921007)

•	
Method Name Method File Chromatogram	: Lloyd Kahn : C:\data\January\012921A.mth : A012921007
Operator ID Analysed Sample ID	: DON FERGUSON Company Name : Eurofins TA Pitt : 01/29/2021 13:48 Printed : 2/1/2021 07:09 : LCS (# 19)
Analysis Type Calib. method	: UnkNown (Area) Sample weight : 9.8
Element Nam	e % Ret.Time Area BC Area ratio K factor
Carbon	3.6673 241 1852849 RS 1.000000

Page 125 of 297

Eager 300 Report Page: 1 Sample: 180-116461-A-7 (A012921008)

Method Name	:	Lloyd Kahn					
Method File	:	C:\data\January\012921A.mth					
Chromatogram	:	A012921008					
Operator ID	:	DON FERGUSON		Company Na	me :	Eurofins TA	Pitt
Analysed	:	01/29/2021 13:53	:	Printed	:	2/1/2021 0	7:09
Sample ID	:	180-116461-A-7 (# 20)			· · ·	
Instrument N.	:	Instrument #1					
Analysis Type	:	UnkNown (Area)	;	Sample weig	ht :	21.2	
Calib. method	:	using 'Least Squares	to	Linear fit	1		
Element Name		% Ret.T	ime	Area	BC	Area ratio	K factor
Carbon		0.0170					
Calbon		0.8178	245	881643	RS	1.000000	

Page: 1 Sample: 180-116461-A-7 (A012921009)

Method Name	:	Lloyd Kahn				
Method File	:	C:\data\January\012921A.mth				
Chromatogram	:	A012921009				
Operator ID	:	DON FERGUSON	Company	Company Nam	me : :	: Eurofins TA Pitt : 2/1/2021 07:09
Analysed	:	01/29/2021 13:59	Printed			
Sample ID	:	180-116461-A-7 (# 21)			•	
Instrument N.	:	Instrument #1				
Analysis Type	:	UnkNown (Area)	Sample w	veigh	it:	19.5
Calib. method	:	using 'Least Squares	to Linear	fit'		
Element Name		% Ret.Ti	me Area	L	BC	Area ratio K factor
Carbon		0.7698 2	45 760	119	RS	1.000000

Page: 1 Sample: 180-116528-A-1 (A012921011) Method Name : Lloyd Kahn Method File : C:\data\January\012921A.mth Chromatogram : A012921011 Operator ID : DON FERGUSON Company Name : Eurofins TA Pitt Analysed : 01/29/2021 14:10 Printed : 2/1/2021 07:10 Sample ID : 180-116528-A-1 (# 23) Instrument N. : Instrument #1 Analysis Type : UnkNown (Area) Sample weight : 15.6 Calib. method : using 'Least Squares to Linear fit' Element Name % Ret.Time Area BC Area ratio K factor Carbon 1.8985 251 1522739 RS 1.000000

Page 131 of 297

Page: 1 Sample: 180-116528-A-1 (A012921012)

Method Name	:	Lloyd Kahn				
Method File	:	C:\data\January\012921A.mth				
Chromatogram	:	A012921012				
Operator ID	:	DON FERGUSON	Company Name : Eurofins TA Pitt			
Analysed	:	01/29/2021 14:16	Printed : 2/1/2021 07:10			
Sample ID	:	180-116528-A-1 (# 24)				
Instrument N.	:	Instrument #1				
Analysis Type	:	UnkNown (Area)	Sample weight : 15.3			
Calib. method	:	using 'Least Squares to	Linear fit			
Element Name	:	% Ret.Time	Area BC Area ratio K factor			
Carbon		2.7865 248	3 2202339 RS 1.000000			

Page: 1 Sample: 180-116528-A-2 (A012921014)
Method Name : Lloyd Kahn
Method File : C:\data\January\012921A.mth
Chromatogram : A012921014
Operator ID : DON FERGUSON Company Name : Eurofins TA Pitt
Analysed : 01/29/2021 14:27 Printed : 2/1/2021 07:11
Sample ID : 180-116528-A-2 (# 26)
Instrument N. : Instrument #1
Analysis Type : UnkNown (Area) Sample weight : 16.2
Calib. method : using 'Least Squares to Linear fit'
Element Name % Ret.Time Area BC Area ratio K factor
Carbon 2.1611 244 1804288 RS 1.000000

Page 135 of 297
Eager 300 Report Page: 1 Sample: 180-116528-A-2 (A012921015)

Method Name	:	Lloyd Kahn					
Method File	:	C:\data\Januar	y\012921A				
Chromatogram	:	A012921015					
Operator ID	:	DON FERGUSON		Company Na	me :	Eurofins I	A Pitt
Analysed	:	01/29/2021 14	:33	Printed	:	2/1/2021	07:11
Sample ID	:	180-116528-A-2	(# 27)				
Instrument N.	:	Instrument #1					
Analysis Type	:	UnkNown (Area)		Sample weig	nt :	16.9	
Calib. method	:	using 'Least S	quares to	Linear fit	T		
Element Name	2	8	Ret.Time	Area	BC	Area ratic	K factor
Carbon		2.1031	244	1832098	RS	1.00000	0

Eager 300 Report Page: 1 Sample: 180-116528-A-3 (A012921017)

Method Name	:	Lloyd Kahn		
Method File	:	C:\data\January\0129214	mth	
Chromatogram	:	A012921017		
Operator ID	:	DON FERGUSON	Company Name	: Eurofins TA Pitt
Analysed	:	01/29/2021 14:44	Printed	: 2/1/2021 07:11
Sample ID	:	180-116528-A-3 (# 29)		
Instrument N.	:	Instrument #1		
Analysis Type	:	UnkNown (Area)	Sample weight	: 16.8
Calib. method	:	using 'Least Squares to	Linear fit'	
Element Name	ł	% Ret.Time	Area BC	Area ratio K factor
Carbon		1.7168 245	1482292 RS	1.000000

Page 139 of 297

Page: 1 Sample: 180-116528-A-3 (A012921018)

Method Name	:	Lloyd Kahn	
Method File	:	C:\data\January\012921	A.mth
Chromatogram	:	A012921018	
Operator ID	:	DON FERGUSON	Company Name : Eurofins TA Pitt
Analysed	:	01/29/2021 14:49	Printed : $2/1/2021 07:12$
Sample ID	:	180-116528-A-3 (# 30)	
Instrument N.	:	Instrument #1	
Analysis Type	:	UnkNown (Area)	Sample weight : 16.7
Calib. method	:	using 'Least Squares to	Linear fit'
Element Name	2	% Ret.Time	Area BC Area ratio K factor
Carbon		1 0205 044	
Carbon		1.8387 244	1579594 RS 1.000000

Eager 300 Report Page: 1 Sample: 180-116528-A-4 (A012921021)

Method Name	:	Lloyd Kahn	
Method File	:	C:\data\January\012921	A.mth
Chromatogram	:	A012921021	
Operator ID	:	DON FERGUSON	Company Name : Eurofins TA Pitt
Analysed	:	01/29/2021 15:06	Printed : 2/1/2021 07:13
Sample ID	:	180-116528-A-4 (# 33)	
Instrument N.	:	Instrument #1	
Analysis Type	:	UnkNown (Area)	Sample weight : 16.5
Calib. method	:	using 'Least Squares to	D Linear fit'
Element Name	È	% Ret.Time	e Area BC Area ratio K factor
	-		
Carbon		2.2788 242	2 1939594 RS 1.000000

Page 143 of 297

Eager 300 Report Page: 1 Sample: 180-116528-A-4 (A012921022)

Method Name	:	Lloyd Kahn					
Method File	:	C:\data\January\0129	21A.m	th			
Chromatogram	:	A012921022					
Operator ID	:	DON FERGUSON	Co	mpany Nam	ne :	Eurofins TA	Pitt
Analysed	:	01/29/2021 15:12	Pr	inted	:	2/1/2021 0	7:13
Sample ID	:	180-116528-A-4 (# 34)				
Instrument N.	:	Instrument #1					
Analysis Type	:	UnkNown (Area)	Sa	mple weigh	nt:	15.5	
Calib. method	:	using 'Least Squares	to L	inear fit'			
Element Name	2	% Ret.I	ime	Area	BC	Area ratio	K factor
de cher			*				
Carbon		2.1543	244	1719821	RS	1.000000	

Page: 1 Sample: CCV (A012921024)
Method Name : Lloyd Kahn
Method File : C:\data\January\012921A.mth
Chromatogram : A012921024
Operator ID : DON FERGUSON Company Name : Eurofins TA Pitt
Analysed : 01/29/2021 15:23 Printed : 2/1/2021 07:13
Sample ID : CCV (# 36)
Instrument N. : Instrument #1
Analysis Type : UnkNown (Area) Sample weight : 100
Calib. method : using 'Least Squares to Linear fit'
Element Name % Ret.Time Area BC Area ratio K factor

Carbon

1.0224 230 5314222 RS 1.000000

Eager 300 Report Page: 1 Sample: CCB (A012921025)

 Method Name : Lloyd Kahn

 Method File : C:\data\January\012921A.mth

 Chromatogram : A012921025

 Operator ID : DON FERGUSON Company Name : Eurofins TA Pitt

 Analysed : 01/29/2021 15:28 Printed : 2/1/2021 07:14

 Sample ID : CCB (# 37)

 Instrument N. : Instrument #1

 Analysis Type : UnkNown (Area)
 Sample weight : 20

 Calib. method : using 'Least Squares to Linear fit'

 !!! Warning missing one or more peaks.

 Element Name
 % Ret.Time Area BC Area ratio K factor

Eager 300 Report Page: 1 Sample: 180-116528-A-5 (A012921026)

Method Name	:	Lloyd Kahn			
Method File	:	C:\data\January\012921	A.mth		
Chromatogram	:	A012921026			
Operator ID	:	DON FERGUSON	Company Nam	ie :	Eurofins TA Pitt
Analysed	:	01/29/2021 15:36	Printed	:	2/1/2021 07:14
Sample ID	:	180-116528-A-5 (# 38)			
Instrument N.	:	Instrument #1			
Analysis Type	:	UnkNown (Area)	Sample weigh	it:	16.8
Calib. method	:	using 'Least Squares to	b Linear fit		
Element Name		% Ret.Tim	e Area	BC	Area ratio K factor
Combon .	- 18				
Carbon		1.0046 24	£ 857611	RS	1.000000

Page: 1 Sample: 180-116528-A-5 (A012921027)

Method Name	:	Lloyd Kahn			
Method File	:	C:\data\January\012921	A.mth		
Chromatogram	:	A012921027			
Operator ID	:	DON FERGUSON	Company Nar	me :	Eurofins TA Pitt
Analysed	:	01/29/2021 15:42	Printed	:	2/1/2021 07:14
Sample ID	:	180-116528-A-5 (# 39)			
Instrument N.	:	Instrument #1			
Analysis Type	:	UnkNown (Area)	Sample weig	ht :	16
Calib. method	:	using 'Least Squares t	o Linear fit	Ľ	
Element Name	:	% Ret.Tin	e Area	BC	Area ratio K factor
	-				
Carbon		1.0190 24	6 827645	RS	1.000000

Page: 1 Sample: 180-116528-A-6 (A012921029)

Method Name	:	Lloyd Kahn	
Method File	:	C:\data\January\012921	A.mth
Chromatogram	:	A012921029	
Operator ID	:	DON FERGUSON	Company Name : Eurofins TA Pitt
Analysed	:	01/29/2021 15:53	Printed : 2/1/2021 07:15
Sample ID	:	180-116528-A-6 (# 41)	, , ,
Instrument N.	:	Instrument #1	
Analysis Type	:	UnkNown (Area)	Sample weight : 16.5
Calib. method	:	using 'Least Squares t	o Linear fit!
Element Name	1	% Ret.Tim	e Area BC Area ratio K factor
Carbon		1.2038 24	6 1013510 RS 1.000000

Page 155 of 297

Page: 1 Sample: 180-116528-A-6 (A012921030)

Method Name	:	Lloyd Kahn					
Method File	:	C:\data\January	\012921A	.mth			
Chromatogram	:	A012921030					
Operator ID	:	DON FERGUSON		Company Na	me :	Eurofins TA	Pitt
Analysed	:	01/29/2021 15:	59	Printed	:	2/1/2021 0	7:15
Sample ID	:	180-116528-A-6	(# 42)				
Instrument N.	:	Instrument #1					
Analysis Type	:	UnkNown (Area)		Sample weig	ht :	16.3	
Calib. method	:	using 'Least Sq	uares to	Linear fit	1		
Element Name	9	%	Ret.Time	Area	BC	Area ratio	K factor
Carbon		1.2101	244	1006225	RS	1.000000	

Page: 1 Sample: 180-116528-A-7 (A012921033)

Method Name	:	Lloyd Kahn			
Method File	:	C:\data\January\012921	.mth		
Chromatogram	:	A012921033			
Operator ID	:	DON FERGUSON	Company Nam	ne :	Eurofins TA Pitt
Analysed	:	01/29/2021 16:16	Printed	:	2/1/2021 07:16
Sample ID	:	180-116528-A-7 (# 45)			
Instrument N.	:	Instrument #1			
Analysis Type	:	UnkNown (Area)	Sample weigh	nt :	13.9
Calib. method	:	using 'Least Squares to	Linear fit		
Element Name	<u>1</u>	% Ret.Time	e Area	BC	Area ratio K factor

Carbon 1.3176 244 932624 RS 1.000000

Page: 1 Sample: 180-116528-A-7 (A012921034)

Method Name	:	Lloyd Kahn			
Method File	:	C:\data\January\012921A	mth		
Chromatogram	:	A012921034			
Operator ID	:	DON FERGUSON	Company Name	è :	Eurofins TA Pitt
Analysed	:	01/29/2021 16:21	Printed		2/1/2021 07:16
Sample ID	:	180-116528-A-7 (# 46)			-, -,
Instrument N.	:	Instrument #1			
Analysis Type	•	UnkNown (Area)	Sample weight	::	15.3
Calib. method	:	using 'Least Squares to	Linear fit'		
Element Name	:	% Ret.Time	Area E	BC	Area ratio K factor
				-	

Carbon 1.1128 251 865352 RS 1.000000

Page: 1 Sample: 180-116528-A-7 MS (A012921036)

Method Name	:	Lloyd Kahn				
Method File	:	C:\data\January	/\012921A	.mth		
Chromatogram	:	A012921036				
Operator ID	:	DON FERGUSON		Company Na	me	: Eurofins TA Pitt
Analysed	:	01/29/2021 16:	32	Printed		: 2/1/2021 07:17
Sample ID	:	180-116528-A-7	MS (# 48)		
Instrument N.	:	Instrument #1				
Analysis Type	:	UnkNown (Area)		Sample weig	ht	: 14.4
Calib. method	:	using 'Least So	uares to	Linear fit		
Element Name		8	Ret.Time	Area	BC	Area ratio K factor
Carbon		3.3660	241	2507091	RG	1 00000
					L	T :000000

Page: 1 Sample: 180-116528-A-7 MS (A012921037)

Method Name	:	Lloyd Kahn						
Method File	:	C:\data\January\012921A.mth						
Chromatogram	:	A012921037						
Operator ID	:	DON FERGUSON		Company Na	me :	Eurofins TA	Pitt	
Analysed	:	01/29/2021 16	:38	Printed	:	2/1/2021 0	7:17	
Sample ID	:	180-116528-A-7	MS (# 49)				
Instrument N.	:	Instrument #1						
Analysis Type	:	UnkNown (Area)		Sample weig	ht :	12.4		
Calib. method	:	using 'Least Se	quares to	Linear fit				
Element Name	1	%	Ret.Time	Area	BC	Area ratio	K factor	
*								
Carbon		3.1495	241	2015474	RS	1.000000		

Page 165 of 297

Eager 300 Report Page: 1 Sample: 180-116528-A-7 MSD (A012921039)

Method Name	:	Lloyd Kahn						
Method File	:	C:\data\January\012921A.mth						
Chromatogram	:	A012921039						
Operator ID	:	DON FERGUSON	Company Nam	e :	Eurofins TA Pitt			
Analysed	:	01/29/2021 16:49	Printed	:	2/1/2021 07:17			
Sample ID	:	180-116528-A-7 MSD (# !	51)					
Instrument N.	:	Instrument #1						
Analysis Type	:	UnkNown (Area)	Sample weigh	t:	13.9			
Calib. method	:	using 'Least Squares to	> Linear fit'					
Element Name		% Ret.Time	e Area	BC	Area ratio K factor			
Carbon		3.1977 239	2297099	RS	1.000000			

Eager 300 Report Page: 1 Sample: 180-116528-A-7 MSD (A012921040)

Method Name	:	Lloyd Kahn							
Method File	:	C:\data\January\012921A.mth							
Chromatogram	:	A012921040							
Operator ID	:	DON FERGUSON Company Name : Eurofins TA Pitt							
Analysed	:	01/29/2021 16:55 Printed : 2/1/2021 07:18							
Sample ID	:	180-116528-A-7 MSD (# 52)							
Instrument N.	:	Instrument #1							
Analysis Type	•	UnkNown (Area) Sample weight : 14.4							
Calib. method	:	using 'Least Squares to Linear fit'							

Element Name	%	Ret.Time	Area	BC	Area ratio	K factor
Carbon	3.4608	241	2578361	RS	1.000000	

4

Page: 1 Sample: 180-116551-B-8 (A012921043)

Method Name	:	Lloyd Kahn					
Method File	:	C:\data\January\012921A.mth					
Chromatogram	:	A012921043					
Operator ID	:	DON FERGUSON		Company Na	me :	Eurofins TA	Pitt
Analysed	:	01/29/2021 17:13	1	Printed	:	2/1/2021 0	7:19
Sample ID	:	180-116551-B-8 (# 55)				
Instrument N. : Instrument #1							
Analysis Type	:	UnkNown (Area)		Sample weig	ht :	19.9	
Calib. method : using 'Least Squares to Linear fit'							
Element Name	2	% Re	et.Time	Area	BC	Area ratio	K factor
	-						
Carbon		0.5851	248	584358	RS	1.000000	

Page: 1 Sample: 180-116551-B-8 (A012921044)

Method Name	:	Lloyd Kahn		
Method File	:	C:\data\January\012921A.	mth	
Chromatogram	:	A012921044		
Operator ID	:	DON FERGUSON C	ompany Name :	Eurofins TA Pitt
Analysed	:	01/29/2021 17:17 P	rinted :	2/1/2021 07:19
Sample ID	:	180-116551-B-8 (# 56)		
Instrument N.	:	Instrument #1		
Analysis Type	:	UnkNown (Area) S	ample weight :	19.7
Calib. method	:	using 'Least Squares to	Linear fit'	
Element Name	è	% Ret.Time	Area BC	Area ratio K factor

Carbon 0.5564 249 548720 RS 1.000000

Page: 1 Sample: CCV (A012921046)

Carbon

Method Name : Lloyd Kahn Method File : C:\data\January\012921A.mth Chromatogram : A012921046 Operator ID: DON FERGUSONCompany Name : Eurofins TA PittAnalysed: 01/29/2021 17:28Printed: 2/1/2021 07:19Sample ID: CCV (# 58) Instrument N. : Instrument #1 Analysis Type : UnkNown (Area) Sample weight : 100 Calib. method : using 'Least Squares to Linear fit! Element Name % Ret.Time Area BC Area ratio K factor 1.0228 230 5316382 RS 1.000000

Page: 1 Sample: CCB (A012921047)

Method Name	*	Lloyd Kahn					
Method File	:	C:\data\January\012921A	.mth				
Chromatogram	:	A012921047					
Operator ID	:	DON FERGUSON	Company N	lame	:	Eurofins	TA Pitt
Analysed	:	01/29/2021 17:34	Printed		:	2/1/2021	07:20
Sample ID	:	CCB (# 59)					
Instrument N.	:	Instrument #1					
Analysis Type	:	UnkNown (Area)	Sample wei	ght	:	20	
Calib. method	:	using 'Least Squares to	Linear fi	t'			

!!! Warning missing one or more peaks.

Element Name % Ret.Time Area BC Area ratio K factor

Page 177 of 297

Page: 1 Sample: 180-116551-B-13 (A012921048)

Method Name	:	Lloyd Kahn			
Method File	:	C:\data\January\012921A	mth		
Chromatogram	:	A012921048			
Operator ID	:	DON FERGUSON	Company Nam	e :	Eurofins TA Pitt
Analysed	:	01/29/2021 17:39	Printed	:	2/1/2021 07:20
Sample ID	:	180-116551-B-13 (# 60)			
Instrument N.	:	Instrument #1			
Analysis Type	:	UnkNown (Area)	Sample weigh	it :	17.9
Calib. method	:	using 'Least Squares to	Linear fit'		
Element Name	È	% Ret.Time	Area	BC	Area ratio K factor
Carbon		0.1594 248	125370	RS	1.000000

Page 179 of 297

Page: 1 Sample: 180-116551-B-13 (A012921049)

Method Name	:	Lloyd Kahn					
Method File	:	C:\data\January	\012921A	.mth			
Chromatogram	:	A012921049					
Operator ID	:	DON FERGUSON		Company Na	me	: Eurofins TA	Pitt
Analysed	:	01/29/2021 17:	45	Printed	:	: 2/1/2021 07	7:20
Sample ID	:	180-116551-B-13	(# 61)				
Instrument N.	:	Instrument #1					
Analysis Type	:	UnkNown (Area)		Sample weig	ht :	: 17.4	
Calib. method	:	using 'Least So	uares to	Linear fit			
Element Name	3	×	Ret.Time	Area	BC	Area ratio	K factor
Carbon		0.2186	247	175027	RS	1.000000	

a.

Page 181 of 297

Page: 1 Sample: 180-116551-B-19 (A012921051)

Method Name	:	Lloyd Kahn			
Method File	:	C:\data\January\0129212	A.mth		
Chromatogram	:	A012921051			
Operator ID	:	DON FERGUSON	Company Nam	е:	Eurofins TA Pitt
Analysed	:	01/29/2021 17:56	Printed	:	2/1/2021 07:21
Sample ID	:	180-116551-B-19 (# 63)			
Instrument N.	:	Instrument #1			
Analysis Type	•	UnkNown (Area)	Sample weigh	t:	18.8
Calib. method	:	using 'Least Squares to	Linear fit		
Element Name	1	% Ret.Time	Area 1	BC	Area ratio K factor
				3	
Carbon		0.4450 245	5 413213	RS	1.000000

Page 183 of 297

Page: 1 Sample: 180-116551-B-19 (A012921052)

Method Name	:	Lloyd Kahn			
Method File	:	C:\data\January\012921	A.mth		
Chromatogram	:	A012921052			
Operator ID	:	DON FERGUSON	Company Nam	ne :	Eurofins TA Pitt
Analysed	:	01/29/2021 18:02	Printed	:	2/1/2021 07:21
Sample ID	:	180-116551-B-19 (# 64)			
Instrument N.	:	Instrument #1			
Analysis Type	:	UnkNown (Area)	Sample weigh	nt :	21.1
Calib. method	:	using 'Least Squares t	o Linear fit'		
Element Name	ł	% Ret.Tim	e Area	BC	Area ratio K factor
Carbon		0.4810 24	5 506352	RS	1.000000

Eager 300 Report Page: 1 Sample: 180-116551-B-20 (A012921055)

Method Name	:	Lloyd Kahn			
Method File	:	C:\data\January\012921	A.mth		
Chromatogram	:	A012921055			
Operator ID	:	DON FERGUSON	Company Nar	ne :	Eurofins TA Pitt
Analysed	:	01/29/2021 18:18	Printed	:	2/1/2021 07:22
Sample ID	:	180-116551-B-20 (# 67)			
Instrument N.	:	Instrument #1			
Analysis Type	:	UnkNown (Area)	Sample weigh	nt :	17.6
Calib. method	:	using 'Least Squares to	o Linear fit	•	
Element Name	÷	% Ret.Tim	e Area	BC	Area ratio K factor
Carbon		0.1014 24	6 69588	RS	1.000000

Page: 1 Sample: 180-116551-B-20 (A012921056)

Method Name	:	Lloyd Kahn		
Method File	:	C:\data\January\0129214	mth	
Chromatogram	:	A012921056		
Operator ID	:	DON FERGUSON	Company Name : Eurofi	ins TA Pitt
Analysed	:	01/29/2021 18:24	Printed : 2/1/20)21 07:22
Sample ID	:	180-116551-B-20 (# 68)		
Instrument N.	:	Instrument #1		
Analysis Type	:	UnkNown (Area)	Sample weight : 16.5	
Calib. method	:	using 'Least Squares to	Linear fit'	
Element Name	ŧ	% Ret.Time	Area BC Area 1	ratio K factor
	9 - 9			

Carbon 0.0973 246 60207 RS 1.000000

ŧ

Page: 1 Sample: 180-116551-B-25 (A012921058)

Method Name	:	Lloyd Kahn				
Method File	:	C:\data\January\0129212	A.mth			
Chromatogram	:	A012921058				
Operator ID	:	DON FERGUSON	Company Nam	e :	Eurofins TA	Pitt
Analysed	:	01/29/2021 18:35	Printed	:	2/1/2021 0	7:23
Sample ID	:	180-116551-B-25 (# 70)			, , ,	
Instrument N.	:	Instrument #1				
Analysis Type	:	UnkNown (Area)	Sample weigh	t:	19.2	
Calib. method	:	using 'Least Squares to	Linear fit			
Element Name		% Ret.Time	e Area	BC	Area ratio	K factor
	-				-(2) = (2) = (2)	

Carbon 0.2120 246 188935 RS 1.000000

Eager 300 Report Page: 1 Sample: 180-116551-B-25 (A012921059)

Method Name	:	Lloyd Kahn	
Method File	:	C:\data\January\012921A.mth	
Chromatogram	:	A012921059	
Operator ID	:	DON FERGUSON Company Name : Eurofins TA Pitt	
Analysed	:	01/29/2021 18:41 Printed : 2/1/2021 07:23	
Sample ID	:	180-116551-B-25 (# 71)	
Instrument N.	:	Instrument #1	
Analysis Type	:	UnkNown (Area) Sample weight : 18.5	
Calib. method	:	using 'Least Squares to Linear fit'	
Element Name	à	% Ret.Time Area BC Area ratio K factor	

BIENenc Mane	6	Ret.Time	Area	BC	Area ratio	K Iactor
Carbon	0.1748	247	145234	RS	1.000000	

Eager 300 Report Page: 1 Sample: 180-116564-C-1 (A012921062)

Method Name	:	Lloyd Kahn							
Method File	:	C:\data\January\012921A	mth						
Chromatogram	:	A012921062							
Operator ID	:	DON FERGUSON	Company	Name	:	Eurofins	TA	Pit	t
Analysed	:	01/29/2021 18:57	Printed		:	2/1/2021	07	1:24	-
Sample ID	:	180-116564-C-1 (# 74)				, ,			
Instrument N.	:	Instrument #1							
Analysis Type	:	UnkNown (Area)	Sample we	eight	:	9.3			
Calib. method	:	using 'Least Squares to	Linear f	it					
Element Name	•	% Ret.Time	Area	BC		Area rati	0	к.	factor

	8	ICCC. I LINC	ALCA	DC	Area racio	K lactor
Carbon	1.3555	246	634614	RS	1.000000	

Eager 300 Report Page: 1 Sample: 180-116564-C-1 (A012921063)

Method Name	:	Lloyd Kahn	
Method File	:	C:\data\January\012921A.mth	
Chromatogram	:	A012921063	
Operator ID	:	DON FERGUSON Company Name : Eurofins TA Pitt	
Analysed	:	01/29/2021 19:03 Printed : 2/1/2021 07:24	
Sample ID	:	180-116564-C-1 (# 75)	
Instrument N.	:	Instrument #1	
Analysis Type	:	UnkNown (Area) Sample weight : 8.1	
Calib. method	:	using 'Least Squares to Linear fit'	
Element Name	ł	% Ret.Time Area BC Area matic K Saster	

	8	Nec.IIme	Area	BC	Area ratio	K factor
			=2			
Carbon	1.5800	245	644605	RS	1.000000	

Page 197 of 297

Page: 1 Sample: CCV (A012921066)

Method Name	:	Lloyd Kahn								
Method File	:	C:\data\January\012921A.mth								
Chromatogram	:	A012921066								
Operator ID	:	DON FERGUSON	C	Company Na	me :	Eurofins T	A Pitt			
Analysed	:	02/01/2021 07:	56 B	Printed	:	2/1/2021	11:00			
Sample ID	:	CCV (# 78)								
Instrument N.	:	Instrument #1								
Analysis Type	:	UnkNown (Area)	5	Sample weig	ht :	100				
Calib. method	:	using 'Least Sq	uares to	Linear fit	r i					
		-								
Element Name	•	8	Ret.Time	Area	BC	Area ratio	K factor			
	-									
Carbon		1.0143	230	5272158	RS	1.00000	0			

Page: 1 Sample: CCB (A012921067)

Method Name : Lloyd Kahn Method File : C:\data\January\012921A.mth Chromatogram : A012921067 Operator ID : DON FERGUSON Company Name : Eurofins TA Pitt Analysed : 02/01/2021 08:02 Printed : 2/1/2021 11:00 Sample ID : CCB (# 79) Instrument N. : Instrument #1 Analysis Type : UnkNown (Area) Sample weight : 20 Calib. method : using 'Least Squares to Linear fit' !!! Warning missing one or more peaks. Element Name % Ret.Time Area BC Area ratio K factor

Page: 1 Sample: 180-116564-B-3 (A012921068)

Method Name	:	Lloyd Kahn					
Method File	:	C:\data\January	/\012921A	.mth			
Chromatogram	:	A012921068					
Operator ID	:	DON FERGUSON	(Company Na	me :	Eurofins TA	Pitt
Analysed	:	02/01/2021 08:	08 1	Printed	:	2/1/2021 1	1:00
Sample ID	:	180-116564-B-3	(# 80)				
Instrument N.	:	Instrument #1					
Analysis Type	:	UnkNown (Area)	5	Sample weig	ht :	10.5	
Calib. method	:	using 'Least So	quares to	Linear fit			
Element Name	2	80	Ret.Time	Area	BC	Area ratio	K factor
				$m=m_{1}, \dots, m_{n}, \dots, m_{n}, \dots, m_{n}$			
Carbon		1.3221	246	701222	RS	1.000000	

-

Page: 1 Sample: 180-116564-B-3 (A012921069)

Method Name	:	Lloyd Kahn							
Method File	:	C:\data\January\012921A.mth							
Chromatogram	:	A012921069							
Operator ID	:	DON FERGUSON	(Company	Nam	е:	Eurofins TA	Pitt	
Analysed	:	02/01/2021 08:	14	Printed		:	2/1/2021 11	:01	
Sample ID	:	180-116564-B-3	(# 81)						
Instrument N.	:	Instrument #1							
Analysis Type	:	UnkNown (Area)	1	Sample we	igh	t:	9.3		
Calib. method	:	using 'Least Sq	uares to	Linear f	it'				
Element Name)	8	Ret.Time	Area		BC	Area ratio	K factor	
						1			
Carbon		1.2625	249	5894	50	RS	1.000000		

×.

Page: 1 Sample: 180-116564-B-4 (A012921072)

Method Name	:	Lloyd Kahn					
Method File	:	C:\data\January	012921A	.mth			
Chromatogram	:	A012921072					
Operator ID	:	DON FERGUSON	C	Company Na	me :	Eurofins TA	Pitt
Analysed	:	02/01/2021 08:3	31 I	Printed	:	2/1/2021 1	L:01
Sample ID	:	180-116564-B-4	(# 84)				
Instrument N.	:	Instrument #1					
Analysis Type	:	UnkNown (Area)	2	Sample weig	ht :	8.2	
Calib. method	:	using 'Least Squ	ares to	Linear fit			
Element Name	1	% F	Ret.Time	Area	BC	Area ratio	K factor
Carbon		1.4288	244	588149	RS	1.000000	

_

1.4288 244 588149 RS 1.000000

Eager 300 Report Page: 1 Sample: 180-116564-B-4 (A012921073)

Method Name	:	Lloyd Kahn					
Method File	:	C:\data\January	/012921A	.mth			
Chromatogram	:	A012921073					
Operator ID	:	DON FERGUSON		Company Na	ame :	Eurofins TA	Pitt
Analysed	:	02/01/2021 08:	36	Printed	:	2/1/2021 11	L:02
Sample ID	:	180-116564-B-4	(# 85)				
Instrument N.	:	Instrument #1					
Analysis Type	:	UnkNown (Area)		Sample weig	ght :	7.5	
Calib. method	:	using 'Least So	quares to	Linear fit	:'		
Element Name	2	00	Ret.Time	Area	BC	Area ratio	K factor
Carbon		1.2412	247	462454	1 RS	1.000000	

Page: 1 Sample: 180-116564-B-5 (A012921076)

Method Name	:	Lloyd Kahn			
Method File	:	C:\data\January\012921	A.mth		
Chromatogram	:	A012921076			
Operator ID	:	DON FERGUSON	Company Nam	ne :	Eurofins TA Pitt
Analysed	:	02/01/2021 08:53	Printed	:	2/1/2021 11:03
Sample ID	:	180-116564-B-5 (# 88)			
Instrument N.	:	Instrument #1			
Analysis Type	:	UnkNown (Area)	Sample weigh	nt :	7.8
Calib. method	:	using 'Least Squares t	o Linear fit'		
Element Name	•	% Ret.Tim	e Area	BC	Area ratio K factor
Carbon		1.9646 24	5 776500	RS	1.000000

Page 211 of 297

Page: 1 Sample: 180-116564-B-5 (A012921077)

Method Name	:	Lloyd Kahn			
Method File	:	C:\data\January\0129212	A.mth		
Chromatogram	:	A012921077			
Operator ID	:	DON FERGUSON	Company Name	e :	Eurofins TA Pitt
Analysed	:	02/01/2021 08:59	Printed	:	2/1/2021 11:03
Sample ID	:	180-116564-B-5 (# 89)			
Instrument N.	:	Instrument #1			
Analysis Type	:	UnkNown (Area)	Sample weigh	t:	7.4
Calib. method	:	using 'Least Squares to	Linear fit		
Element Name	2	% Ret.Time	e Area	BC	Area ratio K factor
Carbon		1 7226 241	6/1062		1 00000
Carbon		1.7220 21.) OFT202 .	ro.	T .00000

Page: 1 Sample: 180-116564-B-7 (A012921080) Method Name : Lloyd Kahn Method File : C:\data\January\012921A.mth Chromatogram : A012921080 Operator ID : DON FERGUSON Company Name : Eurofins TA Pitt Analysed : 02/01/2021 09:15 Printed : 2/1/2021 11:04 Sample ID : 180-116564-B-7 (# 92) Instrument N. : Instrument #1 Analysis Type : UnkNown (Area) Sample weight : 14.1 Calib. method : using 'Least Squares to Linear fit' Element Name % Ret.Time Area BC Area ratio K factors of the second state of the seco

Frement Name	6	Ret.Time	Area	BC	Area ratio	K Iactor
Carbon	0.1499	246	86747	RS	1.000000	

Page: 1 Sample: 180-116564-B-7 (A012921081)

Method Name	:	Lloyd Kahn	
Method File	:	C:\data\January\012921	A.mth
Chromatogram	:	A012921081	
Operator ID	:	DON FERGUSON	Company Name : Eurofing TA Pitt
Analysed	:	02/01/2021 09:21	Printed $\cdot 2/1/2021 11.04$
Sample ID	:	180 - 116564 - B - 7 (# 93)	
Instrument N.	:	Instrument #1	
Analysis Type	:	UnkNown (Area)	Sample weight : 13.7
Calib. method	:	using 'Least Squares to	Linear fit'
Element Name	ł	% Ret.Time	Area BC Area ratio K factor

Carbon 0.1678 247 96458 RS 1.000000

Page 217 of 297

Eager 300 Report Page: 1 Sample: CCV (A012921084)

Method Name Method File Chromatogram	: Lloyd Ka : C:\data\ : A0129210	hn January\01 84	L2921A.mt]	ı				
Operator ID Analysed Sample ID Instrument N.	: DON FERG : 02/01/20 : CCV (# 9 : Instrume	USON 21 09:38 6) ent #1	Comp Prin	pany Nam nted	ie : :	Eurofins 2/1/2021	TA Pitt 11:05	
Analysis Type	: UnkNown	(Area)	Sam	ole weigh	t:	100		
Calib. method	: using 'L	east Squar	es to Lir	near fit'				
Element Name	%	Ret	.Time	Area	BC 2	Area rati	o Kf	actor
Carbon		1.0204	227	5303861	RS	1.0000	00	

Eager 300 Report Page: 1 Sample: CCB (A012921085)

Method Name : Lloyd Kahn Method File : C:\data\January\012921A.mth Chromatogram : A012921085 Operator ID : DON FERGUSON Company Name : Eurofins TA Pitt Analysed : 02/01/2021 09:43 Printed : 2/1/2021 11:05 Sample ID : CCB (# 97) Instrument N. : Instrument #1 Analysis Type : UnkNown (Area) Sample weight : 20 Calib. method : using 'Least Squares to Linear fit' !!! Warning missing one or more peaks. Element Name % Ret.Time Area BC Area ratio K factor

Eager Xperience

Method name : Lloyd Kahn Method filename : C:\data\January\020421A.mth

Sample table

Chromatogram overwrite : Enabled

D	in Ferguson 2	14/21 E	BATCH	4 3450	56
#	Sample name	Filename	Type	Weight	Hum. %
1	BYPASS	A092320006	ByP	-	0
2	BLANK	A092320007	Blk	-	0
3	BLANK	A092320008	Blk	-	0
4	1,000 KHP CT#3785365	A092320009	Std	200	0
5	2,500 KHP CT#3785364	A092320010	Std	50	0
6	5,000 KHP CT#3785364	A092320011	Std	100	0
7	10,000 KHP CT#3785364	A092320012	Std	200	0
8	25,000 KHP CT#3785363	A092320013	Std	50	0
9	50,000 KHP CT#3785363	A092320014	Std	100	0
10	100,000 KHP CT#3785363	A092320015	Std	200	0
11	ICV 37,810 KHP CT#3742673	A092320016	Unk	11.6	0
12	Rinse	A020421001	Unk	1	0
13	CCV	A020421002	Unk	100	0
14	CCB	A020421003	Unk	20	0
15	MB	A020421004	Unk	20	0
16	MB	A020421005	Unk	20.4	0
17	LCS	A020421006	Unk	10.2	0
18	LCS	A020421007	Unk	10.7	0
19	180-116528-B-8	A020421008	Unk	15.1	0
20	180-116528-B-8	A020421009	Unk	15.8	0
21	Rinse	A020421010	Unk	1	0
22	Rinse	A020421011	Unk	1	0
23	180-116528-B-10	A020421012	Unk	14.3	0
24	180-116528-B-10	A020421013	Unk	15.1	0
25	Rinse	A020421014	Unk	1	0
26	Rinse	A020421015	Unk	1	0
27	180-116528-B-10MS	A020421016	Unk	12.5	0
28	180-116528-B-10MS	A020421017	Unk	13.6	0
29	Rinse	A020421018	Unk	1	0
30	Rinse	A020421019	Unk	1	0
31	180-116528-B-10MSD	A020421020	Unk	13.1	0
32	180-116528-B-10MSD	A020421021	Unk	13	0
33	Rinse	A020421022	Unk	1	0
34	Rinse	A020421023	Unk	1	0
35	CCV	A020421024	Unk	100	0
36	ССВ	A020421025	Unk	20	0
37	180-116528-B-9	A020421026	Unk	15.8	0

_#	Sample name	Filename	Туре	Weight	Hum.%
38	180-116528-B-9	A020421027	Unk	15.9	0
39	Rinse	A020421028	Unk	1	0
40	Rinse	A020421029	Unk	1	0
41	Rinse	A020421030	Unk	1	0
42	180-116628-A-1	A020421031	Unk	3.7	0
43	180-116628-A-1	A020421032	Unk	4.9	0
44	Rinse	A020421033	Unk	1	0
45	Rinse	A020421034	Unk	1	0
46	Rinse	A020421035	Unk	1	0
<u>47</u>	Rinse	A020421036	Unk	1	0
48	Rinse	A020421037	Unk	1	0
49	CCV	A020421038	Unk	100	0
50	ССВ	A020421039	Unk	20	0

TestAmerica THE LEADER IN ENVIRONMENTAL TEXTING

ŧ

Pittsburgh Leb Lloyd Kehn SRM Prep Log BATCH 345656

Analyst	DON FERGUSON	Date	2/4/21
Job No.	Sample ID	Weight (mg)	Average Weights
	MB	20.0	
	MB	20.4	20.2
	LCS	10,2	·
	LCS	10.7	10.45
180-116528-10	116528-10	14.3	
	-10	1.5.1	14.7
	116528-10MS	12.5+ 7.6	
	-10 MS	13.6+8.6	13.05+8.1
	116528-10MSD	13.1+8.5	
	-lomsp	13.0+7.2	13-05 + 7.85
· · ·			12
	· · · · · · · · · · · · · · · · · · ·		

N:ISOPs/Formsilloyd Kahn Sample Prep form_Rev.1.doc Rev. 1, 06/19/11

2/4/21 BATCH 345656

CM

Lloyd Kahn %RPD Replicate Calculation Spreadsheet

Units: mg/k	<u>g</u>				_
Batch#	Sample#	Results	Average	RPD	
	MB	0			
	MB	0	0.000	#DIV/0!	
	LCS	3.74508476			
	LCS	3.91504788	3.830	4.44	1
	180-116528-B-8	2.08398223			1
	180-116528-B-8	3.38337016	2.734	47.53	
	180-116528-B-10	0.95576137			
	180-116528-B-10	0.81742877	0.887	15.60	
	180-116528-B-10MS	3.14542246]
	180-116528-B-10MS	2.85932827	3.002	9.53	
	180-116528-B-10MSD	2.9746232			
	180-116528-B-10MSD	3.14633751	3.060	5.61	
	180-116528-B-9	1.94470417			1
	180-116528-B-9	2.46469498	2.205	23.59	
	180-116628-A-1	49.5680008			1.1
	180-116628-A-1	27.1335735	38.351	58.50	
			#DIV/0!	#DIV/0!	
			#DIV/0!	#DIV/0!	
		-			
		-	#DIV/0!	#DIV/0!	
		-			
		ŀ	#DIV/0!	#DIV/0!	
		-			
		-	#DIV/0!	#DIV/0!	
		-			
		-	#DIV/0!	#DIV/01	
		ŀ			
		-	#DIV/0!	#DIV/01	
		-	#DIV/0!	#DIV/01	
		ŀ			
		L	#DIV/0I	#DIV/01	
		-	#DIVIO:	#010/0:	
		-		#DIV//01	
		-	#D10/0:	#DIV/0!	
			#DIV/01	#DIV//01	
			#DIV/0!	#DIV/0!	
			#DIV/01	#DIV//01	
			#DIV/0!	#DIV/0!	
		-	#DIV/01	#DIV/01	
		ŀ	#DIV/0!	#DIV/0!	
		-		11511 (10)	
		ŀ	#DIV/0!	#DIV/0!	
		Ļ			
		Ļ	#DIV/0!	#DIV/0!	
		-			
		Ļ	#DIV/0!	#DIV/0!	
		Ĺ			
		L	#DIV/0!	#DIV/0!	

Page: 1 Sample: CCV (A020421002) Method Name : Lloyd Kahn Method File : C:\data\January\020421A.mth Chromatogram : A020421002 Operator ID : DON FERGUSON Company Name : Eurofins TA Pitt Analysed : 02/04/2021 11:25 Printed : 2/5/2021 06:58 Sample ID : CCV (# 13) Instrument N. : Instrument #1 Analysis Type : UnkNown (Area) Sample weight : 100 Calib. method : using 'Least Squares to Linear fit'

Element Name	*	Ret.Time	Area	BC	Area ratio	K factor
Carbon	1.0059	233	5228378	RS	1.000000	

Page 227 of 297

Page: 1 Sample: CCB (A020421003)

Method Name : Lloyd Kahn Method File : C:\data\January\020421A.mth Chromatogram : A020421003 Operator ID : DON FERGUSON Company Name : Eurofins TA Pitt Analysed : 02/04/2021 11:31 Printed : 2/5/2021 06:59 Sample ID : CCB (# 14) Instrument N. : Instrument #1 Analysis Type : UnkNown (Area) Sample weight : 20 Calib. method : using 'Least Squares to Linear fit'

!!! Warning missing one or more peaks.

Element Name % Ret.Time Area BC Area ratio K factor

Page: 1 Sample: MB (A020421004)

Method Name	:	Lloyd Kahn				
Method File	:	C:\data\January\020421A				
Chromatogram	:	A020421004				
Operator ID	:	DON FERGUSON	Company N	Iame	:	Eurofins TA Pitt
Analysed	:	02/04/2021 11:37	Printed		:	2/5/2021 06:59
Sample ID	:	MB (# 15)			-	-, -,
Instrument N.	:	Instrument #1				
Analysis Type	:	UnkNown (Area)	Sample wei	ght	:	20
Calib. method	:	using 'Least Squares to	Linear fi	t		
Element Name	ž	% Ret.Time	Area	BC		Area ratio V facto

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor

Page: 1 Sample: MB (A020421005)

Method Name	:	Lloyd Kahn			
Method File	:	C:\data\January\020421A.m	nth		
Chromatogram	:	A020421005			
Operator ID	:	DON FERGUSON Co	ompany Name	:	Eurofins TA Pitt
Analysed	:	02/04/2021 11:43 Pr	rinted	:	2/5/2021 06:59
Sample ID	:	MB (# 16)			
Instrument N.	:	Instrument #1			
Analysis Type	:	UnkNown (Area) Sa	ample weight	:	20.4
Calib. method	:	using 'Least Squares to L	linear fit'		
Flement Name		& Dot Time	3maa D0		

Element Name	*	Ret.Time	Area	BC	Area ratio	K factor

Page: 1 Sample: LCS (A020421006)
Method Name : Lloyd Kahn
Method File : C:\data\January\020421A.mth
Chromatogram : A020421006
Operator ID : DON FERGUSON Company Name : Eurofins TA Pitt
Analysed : 02/04/2021 11:48 Printed : 2/5/2021 06:59
Sample ID : LCS (# 17)
Instrument N. : Instrument #1
Analysis Type : UnkNown (Area) Sample weight : 10.2
Calib. method : using 'Least Squares to Linear fit'
Element Name % Ret.Time Area BC Area ratio K factor

Fremenc Name	6	Ret.Time	Area	RC.	Area ratio	K factor
						=100-100-100000000000000000000000000
Carbon	3.7451	240	1970879	RS	1.000000	

Page: 1 Sample: LCS (A020421007)

Method Name : Lloyd Kahn Method File : C:\data\January\020421A.mth Chromatogram : A020421007 Operator ID : DON FERGUSON Company Name : Eurofins TA Pitt Analysed : 02/04/2021 11:54 Printed : 2/5/2021 07:00 Sample ID : LCS (# 18) Instrument N. : Instrument #1 Analysis Type : UnkNown (Area) Sample weight : 10.7 Calib. method : using 'Least Squares to Linear fit' Element Name % Ret.Time Area BC Area ratio K factor

Frement Mame	8	Ret.Time	Area	BG	Area ratio	K factor
Carbon	3.9150	239	2163597	RS	1.000000	

Page 237 of 297

Eager 300 Report Page: 1 Sample: 180-116528-B-8 (A020421008)

Method Name	:	Lloyd Kahn			
Method File	:	C:\data\January\020421A	.mth		
Chromatogram	:	A020421008			
Operator ID	:	DON FERGUSON	Company Name	:	Eurofins TA Pitt
Analysed	:	02/04/2021 11:59	Printed	:	2/5/2021 07:00
Sample ID	:	180-116528-B-8 (# 19)			
Instrument N.	:	Instrument #1			
Analysis Type	:	UnkNown (Area)	Sample weight	:	15.1
Calib. method	:	using 'Least Squares to	Linear fit!		
Element Name		8 Pot Timo	Area D(Amon mobile W. Saataa

FIGHEIIC Mame	6	Ret.Time	Area	BC	Area ratio	K factor
				-		
Carbon	2.0840	247	1619408	RS	1.000000	

Eager 300 Report Page: 1 Sample: 180-116528-B-8 (A020421009)

Method Name	:	Lloyd Kahn			
Method File	:	C:\data\January\020421A	.mth		
Chromatogram	:	A020421009			
Operator ID	:	DON FERGUSON	Company Na	me :	Eurofins TA Pitt
Analysed	:	02/04/2021 12:05	Printed	:	2/5/2021 07:00
Sample ID	:	180-116528-B-8 (# 20)			
Instrument N.	:	Instrument #1			
Analysis Type	:	UnkNown (Area)	Sample weig	ght :	15.8
Calib. method	:	using 'Least Squares to	Linear fit	:'	
Element Name)	% Ret.Time	Area	BC	Area ratio K factor

Carbon	3.3834	240	2767482	RS	1.000000	

Eager 300 Report Page: 1 Sample: 180-116528-B-10 (A020421012)

Method Name	:	Lloyd Kahn						
Method File	:	C:\data\January\0204214	A.mth					
Chromatogram	:	A020421012						
Operator ID	:	DON FERGUSON	Company	Name	:	Eurofins	TA Pitt	
Analysed	:	02/04/2021 12:22	Printed		:	2/5/2021	07:01	
Sample ID	:	180-116528-B-10 (# 23)						
Instrument N.	:	Instrument #1						
Analysis Type	:	UnkNown (Area)	Sample w	eight	:	14.3		
Calib. method	:	using 'Least Squares to	Linear	fit'				

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
		(-)=				
Carbon	0.9558	245	690013	RS	1.000000	

Eager 300 Report Page: 1 Sample: 180-116528-B-10 (A020421013)

Method Name	:	Lloyd Kahn				
Method File	:	C:\data\January\020421A	A.mth			
Chromatogram	:	A020421013				
Operator ID	:	DON FERGUSON	Company Nam	ne	Eurofins	TA Pitt
Analysed	:	02/04/2021 12:27	Printed	:	: 2/5/2021	07:01
Sample ID	:	180-116528-B-10 (# 24)				
Instrument N.	:	Instrument #1				
Analysis Type	:	UnkNown (Area)	Sample weigh	it :	: 15.1	
Calib. method	:	using 'Least Squares to	Linear fit	,		

Element Name	90	Ret.Time	Area	BC	Area ratio	K factor
Carbon	0.8174	245	620875	RS	1.000000	

Eager 300 Report Page: 1 Sample: 180-116528-B-10MS (A020421016)

Method Name	:	: Lloyd Kahn	
Method File	:	: C:\data\January\020421A.mth	
Chromatogram	:	: A020421016	
Operator ID	:	: DON FERGUSON Company Name : Eurofins	TA Pitt
Analysed	:	: 02/04/2021 12:44 Printed : 2/5/2021	07:02
Sample ID	:	: 180-116528-B-10MS (# 27)	
Instrument N.	:	: Instrument #1	
Analysis Type	:	UnkNown (Area) Sample weight : 12.5	
Calib. method	:	using 'Least Squares to Linear fit'	

Element Name	90	Ret.Time	Area	BC	Area ratio	K factor
Carbon	3.1454	239	2029246	RS	1.000000	

Page 247 of 297

Page: 1 Sample: 180-116528-B-10MS (A020421017)

Method Name	:	Lloyd Kahn					
Method File	:	C:\data\Janu	ary\020421	A.mth			
Chromatogram	:	A020421017	_				
Operator ID	:	DON FERGUSON		Company Na	ame :	Eurofins TA	Pitt
Analysed	:	02/04/2021	12:50	Printed	:	2/5/2021 0	7:03
Sample ID	:	180-116528-B	-10MS (# 2	8)			
Instrument N.	:	Instrument #	1				
Analysis Type	:	UnkNown (Area	a)	Sample weig	ght :	13.6	
Calib. method	:	using 'Least	Squares t	o Linear fit	E!		
Element Name	2	%	Ret.Tim	e Area	BC	Area ratio	K factor
Carbon		2.85	93 23	9 2006748	 3 RS	1.000000	

Eager 300 Report Page: 1 Sample: 180-116528-B-10MSD (A020421020)

Method Name	:	Lloyd Kahn
Method File	:	C:\data\January\020421A.mth
Chromatogram	:	A020421020
Operator ID	:	DON FERGUSON Company Name : Eurofins TA Pitt
Analysed	:	02/04/2021 13:07 Printed : 2/5/2021 07:03
Sample ID	:	180-116528-B-10MSD (# 31)
Instrument N.	:	Instrument #1
Analysis Type	:	UnkNown (Area) Sample weight : 13.1
Calib. method	:	using 'Least Squares to Linear fit'
Element Name	2	% Ret.Time Area BC Area ratio K factor

	-					
			8-8			
Carbon	2.9746	237	2010961	RS	1.000000	

Page 251 of 297

Eager 300 Report Page: 1 Sample: 180-116528-B-10MSD (A020421021)

Method Name	:	Lloyd Kahn						
Method File	:	C:\data\January\020421A.mth						
Chromatogram	:	A020421021						
Operator ID	:	DON FERGUSON Company Name : Eurofins TA Pitt						
Analysed	:	02/04/2021 13:12 Printed : 2/5/2021 07:04						
Sample ID	:	180-116528-B-10MSD (# 32)						
Instrument N.	:	Instrument #1						
Analysis Type	:	UnkNown (Area) Sample weight : 13						
Calib. method : using 'Least Squares to Linear fit'								
Element Name	ł	% Ret.Time Area BC Area ratio K factor						

	Ŷ	Nec. IIme	ALEa	DC	Area rallo	K lactor
Carbon	3.1463	240	2111980	RS	1.000000	

Page: 1 Sample: CCV (A020421024)

Carbon

Method Name : Lloyd Kahn Method File : C:\data\January\020421A.mth Chromatogram : A020421024 Operator ID : DON FERGUSON Company Name : Eurofins TA Pitt Analysed : 02/04/2021 13:29 Printed : 2/5/2021 07:04 Sample ID : CCV (# 35) Instrument N. : Instrument #1 Analysis Type : UnkNown (Area) Sample weight : 100 Calib. method : using 'Least Squares to Linear fit' Element Name % Ret.Time Area BC Area ratio K factor

1.0096 229 5247670 RS 1.000000

Page 254 of 297

Page: 1 Sample: CCB (A020421025)

Method Name Method File Chromatogram	: Lloyd Kahn : C:\data\January\0204214	A.mth							
Operator ID Analysed Sample ID	: DON FERGUSON : 02/04/2021 13:35 : CCB (# 36)	Company Name Printed	:	Eurofins TA Pitt 2/5/2021 07:05					
Instrument N. Analysis Type	: Instrument #1 : UnkNown (Area)	Sample weight	:	20					
Calib. method : using 'Least Squares to Linear fit'									
!!! Warning missing one or more peaks.									

Element Name % Ret.Time Area BC Area ratio K factor

Eager 300 Report Page: 1 Sample: 180-116528-B-9 (A020421026)

Method Name	:	Lloyd Kahn				
Method File	:	C:\data\January\020421A.	mth			
Chromatogram	:	A020421026				
Operator ID	:	DON FERGUSON	Company Nam	ne :	Eurofins	TA Pitt
Analysed	:	02/04/2021 13:41 F	Printed	:	2/5/2021	07:05
Sample ID	:	180-116528-В-9 (# 37)				
Instrument N.	:	Instrument #1				
Analysis Type	:	UnkNown (Area)	Sample weigh	nt:	15.8	
Calib. method	:	using 'Least Squares to	Linear fit'			
Element Name	!	% Ret.Time	Area	BC	Area rati	o K factor

Carbon	1.9447	241	1580678	RS	1.000000	

Eager 300 Report Page: 1 Sample: 180-116528-B-9 (A020421027)

Method Name	:	Lloyd Kahn			
Method File	:	C:\data\January\020421A	mth		
Chromatogram	:	A020421027			
Operator ID	:	DON FERGUSON	Company Name	:	Eurofins TA Pitt
Analysed	:	02/04/2021 13:46	Printed	:	2/5/2021 07:05
Sample ID	:	180-116528-B-9 (# 38)			, -,
Instrument N.	:	Instrument #1			
Analysis Type	:	UnkNown (Area)	Sample weight	:	15.9
Calib. method	:	using 'Least Squares to	Linear fit'		
Element Name		8 Pot Time	3maa D.C		

Element Name	*	Ret.Time	Area	BC	Area ratio	K factor
Carbon	2.4647	242	2022504	RS	1.000000	

Eager 300 Report Page: 1 Sample: 180-116628-A-1 (A020421031)

Method Name	:	Lloyd Kahn						
Method File	:	C:\data\January\0204212	A.mth					
Chromatogram	:	A020421031						
Operator ID	:	DON FERGUSON	Company	Name	:	Eurofins	TA Pitt	
Analysed	:	02/04/2021 14:09	Printed		:	2/5/2021	07:08	
Sample ID	:	180-116628-A-1 (# 42)				* *		
Instrument N.	:	Instrument #1						
Analysis Type	:	UnkNown (Area)	Sample we	eight	:	3.7		
Calib. method	:	using 'Least Squares to	Linear f	it'				

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
		(m)=(m,m)=(m-m)				
Carbon	49.5680	239	9552009	RS	1.000000	

Filename C:\data\January\A020421032.DAT Sample name :180-116628-A-1 Analysed :02/04/2021 14:14

Page: 1 Sample: 180-116628-A-1 (A020421032)

Method Name	:	Lloyd Kahn								
Method File	:	C:\data\January\0204212	:\data\January\020421A.mth							
Chromatogram	:	A020421032								
Operator ID	:	DON FERGUSON	Company Name	:	Eurofins TA Pitt					
Analysed	:	02/04/2021 14:14	Printed	:	2/5/2021 07:12					
Sample ID	:	180-116628-A-1 (# 43)			, ,					
Instrument N.	:	Instrument #1								
Analysis Type	:	UnkNown (Area)	Sample weight	:	4.9					
Calib. method	:	using 'Least Squares to	Linear fit							

Warning Chromatogram has been subjected to manual integration.

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
Carbon	27.1336	250	6918115	mi	1.000000	

Page: 1 Sample: CCV (A020421038)

Carbon

Method Name : Lloyd Kahn Method File : C:\data\January\020421A.mth Chromatogram : A020421038 Operator ID : DON FERGUSON Company Name : Eurofins TA Pitt Analysed : 02/04/2021 14:48 Printed : 2/5/2021 07:09 Sample ID : CCV (# 49) Instrument N. : Instrument #1 Analysis Type : UnkNown (Area) Sample weight : 100 Calib. method : using 'Least Squares to Linear fit' Element Name % Ret.Time Area BC Area ratio K factor

1.0106 229 5252751 RS 1.000000

Page: 1 Sample: CCB (A020421039)

Method Name Method File Chromatogram	•••••	Lloyd Kahn C:\data\January\020421A A020421039	mth				
Operator ID Analysed Sample ID	••••••	DON FERGUSON 02/04/2021 14:53 CCB (# 50)	Company Printed	Name	:	Eurofins 2/5/2021	TA Pitt 07:09
Instrument N. Analysis Type	:	Instrument #1 UnkNown (Area)	Sample we	eight	:	20	
Calib. method	:	using 'Least Squares to	Linear f	it'			

!!! Warning missing one or more peaks.

Element Name % Ret.Time Area BC Area ratio K factor

Eager Xperience

Method name : Lloyd Kahn Method filename : C:\data\January\092320A.mth

Sample table

Chromatogram overwrite : Enabled

#	Sample name	Filename	Туре	Weight	Hum. %
1	BYPASS	A092320006	ВуР	-	0
2	BLANK	A092320007	Blk	-	0
3	BLANK	A092320008	Blk	-	0
4	1,000 KHP CT#3785365	A092320009	Std	200	0
5	2,500 KHP CT#3785364	A092320010	Std	50	0
6	5,000 KHP CT#3785364	A092320011	Std	100	0
7	10,000 KHP CT#3785364	A092320012	Std	200	0
8	25,000 KHP CT#3785363	A092320013	Std	50	0
9	50,000 KHP CT#3785363	A092320014	Std	100	0
10	100,000 KHP CT#3785363	A092320015	Std	200	0
11	ICV 37,810 KHP CT#3742673	A092320016	Unk	11.6	0
12	CCV	A092320017	Unk	100	0
13	CCB	A092320018	Unk	20	0
14	MB	A092320019	Unk	21.1	0
15	MB	A092320020	Unk	24.4	0
16	LCS	A092320021	Unk	12.7	0
17	LCS	A092320022	Unk	9.8	0
18	180-110583-A-9	A092320023	Unk	18.2	0
19	180-110583-A-9	A092320024	Unk	18	0
20	Rinse	A092320025	Unk	1	0
21	180-110583-В-14	A092320026	Unk	10.6	0
22	180-110583-B-14	A092320027	Unk	7.4	0
23	Rinse	A092320028	Unk	1	0
24	180-110583-B-14 MS	A092320029	Unk	8.3	0
25	180-110583-B-14 MS	A092320030	Unk	6.6	0
26	Rinse	A092320031	Unk	1	0
27	180-110583-B-14 MSD	A092320032	Unk	7.7	0
28	180-110583-B-14 MSD	A092320033	Unk	7.8	0
29	Rinse	A092320034	Unk	1	0
30	180-110583-A-19	A092320035	Unk	13.1	0
31	180-110583-A-19	A092320036	Unk	16.6	0
32	Rinse	A092320037	Unk	1	0
33	CCV	A092320038	Unk	100	0
34	ССВ	A092320039	Unk	20	0
35	180-110583-A-20	A092320040	Unk	11.9	0
36	180-110583-A-20	A092320041	Unk	9.1	0
37	Rinse	A092320042	Unk	1	0

Environment Testing TestAmerica

Llyod Kahn %Readback Error Calculation Spreadsheet

ICAL Std (ppm)	ICAL ID	Average Area	% Actual Carbon of Std.	%Readback Error	%Readback Criteria
1000	092320LK_ICAL	99423	0.0073	27.364	≤50%
2500	092320LK_ICAL	247009	0.0856	14.411	≤30%
5000	092320LK_ICAL	499611	0.0912	8.825	≤30%
10000	092320LK_ICAL	1048607	0.0982	1.838	≤30%
25000	092320LK_ICAL	2561375	0.9721	2.787	≤30%
50000	092320LK_ICAL	5128187	0.9777	2.231	≤30%
100000	092320LK_ICAL	10456420	0.9991	0.090	≤30%

		Volume Cal	
Kb Value	Ke Value	Standard Injected	True Value Carbon Std in %
· The second of the second	· · · · · · · · · · · · · · · · · · ·	200	0.01
		50	0.10
		100	0.10
		200	0.10
		50	1.00
		100	1.00
		200	1.00

NO MANUAL INTEGRATIONS PERFORMED DLF 09/23/20

Eager 300 Report Page: 1 Sample: 1,000 KHP CT#3785365 (A092320009)

Method Name	:	Lloyd Kahn
Method File	:	C:\data\January\092320A.mth
Chromatogram	:	A092320009
Operator ID	:	DON FERGUSON Company Name : Eurofins TA Pitt
Analysed	:	09/23/2020 14:23 Printed : 9/23/2020 14:29
Sample ID	:	1,000 KHP CT#3785365 (# 4)
Instrument N.	:	Instrument #1
Analysis Type	•	Calibration (Area) Sample weight : 200
Calib. method	:	using 'Least Squares to Linear fit'
Element Name		% Ret.Time Area BC Area ratio K factor

ETEMETIC Name	õ	Rec.IIme	ALCA	ЪÇ	ALEA LACIO	K LACCOL
			- **:			
Carbon	0.0100	251	99423	RS	1.000000	

Eager 300 Report Page: 1 Sample: 2,500 KHP CT#3785364 (A092320010)

Method Name	:	Lloyd Kahn						
Method File	:	C:\data\January\092320A.mth						
Chromatogram	:	A092320010						
Operator ID	:	DON FERGUSON Company Name : Eurofins TA Pitt						
Analysed	:	09/23/2020 14:29 Printed : 9/23/2020 14:34						
Sample ID	:	2,500 KHP CT#3785364 (# 5)						
Instrument N.	:	Instrument #1						
Analysis Type	:	Calibration (Area) Sample weight : 50						
Calib. method	:	using 'Least Squares to Linear fit'						
Element Name		9 Det Time Area DC Area ratio V factor						

Element Name	*	Ret.Time	Area	BC	Area ratio	K factor
		(a,b,c,a,b,c,a,b,c,a,a,a,b,c,a,a,a,a,b,c,a,a,a,a				
Carbon	0.1000	248	247009	RS	1.000000	

Eager 300 Report Page: 1 Sample: 5,000 KHP CT#3785364 (A092320011)

Method Name	:	Lloyd Kahn						
Method File	:	C:\data\January\092320A.mth						
Chromatogram	:	A092320011						
Operator ID	:	DON FERGUSON Company Name : Eurofins TA Pitt						
Analysed	:	09/23/2020 14:34 Printed : 9/23/2020 14:40						
Sample ID	:	5,000 KHP CT#3785364 (# 6)						
Instrument N.	:	Instrument #1						
Analysis Type	:	Calibration (Area) Sample weight : 100						
Calib. method	:	using 'Least Squares to Linear fit'						

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
Carbon	0.1000	246	499611	RS	1.000000	

Page 279 of 297
Eager 300 Report Page: 1 Sample: 10,000 KHP CT#3785364 (A092320012)

Method Name	:	Lloyd Kahn
Method File	:	C:\data\January\092320A.mth
Chromatogram	:	A092320012
Operator ID	:	DON FERGUSON Company Name : Eurofins TA Pitt
Analysed	:	09/23/2020 14:40 Printed : 9/23/2020 14:46
Sample ID	:	10,000 KHP CT#3785364 (# 7)
Instrument N.	:	Instrument #1
Analysis Type	:	Calibration (Area) Sample weight : 200
Calib. method	:	using 'Least Squares to Linear fit'
Element Name		& Pot Time Area PC Area ratio K factor

FIGUEUL Name	6	Rec.IIme	Area	БC	Area fatio	K Lactor
	\sim - \sim - \sim - \sim -		$\alpha = \alpha = \alpha = \alpha = \alpha$			
Carbon	0.1000	242	1048607	RS	1.000000	

Eager 300 Report Page: 1 Sample: 25,000 KHP CT#3785363 (A092320013)

Method Name	:	Lloyd Kahn				
Method File	:	C:\data\January\092320	A.mth			
Chromatogram	:	A092320013				
Operator ID	:	DON FERGUSON	Company	Name	:	Eurofins TA Pitt
Analysed	:	09/23/2020 14:46	Printed		:	9/23/2020 14:51
Sample ID	:	25,000 KHP CT#3785363	(# 8)			
Instrument N.	:	Instrument #1				
Analysis Type	:	Calibration (Area)	Sample	weight	:	50

Calib. method : using 'Least Squares to Linear fit'

Element Name	\$	Ret.Time	Area	BC	Area ratio	K factor
			$-\infty \infty$			
Carbon	1.0000	237	2561375	RS	1.000000	

Eager 300 Report Page: 1 Sample: 50,000 KHP CT#3785363 (A092320014)

Method Name	:	Lloyd Kahn				
Method File	:	C:\data\January\092320A	.mth			
Chromatogram	:	A092320014				
Operator ID	:	DON FERGUSON	Company Na	me	:	Eurofins TA Pitt
Analysed	:	09/23/2020 14:51	Printed		:	9/23/2020 14:57
Sample ID	:	50,000 KHP CT#3785363 (# 9)			
Instrument N.	:	Instrument #1				
Analysis Type	:	Calibration (Area)	Sample weig	Jht	:	100
Calib. method	:	using 'Least Squares to	Linear fit	; '		

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
		(m)=m(m)(m)=m=m				
Carbon	1.0000	232	5128187	RS	1.000000	

Eager 300 Report Page: 1 Sample: 100,000 KHP CT#3785363 (A092320015)

Method Name	:	Lloyd Kahn		
Method File	:	C:\data\January\092320A.m	nth	
Chromatogram	:	A092320015		
Operator ID	:	DON FERGUSON Co	ompany Name :	Eurofins TA Pitt
Analysed	:	09/23/2020 14:57 Pr	rinted :	9/23/2020 15:03
Sample ID	:	100,000 KHP CT#3785363 (#	# 10)	
Instrument N.	:	Instrument #1		
Analysis Type	:	Calibration (Area) Sa	ample weight :	200
Calib. method	:	using 'Least Squares to I	Linear fit'	
Hlement News		9. Dot Dimo	Amon DC	Amon mobile V forten

Element Name	*	Ret.Time	Area	BC	Area ratio	K IACTOR
Carbon	1.0000	221	10456420	RS	1.000000	

Eager 300 Report Page: 1 Sample: ICV 37,810 KHP CT#3742673 (A092320016)

Method Name	:	Lloyd Kahn	
Method File	:	C:\data\January\0923204	A.mth
Chromatogram	:	A092320016	
Operator ID	:	DON FERGUSON	Company Name : Eurofins TA Pitt
Analysed	:	09/23/2020 15:03	Printed : 9/23/2020 15:08
Sample ID	:	ICV 37,810 KHP CT#37426	573 (# 11)
Instrument N.	:	Instrument #1	
Analysis Type	:	UnkNown (Area)	Sample weight : 11.6
Calib. method	:	using 'Least Squares to	b Linear fit'
Element Name	1	% Ret.Time	Area BC Area ratio K factor
Carbon		3.4865 240) 2087987 RS 1.000000

Eager 300 Report Page: 1 Sample: CCV (A092320017)

Method Name	:	Lloyd Kahn						
Method File	:	C:\data\January\092320A	mth					
Chromatogram	:	A092320017						
Operator ID	:	DON FERGUSON	Company	Name	:	Eurofins TA	. Pit	t
Analysed	:	09/23/2020 15:08	Printed		:	9/23/2020	15:1	L4
Sample ID	:	CCV (# 12)						
Instrument N.	:	Instrument #1						
Analysis Type	:	UnkNown (Area)	Sample we	eight	:	100		
Calib. method	:	using 'Least Squares to	Linear f	it				
Element Name	2	% Ret.Time	Area	вс	!	Area ratio	к	factor

FIGHEUC Name	ð	Ket.IIme	Area	DC	Alea latio	K LACCOL
	$\cdots \cdots			-2(1-2)(1-2)(1-2)(1-2)(1-2)(1-2)(1-2)(1-	*	
Carbon	0.9923	230	5157272	RS	1.000000	

Eager 300 Report

Page: 1 Sample: CCB (A092320018)

Method Name	:	Lloyd Kahn			
Method File	:	C:\data\January\092320A	mth		
Chromatogram	:	A092320018			
Operator ID	:	DON FERGUSON	Company Name	:	Eurofins TA Pitt
Analysed	:	09/23/2020 15:14	Printed	:	9/23/2020 15:20
Sample ID	:	CCB (# 13)			
Instrument N.	:	Instrument #1			
Analysis Type	:	UnkNown (Area)	Sample weight	:	20
Calib. method	:	using 'Least Squares to	Linear fit'		

!!! Warning missing one or more peaks.

Element Name % Ret.Time Area BC Area ratio K factor

Shipping and Receiving Documents

wood.	Wood E&IS Strip TO: Strip TO: Eurofins Pitts. Strip TO: Eurofins Pitts. Strip TO: Strip TO: Wood E&IS Strip TO: Strip TO: Eurofins Pitts. Strip TO: Strip TO: Wood E&IS Strip TO: Strip TO: Eurofins Pitts. Strip TO: Strip TO: Portland, ME 04101 Pittsburgh, PA 15238 (207) 828-3367 Atten: Carrie Gamber Lab Phone# (412) 963-2428 Lab Phone# (412) 963-2428		CHAIN OF CUSTODY	DA ⁻ COC PA(TE: > #: GE:	1/28	3/2021	1			
Project Name:	Penobscot River 2020	Project Conta	act:	Denise	King	Bill To: Denise King, Wood E&IS	Disposal Instruct	ions:	LAB		
Proj et Number:	361/20/486.03.****	Phone Numb	per:	508-78	9-1/38	271 Mill Rd Chaimsford MA 01824	Shipment Metho	d:	FED	EX	
riojott manager.	Rod Pendellon	Floject Flas	с.	Sedime			waybin Number.	- 11	INA	_	_
Sample Information						Methods for Analysis		RI	JSH	T	
No. Sample ID	Date & Time Sampled	Matrix	Sample Type	USW/SV	FOC Lloyd-Kahn			.TANDARD - 21 days 8 Hour	2 Hour	Days OTAL BOTTLES	OLD All Analyses
1 MMRKD-01 012521 SED 00-01	01/25/2021 1525	SED	N	≥ N	X			X 4		10. F	1 I
2 MMPKD-01 012521 SED 01-03	01/25/2021 1535	SED	N	N	X			X			1
3 MMBKD-01_012521_5ED_01-05	01/25/2021,1530	SED	N	N		\		Ŷ	+ +		
4 MARKD 01 012521_SED_01 02 DUR	01/25/2021, 1340	SED		N				Ŷ		÷	
4 MMBRD-01_012021_3ED_01-03_00F	01/25/2021,1200	SED	N	N	Î.					-	1
5 FRB-02_012621_SED_00-01	01/26/2021, 1500	SED	N		+ ⊋ −−−					1	1
7 EDD 02 012621 SED 02 05	01/26/2021, 1515	SED	N	V	÷					-	1
PRB-02_012621_SED_03-03	01/26/2021, 1945	SED	N	N	180	-1 16528 ®ai n of Custody					
0 ES 13_012621_SED_00-01	01/26/2021, 1845	SED		N					+ - 1	-+-	1 11
9 ES-IS_012621_SED_01-03	01/26/2021, 1800	SED	IN NI	IN NI							1 11
	01/20/2021, 1905	SED	IN	IN	Take off hold	and analyze 02/02/21 DMK	·				TH
12	1			17	Take on noit		77		+ -		
Sampler's Signature:		Date1	Time	76	For	Labiliza					
Relinquished By/Affiliation: TUM GECHARD, WOOD E+IS Received By: Received By: Received By: Relinquished By/Affiliation: Received By: Relinquished By/Affiliation:	it- 1	Date i 28 2 Date i 22 2 Date $i 2\vec{z} 2$ Date: Date: Date:	Time: 0930 Time: 0930 Time: 0930 Time: 0930 Time: 00	0	Does COC match sa Broken Container: COC seal intact: Other problems WSDOT contacted: Date contacted: Cooler Temperature	at receipt:°C Y or N Y or N Y or N Y or N PO # C0125 TOC Frozen u Extra volume NUMBER O	H=Hold Analysis 306205 Intil Shipment for MS/MSD F COOLERS SEI	Reque	st 1		
Received By (LAB):		Date:	Time:								

			SHIP T	ö		DATE:	1/28/202	-
	Wood E&IS		Eurofin	s Pitts.	CHAIN OF			
	511 Congress Street Portland, ME 04101		301 Alp Pittsbui	ha Drive RIDC Park qh, PA 15238	CUSTODY	COC #:		
	(207) 828-3367		Atten: (Lab Ph	arrie Gamber bne# (412) 963-2428		PAGE:	1 OF	-
Project Name:	Penobscot River 2020	Project Contact:	Denise	King	Bill To: Denise King, Wood E&IS	Disposal Instructions:	LAB	
Project Number:	3617207486.03.****	Phone Number:	508-78	9-1738	271 Mill Rd	Shipment Method:	FED EX	
Project Manager:	Rod Pendelton	Project Phase:	Sedime	nt Monitoring	Cheimsford, MA 01824	Waybill Number:	N/A	
Sample Information					Methods for Analysis			
							LISUN	Ţ
No. Sample ID	Date & Time Sampled	Matrix	MS/WSD	1.00 ΓΙολα-Καμμ	/	846b 12 - OAAONAT	Days 2 Hour 8 Hour	sesyisna lia Olo
1 MMBKD-01 012521 SED 00-01	01/25/2021.1525	SED	Z	. ×		s×	- 	
2 MMBKD-01_012521_SED_01-03	01/25/2021, 1535	SED	z	×		: ×		
3 MMBKD-01_012521_SED_03-05	01/25/2021, 1540	SED	z z	×		×		
4 MMBKD-01_012521_SED_01-03_DUP	01/25/2021, 1200	SED	z z	×		×		
5 FRB-02_012621_SED_00-01	01/26/2021, 1500	SED	z	×		×		1
6 FRB-02_012621_SED_01-03	01/26/2021, 1515	SED	z z	×		×		1
7 FRB-02_012621_SED_03-05	01/26/2021, 1530	SED	> Z	×		×		-
8 ES-13_012621_SED_00-01	01/26/2021, 1845	SED	z z	H 180-116	5528 Chain of Custody	×		1 H
9 ES-13_012621_SED_01-03	01/26/2021, 1855	SED	z z	I		×		H
10 ES-13_012621_SED_03-05	01/26/2021, 1905	SED	z z	I		×		H
			1-1			K		
Samular's Signature		Date +	2			5		Ŧ
10 ml		1/28/21	0930	Does COC match sample	es: Y or N Comments:			
Relinquished By/Affiliation: 7014 DECHARD, WOOD E+15		Date: 723/21	0136	Broken Container: COC seal intact:	Y or N X=Analyze H Y or N	=Hold Analysis Requ	uest	
Received By: FENEX		Date; Time	0930	Other problems:	Y or N PO # C0129	<u> 06205</u>		
Relinquished By/Affiliation:		Date: Time		Date contacted:	TOC Frozen ur	itil Shipment		
Received By: JULUL [774 HH	f- 11	Party I Time	201	Cooler Temperature at re	ceipt:°C Extra volume fo	or MS/MSD COOLERS SENT:	.	
Relinquíshed By/Affiliation:		Date: Time						
Received By (LAB):		Date: Time	ä					

Page 295 of 297

AHS 15238 PIT FIRST OVERNIGHT edEx FRI - 29 JAN 8:30/ Г SHIP DATE: 28JAN21 ACTMGT: 18.35 LB CAD: 006993790/SSFE2121 DIMS: 15x8x14 IN PA-US 5 BILL THIRD PARTY ပ eve **301 ALPHA DRIVE RIDC PARK** טוווכה ייי DEPT: PITTSBURGH PA 15238 (412) 863-2428 Initials ¹⁰ ATN: CARRIE GAMBER EUROFINS PITTS ORIGIN ID:BGRA (207) 828-3460 REF #3617207486.04 Uncorrected temp OZO1 7831 1593 8466 PT-WI-SR-001 effective 11/8/18 Thermometer ID PORTLAND, ME 04101 UNITED STATES US 0 WOOD PLC 511 CONGRESS ST Ч い IIIdveW 822811 -081

Client: Wood E&I Solutions Inc

Login Number: 116528 List Number: 1 Creator: Kovitch, Christina M

	Job Number:	180-116528-1
--	-------------	--------------

List Source: Eurofins TestAmerica, Pittsburgh

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

APPENDIX D-2 BLACK DUCK BLOOD LARS

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

16 March 2021

Rod Pendleton Wood - MA 271 Mill Road Chelmsford, MA 01824 RE: Penobscot

Enclosed are the analytical results for samples received by Eurofins Frontier Global Sciences. All quality control measurements are within established control limits and there were no analytical difficulties encountered with the exception of those listed in the case narrative section of this report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Patrik Stullad

Patrick Garcia-Strickland Business Unit Manager

MMBKD-01 012521 ABD 05 BL

MMBKD-01 012521 ABD 06 BL

MMBKD-01_012521_ABD_07_BL

MMBKD-01_012521_ABD_08_BL

MMBKD-01_012521_ABD_09_BL

MMBKD-01_012521_ABD_10_BL

MMBKD-01 012521 ABD 11 BL

MMBKD-01_012521_ABD_12_BL

MMBKD-01_012521_ABD_13_BL

MMBKD-01_012521_ABD_14_BL

MMBKD-01_012521_ABD_15_BL

ES-13 013021 ABD 01 BL

ES-13_013021_ABD_02_BL

ES-13_013021_ABD_03_BL

ES-13_013021_ABD_04_BL

ES-13_013021_ABD_05_BL

ES-13_013021_ABD_06_BL

ES-13_013021_ABD_07_BL

ES-13_013021_ABD_08_BL

ES-13_013021_ABD_09_BL

ES-13_013021_ABD_10_BL

ES-13_013021_ABD_11_BL

Frontier Global Sciences

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

02-Feb-21 09:31

Wood - MA 271 Mill Road Chelmsford MA, 01824	Project: Project Number: Project Manager: ANALYTICAL REPORT	Penobscot 3617207486.04 Rod Pendleton FOR SAMPLES		Reported: 16-Mar-21 11:55
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MMBKD-01_012521_ABD_01_BL	1B00003-01	Tissue	25-Jan-21 09:51	02-Feb-21 09:31
MMBKD-01_012521_ABD_02_BL	1B00003-02	Tissue	25-Jan-21 10:08	02-Feb-21 09:31
MMBKD-01_012521_ABD_03_BL	1B00003-03	Tissue	25-Jan-21 10:30	02-Feb-21 09:31
MMBKD-01_012521_ABD_04_BL	1B00003-04	Tissue	25-Jan-21 10:40	02-Feb-21 09:31

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

Tissue

1B00003-05

1B00003-06

1B00003-07

1B00003-08

1B00003-09

1B00003-10

1B00003-11

1B00003-12

1B00003-13

1B00003-14

1B00003-15

1B00003-16

1B00003-17

1B00003-18

1B00003-19

1B00003-20

1B00003-21

1B00003-22

1B00003-23

1B00003-24

1B00003-25

1B00003-26

Eurofins Frontier Global Sciences, LLC

atuk Stullion

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

25-Jan-21 10:51

25-Jan-21 11:07

25-Jan-21 11:20

25-Jan-21 11:30

25-Jan-21 11:38

25-Jan-21 11:45

25-Jan-21 11:54

25-Jan-21 12:04

25-Jan-21 12:17

25-Jan-21 12:28

25-Jan-21 12:33

30-Jan-21 16:34

30-Jan-21 16:45

30-Jan-21 16:54

30-Jan-21 17:04

30-Jan-21 17:14

30-Jan-21 17:22

30-Jan-21 17:29

30-Jan-21 17:40

30-Jan-21 17:52

30-Jan-21 17:58

30-Jan-21 18:06

Wood - MA	Project: Penobscot	
271 Mill Road	Project Number: 3617207486.04	Reported:
Chelmsford MA, 01824	16-Mar-21 11:55	
	ANALYTICAL REPORT FOR SAMPLES	

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
ES-13_013021_ABD_12_BL	1B00003-27	Tissue	30-Jan-21 18:16	02-Feb-21 09:31
ES-13_013021_ABD_13_BL	1B00003-28	Tissue	30-Jan-21 18:25	02-Feb-21 09:31
ES-13_013021_ABD_14_BL	1B00003-29	Tissue	30-Jan-21 18:36	02-Feb-21 09:31
ES-13_013021_ABD_15_BL	1B00003-30	Tissue	30-Jan-21 18:45	02-Feb-21 09:31
FRB-02_012621_ABD_01_BL	1B00003-31	Tissue	26-Jan-21 10:45	02-Feb-21 09:31
FRB-02_012621_ABD_02_BL	1B00003-32	Tissue	26-Jan-21 11:15	02-Feb-21 09:31
FRB-02_012721_ABD_03_BL	1B00003-33	Tissue	27-Jan-21 12:20	02-Feb-21 09:31
FRB-02_012721_ABD_04_BL	1B00003-34	Tissue	27-Jan-21 12:40	02-Feb-21 09:31
FRB-02_012721_ABD_05_BL	1B00003-35	Tissue	27-Jan-21 12:55	02-Feb-21 09:31
EB_CAPILLARY_013021_ABD_QC	1B00003-36	Tissue	30-Jan-21 18:50	02-Feb-21 09:31
CORN_012521_ABD-BAIT	1B00003-37	Tissue	25-Jan-21 13:30	02-Feb-21 09:31

Eurofins Frontier Global Sciences, LLC

atuk Atulha

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Wood - MA	Project: Penobscot	
271 Mill Road	Project Number: 3617207486.04	Reported:
Chelmsford MA, 01824	Project Manager: Rod Pendleton	16-Mar-21 11:55

SAMPLE RECEIPT

Samples were received at Eurofins Frontier Global Sciences (EFGS) on 02-Feb-21 09:31. The samples were received intact, on-ice within a sealed cooler at

CoolerTemp C°Default Cooler-53.0

SAMPLE PREPARATION AND ANALYSIS

Tissue samples were homogenized per EFGS SOP5141 prior to digestion.

Total mercury preparation and analysis was performed by flow injection atomic fluorescence spectrometry (FI-AFS) in accordance with EPA 1631B (EFGS SOP2822).

ANALYTICAL AND QUALITY CONTROL ISSUES

Method blanks were prepared for every preparation to assess possible blank contribution from the sample preparation procedure. The method blanks were carried through the entire analytical procedure. All blanks fell within the established acceptance criteria with the exception of any items narrated above or flagged and described in the notes and definitions section of the report.

Liquid spikes, certified reference material (CRM) or a quality control samples (QCS) were prepared for every preparation as a measure of accuracy. All liquid spikes, CRMs and/or QCS samples fell within the established acceptance criteria with the exception of any items narrated above or flagged and described in the notes and definitions section of the report.

As an additional measure of the accuracy of the methods used and to check for matrix interference, matrix spikes (MS) and matrix spike duplicates (MSD) were digested and analyzed. All of the matrix spike recoveries fell within the established acceptance criteria with the exception of any items flagged and described in the notes and definitions section of the report.

A reasonable measure of the precision of the analytical methods is the relative percent difference (RPD) between a matrix spike recovery and a matrix spike duplicate recovery and between laboratory control sample recovery and laboratory control sample duplicate recoveries. All of the relative percent differences established acceptance criteria with the exception of any items flagged and described in the notes and definitions section of the report.

Eurofins Frontier Global Sciences, LLC

stuk Stullie

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Wood - MA	Project:	Penobscot	
271 Mill Road	Project Number:	3617207486.04	Reported:
Chelmsford MA, 01824	Project Manager:	Rod Pendleton	16-Mar-21 11:55

Eurofins Frontier Global Sciences, LLC

atuk Stullind

Sample Receipt Checklist

Client: Wood Matrix: Trssue	C Blood	3	Date & Time	Received: <u>093</u> 2/2/2	Date Labeled: Labeled By Labeled By: Date Labeled: Labeled By:
# of Coolers Received Coolant: □ None/A Notify Project Manage Samples from Wiscons	: Ambient er if packag sin have sp	Samples Arrived By	y:Shipping Service e	Courier Hand Required: ②/ N Ten ed coolant and at a temper les from Wisconsin: Y/N	Other (Specify:) np Blank Used: VN for Cooler(s): ature in excess of 6°C. PM notified: Y/N
Cooler Information: The coolers do not appear to Custody Seals are present ar Custody seals signed:	be tampere nd intact:	d with:	Comments	TID: B B 78/7 CF: O. Cooler 1: -50°C w/0 W/0 W/0 Cooler 2: °C w/0 W/0 W/0 Cooler 3: °C w/0 W/0 W/0 W/0	3 °C Date/time:2/2/2/2 (C146 By: fm CF:
Chain of Custody: Sample ID/Description: Date and time of collection: Sampled by: Preservation type: Requested analyses: Required signatures: Internal COC required:	Y/N/NA 7 7 7 7 <i>N</i>	Comments	Sample Condition Sample contained Sample contained Sample labels are Sample ID on cont Correct sample cont Samples received Sample volume su Correct preservat	n/Integrity: rs intact/present: e present and legible: tainer/bag matches COC: ontainers used: within holding times: ufficient for requested analyses: ive used for requested analyses:	Y/N/NA Comments 1800007 15 N 1800003 -DA4_ 1800003 -11.44. Y
Anomalies/Non-conforma	inces (attac	n additional pages if needed			1B00003

	wood,	Wood E&IS 511 Congress Street Portland, ME 04101 (207) 828-3367	SHIF Euro 5755 Tacc Atter Lab			P TO; 5 fins 5 8th St E oma, WA, 98424 n: P. Garcia-Strickland Phone# 206-351-9522			CH CU	AIN ST(I OF ODY	DATE:2/1/2021 COC #: PAGE:1OF						
	Project Name:	Penobscot River 2020	Project Con	nact	Denis	se King		E	Sill To	Deni	se King, Wood E&IS	Disposal Insl	luction	\$	LAB			
	Project Number	3617207485 04 ****	Phone Num	iber	508-7	789-1738				2711	Vill Rd	Shipment Me	ethod		FEDE	EX		
			IProject Pha		BIOTA	Monton	ng			Chel	msford, MA 01824	Waybill Num	ber		N/A			
Sample	Information	··· ,		-		+			Me	thods f	for Analysis			RU	SH .	<u> </u>		
No. 1 MA 2 MA	Sample ID ABKD-01_012521_ABD_01_BL ABKD-01_012521_ABD_02_BL	Date & Time Sampled 01/25/2021, 0951 01/25/2021, 1008	Matrix BL BL	Sample Type N	DSW/SW Z Z	× × Total Hg 1631e							X X SYANDARD - 21 days	48 Hour	72 Houri 6 Dave	HOLD AII ANBIYSes		
3 MN	ABKD-01_012521_ABD_03_BL	01/25/2021, 1030	BL	N	Ν	X							Тx			1		
4 MN	ABKD-01_012521_ABD_04_BL	01/25/2021, 1040	BL	N	Ν	X				T			X			1		
5 M.N	ABKD-01_012521_ABD_05_BL	01/25/2021, 1051	BL	N	N	X							X			1		
6 MN	NBKD-01_012521_ABD_06_BL	01/25/2021, 1107	BL	N	N	X				1			X			1		
7 MN	BKD-01_012521_ABD_07_BL	01/25/2021, 1120	BL	N	У	X							X					
8 M.N	BKD-01_012521_ABD_08_BL	01/25/2021, 1130	BL	N	N	X							X	f=t				
9 MM	BKD-01_012521_ABD_09_BL	01/25/2021, 1138	BL	N	N	X			1-1-				X					
10 MM	BKD-01_012521_ABD_10_BL	01/25/2021, 1145	BL	N	N	X							X					
11 MM	BKD-01_012521_ABD_11_BL	01/25/2021, 1154	BL	N	N	X							X					
12 MM	BKD-01_012521_ABD_12_BL	01/25/2021, 1204	BL	N	N	X						16	X	-+	• • • • • •			
Sampler' Relinquis	s Signature:		Date: 2/1/202 Date: 10	Time: 1230)	Does (Broker	F COC match Container	For Lab Us samples: r:	ie Y Y	or N or N	Comments: X=Analyze H=Hold	Analysis Requ	lest					
Received	IBY: FEDEX	GER HARD	2 ZoZ Date: 2 1 ZoZ	Time: 1230	۵ ۵	COC s Other	eal intact: problems: T contacte	ed-	Y	orN orN	PO # C012906205							
Relinquis	shed By/Affiliation:		Date:	Time:		Date c	ontacted:				All samples frozen price Extra volume for MS/N	or to and during sh ISD samples	ipment					
Relinquis	shed By/Affillation:		Date:	Time:		Cooler		ure at recei	pr:	°C	NUMBER OF COO	LERS SENT:	1					
Received	By (LAB):	2	Date: $(2/2)$	Time: 0931														

7832-5141-0953

Page 7 of 93

wood.		Wood E&IS 511 Congress Street Portland, ME 04101 (207) 828-3367				iHIP TO: urofins i755 8th St E acoma, WA, 98424 uten: P. Garcia-Strickland .ab Phone# 206-351-8522			CHAIN OF CUSTODY						DATE: 2/1 COC #: PAGE: 2					
	Project Name:	Penobscot River 2020	Project Cor	ntact	Denis	se King			Bill To		Denis	e King, Wood	Eals	Disp	osai Instru	uction	s:	LAB		
	Project Number	3617207486.04 ****	Phone Nun	nber	508-7	89-173	8				271 M	a Rd		Ship	ment Met	hod		FED	EX	
-	Project Manager	Rod Pendenon	Project Pha	ase	Biota	Moniton	ing				Chein	sford, MA 018	24	Way	bill Numbe	er		N/A		
Sa	ample Information	<u>.</u>	<u> </u>							Meth	ods fo	or Analysis				—	RU	ISH		4
No 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sample ID 1 MMBKD-01_012521_ABD_13_BL 2 MMBKD-01_012521_ABD_14_BL 3 MMBKD-01_012521_ABD_15_BL 4 ES-13_013021_ABD_01_BL 5 ES-13_013021_ABD_02_BL 6 ES-13_013021_ABD_03_BL 7 ES-13_013021_ABD_04_BL 8 ES-13_013021_ABD_05_BL 9 ES-13_013021_ABD_06_BL	Date & Time Sampled 01/25/2021, 1217 01/25/2021, 1228 01/25/2021, 1233 01/30/2021, 1634 01/30/2021, 1654 01/30/2021, 1704 01/30/2021, 1714 01/30/2021, 1722 01/30/2021, 1729	Matrix BL BL BL BL BL BL BL BL BL BL BL	Sample Typ N N N N N N N N N N N N	GSWISW Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	X X X X X X X X X X Total Hg 1631e										X X X X X X X X X X STANDARD - 21 days	48 Hour	72 Hour A.Cove	L LOLAT CONTAINERS	PTULU AU ANRIYSES
11	ES-13_013021_ABD_08_BL	01/30/2021, 1740	BL	N	N	X					i			1	N	X			1	1
12	ES-13_013021_ABD_09_BL	01/30/2021, 1752	BL.	N	N	XI									16	X			1	1
Sar	mpler's Signature:		Date:	Time:	20			For Lab L	Jse											1
Rel	Inquished By/Affiliation: WICO E+IS - TON	1 LDEHARD	Date: Z 1 202	Time:	230	Broker COC s	COC ma n Contair seal intac	tch samples her: :t:	i.	Yor Yor Yor	N N N	Comments X=Analyze	: H=Hold /	Analysi	s Reque	st				
Kec	FEDEX		Date:	Time:	36	Other	problems	S: cted:		Yor	N	PO # C012	906205							Ł
Rel	inquished By/Affiliation:		Date:	Time:		Date c	ontacted			. 0		All samples fr Extra volume	ozen prior for MS/MS	to and d SD samp	uring ship ies	ment.				
Reli	inquished By/Affiliation:	2/	Date:	Time:		Gooler	rempen	ature at rec	eipt: -		_°C	NUMBER O	F COOL	ERS SE	<u>NT: 1</u>					

۲	Wood E&IS 511 Congress Street Portland, ME 04101 (207) 828-3367			SHIP T Eurofin 5755 8i Tacom Atten: F Lab Ph				TO: ins CHA Bth St E ma, WA, 98424 P. Garcia-Strickland Phone# 206-351-9522				N OF COC ODY PAG					.TE: <u>2/1/2021</u> C #: GE: <u>3</u> OF <u>4</u>			
	Project Name:	Penabscot River 2020	Project Co	ntact	Dena	e King			Вні То	Den	se King, Wo	od E&JS		Disposal Inst	tructio	ns	LAF	à		
	Project Number	3617207486.04 ****	Phone Nur	nber	508-7	89-1738	3			271	All Rd.			Shipment Me	sthod		FED	DEX		
	Project Manager	Rod Pendelton	Project Ph	Project Phase Bio		Moniton	ng			Chel	nsford, MA	01824	1	Waybill Num	ber		N/A			
Samp	le Information				_	+				lethods (or Analysis				—	R	ŪSH	<u> </u>		
No. 1 E 2 E 3 E 6 E 7 F 8 F 9 F	Sample ID 5-13_013021_ABD_10_BL 5-13_013021_ABD_11_BL 5-13_013021_ABD_12_BL 5-13_013021_ABD_13_BL 5-13_013021_ABD_14_BL 5-13_013021_ABD_15_BL RB-02_012621_ABD_01_BL RB-02_012621_ABD_02_BL RB-02_012721_ABD_03_BL	Date & Time Sampled 01/30/2021, 1758 01/30/2021, 1806 01/30/2021, 1816 01/30/2021, 1825 01/30/2021, 1836 01/30/2021, 1845 01/26/2021, 1045 01/26/2021, 1115 01/27/2021, 1220	Matrix BL BL BL BL BL BL BL BL BL	Sample Type N N N N N N N N N N N N N N N N		X X X X X X X X X Total Hg 1631e									X X X X X X X X X X X X X X X X X X X	448 Hour	12 Hour	5 Days 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	sesting and the second	
	RB-02_012721_ABD_04_BL	01/2//2021,1240	BL.	N	N	X				_					X			1		
12 5	RB-02_012721_ABD_00_BL	01/2//2021,1255	BL	N	N	X								19	X			1		
Sample	er's Signature:	01/30/2021, 1890	AQ	Time	N	XA	dd DI d	at lab to) make	blank					X			1		
- mpr	XoC		2/1/262	123	0	Does (COC mate	h samples:	se Y	or N	Comme	nts:							—	
Relinq	ulshed By/Affiliation:	hannal	Date:	Time: 172	40	Broker	Containe	er:	Y	or N	X=Analy	ze H=Ho	d Ana	lysis Requ	iest				1	
Receiv	ed By:	OERHAHRA	2 1 2 4	L 147	<u> </u>	COC s	eal intact:		Y	or N			_							
	FEDEX		2/1/20	21 123	0	WSDO	problems:)T contact	ed:	Y	or N or N	PO # CO	1290620	15							
Relinquished By/Affiliation:			Date:	Time:		Date c	ontacted:		•		All sample	s frozen p	rior to a	nd during sh	ipmen	t.				
Received By:			Doto	Times		Cashar	T				Extra volu	Extra volume for MS/MSD samples								
	tacerreu by:			• mile);		Cooler	remperat	ure at rece	abc —	°C	NUMBE	R OF CO	ÓLERS	SENT:	1					
Relinqu	Ished By/Affiliation:		Date:	Time:		1					1. sense		w inter Wg	- white is	<u> </u>				-	
Rocaive	ed By (LAB)-		Data	Time		-														
1200111	m	0		C.92/																

wood.	Wood E&IS 511 Congress Street Portland, ME 04101 (207) 828-3367		SHIP Eurofi 5755 Tacor Atten: Lab P	TO: ins 8th St E na, WA, 98424 P. Garcia-Strickland hone# 206-351-9522	CHAIN	I OF ODY	DATI COC PAGI	E: 2/1/2021 #: E: 4OF4		
Project Nam	e: Penobscot River 2020	Project Contact:	Denis	e King	Bill To: Deni	se King, Wood E&IS	Disposal Instruction	ns. LAB		
Project Number	r: 3617297486.04 ****	Phone Number	508-7	89-1738	271	Mill Rd	Shipment Method	FED EX		
Project Manage	r: Rod Pendelton	Project Phase	Biota	Monitoring	Chel	msford, MA 01824	Waybil Number	N/A		
Sample Information					Methods	for Analysis	T	RUSH		
No. Sample ID 1 CORN_012521_ABD_BAIT 2 3 3 4 5 6 7	Date & Time Sampled 01/25/2021, 1330	Matrix Sample Ty SOLID QC	CSW/SW N	× Total Hg 1631e			STANDARD 24 closes	48 Hour 72 Hour 72 Hour 72 Hour 10 TAL CONTAINERS HOLD All Arraiyses		
8										
9										
10										
11							+77			
12 Sampler's Signature: Relinquished By/Affiliation: Woot) E+15 - T Received By: FED EX	Date; 7 Ime; 2/1/2°21 12 Date; Time; 2/1/2°21 12 Date; Time; 2/1/2°21 12 Date; Time; 2/1/2°21 12	30 39	For Le Does COC match sam Broken Container: COC seal intact: Other problems: WSDOT contacted:	ab Use ples: Y or N Y or N Y or N Y or N Y or N Y or N	Comments: X=Analyze H=Hold PO # C012906205	old Analysis Request				
Relinquished By/Affiliation:	Date: Time:		Date contacted: Cooler Temperature at	receipt:°C	All samples frozen prio Extra volume for MS/M	r to and during shipmer ISD samples _ERS SENT: 1				
Received By (LAB):	2	Date: Time: 2/2(213)	_		<u></u>					

Mercury

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Frontier Global Sciences

804

11.2

100

Wood - MA 271 Mill Road Chelmsford MA, 01824	Project: Penobscot Project Number: 3617207486.04 Project Manager: Rod Pendleton									Reported: 16-Mar-21 11:55		
MMBKD-01_012521_ABD_01_BL 1B00003-01												
Analyte Sample Preparation: EPA 1631B	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes	

ng/g

2500

F102329 18-Feb-21

1C05005

04-Mar-21

EPA 1631B

Eurofins Frontier Global Sciences, LLC

atuk Stullind

٦

Frontier Global Sciences

Wood - MA												
271 Mill Road			Project N	umber:	361720748	6.04				Reported	:	
Chelmsford MA, 01824	Project Manager: Rod Pendleton										1:55	
		M	MBKD-0	1_0125	521_ABE	02_BL	,					
1B00003-02												
Analyte	Pecult	Detection	Reporting	Units	Dilution	Datah	Prepared	Sequence	Analyzed	Method	Notes	
Sample Propagation: EDA 1631D	Kesun	Linint	Linit		Dilution	Daten	Tiepareu		1 11111 / 200		1.000	
Sample Freparation: EFA 1051B												
Mercury	385	11.2	100	ng/g	2500	F102329	18-Feb-21	1C05005	04-Mar-21	EPA 1631B		

Eurofins Frontier Global Sciences, LLC

atuk Stullind

٦

Frontier Global Sciences

Wood - MA												
271 Mill Road			Project N	umber:	361720748	6.04				Reported	:	
Chelmsford MA, 01824	Project Manager: Rod Pendleton										1:55	
		M	MBKD-0	1_0125	521_ABI)_03_BL	ı					
1B00003-03												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes	
Sample Preparation: EPA 1631B							-					
Mercury	795	11.2	100	ng/g	2500	F102329	18-Feb-21	1C05005	04-Mar-21	EPA 1631B		

Eurofins Frontier Global Sciences, LLC

atuk Stullind

٦

Frontier Global Sciences

Wood - MA												
271 Mill Road			Project N	umber:	361720748	6.04				Reported	:	
Chelmsford MA, 01824		16-Mar-21 1	1:55									
		M	MBKD-0	1_0125	521_ABE	04_BL	,					
1B00003-04												
		Detection	Reporting	T T 1 .				0				
Analyte	Result	Limit	Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes	
Sample Preparation: EPA 1631B												
Mercury	404	11.2	100	ng/g	2500	F102329	18-Feb-21	1C05005	04-Mar-21	EPA 1631B		

Eurofins Frontier Global Sciences, LLC

atuk Stullind

٦

Frontier Global Sciences

Wood - MA												
2/1 Mill Road			Project Ni	umber:	361/20/48	6.04				Reported		
Chelmsford MA, 01824	Project Manager: Rod Pendleton										:55	
		M	MBKD-0	1_0125	521_ABI	05_BL	I					
1B00003-05												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes	
Sample Preparation: EPA 1631B												
Mercury	592	11.2	100	ng/g	2500	F102329	18-Feb-21	1C05005	04-Mar-21	EPA 1631B		

Eurofins Frontier Global Sciences, LLC

atuk Stulla

٦

Frontier Global Sciences

Wood - MA												
271 Mill Road			Project N	umber:	361720748	6.04				Reported		
Chelmsford MA, 01824	Project Manager: Rod Pendleton										1:55	
		MN	MBKD-0	1_0125	521_ABE)_06_BL	I.					
1B00003-06												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes	
Sample Preparation: EPA 1631B												
Mercury	236	11.2	100	ng/g	2500	F102329	18-Feb-21	1C05005	04-Mar-21	EPA 1631B		

Eurofins Frontier Global Sciences, LLC

atuk Stulla

٦

Frontier Global Sciences

Wood - MA												
271 Mill Road			Project N	umber:	361720748	36.04				Reported	:	
Chelmsford MA, 01824	Project Manager: Rod Pendleton										1:55	
		M	MBKD-0	1_0125	521_ABI	D_07_BL						
1B00003-07												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes	
Sample Preparation: EPA 1631B												
Mercury	223	11.2	100	ng/g	2500	F102329	18-Feb-21	1C05005	04-Mar-21	EPA 1631B		

Eurofins Frontier Global Sciences, LLC

atuk Stullind

٦

Frontier Global Sciences

Wood - MA	MA Project: Penobscot											
271 Mill Road			Project N	umber:	361720748	6.04				Reported	:	
Chelmsford MA, 01824			Project Ma	anager:	Rod Pendle	eton				16-Mar-21 1	1:55	
		M	MBKD-0	1_0125	521_ABE	08_BL	ı					
1B00003-08												
Analyte	Decult	Detection	Reporting	Units	Dilution	Detal	Proporad	Sequence	Analyzed	Method	Notes	
	Kesuit	Limit	Limit	omo	Dilution	Batch	riepaieu	Bequence	7 mary 200	Wiethou	Holes	
Sample Preparation: EPA 1631B												
Mercury	290	11.2	100	ng/g	2500	F102329	18-Feb-21	1C05005	04-Mar-21	EPA 1631B		

Eurofins Frontier Global Sciences, LLC

atuk Stullind

٦

Frontier Global Sciences

Wood - MA											
271 Mill Road			Project N	umber:	361720748	6.04				Reported	:
Chelmsford MA, 01824			Project Ma	anager:	Rod Pendle	eton				16-Mar-21 11:55	
		M	MBKD-0	1_0125	521_ABE)_09_BL	ı				
				1B000	03-09						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	434	11.2	100	ng/g	2500	F102329	18-Feb-21	1C05005	04-Mar-21	EPA 1631B	

Eurofins Frontier Global Sciences, LLC

atuk Stullind

٦

Frontier Global Sciences

Wood - MA											
271 Mill Road			Project N	umber:	361720748	6.04				Reported:	
Chelmsford MA, 01824			Project Ma	inager:	Rod Pendle	eton				16-Mar-21 11:55	
		M	MBKD-0	1_0125	521_ABE)_10_BL	I				
				1B000	03-10						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	551	11.2	100	ng/g	2500	F102329	18-Feb-21	1C05005	04-Mar-21	EPA 1631B	

Eurofins Frontier Global Sciences, LLC

atuk Stulla

٦

Frontier Global Sciences

Wood - MA	ood - MA Project: Penobscot											
271 Mill Road			Project N	umber:	361720748	6.04				Reported	:	
Chelmsford MA, 01824			Project Ma	anager:	Rod Pendle	eton				16-Mar-21 11:55		
		M	MBKD-0	1_0125	521_ABI)_11_BL						
				1 B 000	03-11							
Analyte	Dagult	Detection	Reporting	Units	Dilution	Detel	Proporad	Sequence	Analyzed	Method	Notes	
Tildyte	Kesuit	Limit	Limit	onito	Dilution	Batch	riepaieu	Bequence	7 mary 2ed	Wethod	Notes	
Sample Preparation: EPA 1631B												
Mercury	255	11.2	100	ng/g	2500	F102329	18-Feb-21	1C05005	04-Mar-21	EPA 1631B		

Eurofins Frontier Global Sciences, LLC

atuk Stullind

٦

Frontier Global Sciences

Wood - MA	Project: Penobscot											
271 Mill Road			Project N	umber:	361720748	6.04				Reported		
Chelmsford MA, 01824			Project Ma	anager:	Rod Pendle	eton				16-Mar-21 11:55		
		M	MBKD-0	1_0125	521_ABE)_12_BL	r.					
				1 B 000	03-12							
Analyte	Pogult	Detection	Reporting	Units	Dilution	Datah	Prepared	Sequence	Analyzed	Method	Notes	
Tildyte	Kesuit	Limit	Limit	onito	Dilution	Batch	riepaieu	Bequence	7 mary 200	Wiethod	Notes	
Sample Preparation: EPA 1631B												
Mercury	390	11.2	100	ng/g	2500	F102329	18-Feb-21	1C05005	04-Mar-21	EPA 1631B		

Eurofins Frontier Global Sciences, LLC

atuk Stullind

٦

Frontier Global Sciences

Wood - MA 271 Mill Road	Project: Penobscot Project Number: 3617207486.04											
Chelmsford MA, 01824			Project Ma	anager: 1	Rod Pendle	eton				16-Mar-21 1	1:55	
		M	MBKD-0	1_0125	521_ABI)_13_BL	1					
				1B000	03-13							
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes	
Sample Preparation: EPA 1631B												
Mercury	271	11.2	100	ng/g	2500	F102329	18-Feb-21	1C05005	04-Mar-21	EPA 1631B		

Eurofins Frontier Global Sciences, LLC

atuk Stullind

٦

Frontier Global Sciences

Wood - MA											
271 Mill Road			Project N	umber:	361720748	36.04				Reported	
Chelmsford MA, 01824			Project Ma	anager:	Rod Pendle	eton				16-Mar-21 1	1:55
		M	MBKD-0	1_0125	521_ABE	D_14_BL					
				1 B000	03-14						
		Detection	Reporting					_			
Analyte	Result	Limit	Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	232	11.2	100	ng/g	2500	F102329	18-Feb-21	1C05005	04-Mar-21	EPA 1631B	

Eurofins Frontier Global Sciences, LLC

atuk Stullind

٦

Frontier Global Sciences

Wood - MA	d - MA Project: Penobscot												
271 Mill Road			Project N	umber:	361720748	6.04				Reported	:		
Chelmsford MA, 01824			Project Ma	anager:	Rod Pendle	eton				16-Mar-21 11:55			
		M	MBKD-0	1_0125	521_ABE)_15_BL	,						
				1B000	03-15								
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes		
Sample Preparation: EPA 1631B													
Mercury	281	11.2	100	ng/g	2500	F102329	18-Feb-21	1C05005	04-Mar-21	EPA 1631B			

Eurofins Frontier Global Sciences, LLC

atuk Stullind

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824		Reported: 16-Mar-21 11:55									
			ES-13_0	13021_ 1B000	_ABD_0 03-16	1_BL					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	50.0	4.48	40.0	ng/g	1000	F102329	18-Feb-21	1C05005	04-Mar-21	EPA 1631B	

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824		Reported: 16-Mar-21 11:55									
			ES-13_0	13021_ 1B000	_ABD_02 03-17	2_BL					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	198	11.2	100	ng/g	2500	F102329	18-Feb-21	1C05005	04-Mar-21	EPA 1631B	

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824		Reported: 16-Mar-21 11	:55								
			ES-13_0	13021_ 1B000	_ABD_0. 03-18	3_BL					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B	ND		40.0		1000	E102220	10 5 1 01			ED4 1/21D	

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Patrick Garcia-Strickland, Business Unit Manager

٦

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824		Reported 16-Mar-21 1	: 1:55								
			ES-13_0	13021 <u></u> 1B000	_ABD_04 03-19	4_BL					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B Mercury	353	11.2	100	ng/g	2500	F102329	18-Feb-21	1C05005	04-Mar-21	EPA 1631B	

Eurofins Frontier Global Sciences, LLC

atuk Stulla

٦

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824		Reported: 16-Mar-21 11:55									
			ES-13_0	13021_ 1B000	_ABD_0: 03-20	5_BL					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	180	9.68	86.4	ng/g	2500	F102336	22-Feb-21	1B25008	24-Feb-21	EPA 1631B	

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824		Reported: 16-Mar-21 11	:55								
			ES-13_0	13021 1B000	_ABD_0 03-21	6_BL					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	360	13.3	119	ng/g	2500	F102336	22-Feb-21	1B25008	24-Feb-21	EPA 1631B	

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824		Reported: 16-Mar-21 11:55									
			ES-13_0	13021 <u></u> 1B000	_ABD_0' 03-22	7_BL					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	366	12.6	112	ng/g	2500	F102336	22-Feb-21	1B25008	24-Feb-21	EPA 1631B	

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824		Reported: 16-Mar-21 11:55									
			ES-13_0	13021 <u></u> 1B000	_ABD_08 03-23	8_BL					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	291	16.4	146	ng/g	2500	F102336	22-Feb-21	1B25008	24-Feb-21	EPA 1631B	

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824		Reported: 16-Mar-21 11	:55								
			ES-13_0	13021_ 1B000	_ABD_09 03-24	9_BL					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	176	16.3	146	ng/g	2500	F102336	22-Feb-21	1B25008	24-Feb-21	EPA 1631B	

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Patrick Garcia-Strickland, Business Unit Manager

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824		Reported: 16-Mar-21 11	:55								
			ES-13_0	13021_ 1B000	_ABD_1(03-25	0_BL					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	216	8.99	80.2	ng/g	2500	F102336	22-Feb-21	1B25008	24-Feb-21	EPA 1631B	

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Patrick Garcia-Strickland, Business Unit Manager

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824		Reported: 16-Mar-21 11:55									
			ES-13_0)13021_ 1B000	_ABD_11 03-26	1_BL					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	172	12.8	115	ng/g	2500	F102336	22-Feb-21	1B25008	24-Feb-21	EPA 1631B	

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Patrick Garcia-Strickland, Business Unit Manager

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824		Reported: 16-Mar-21 11	:55								
			ES-13_0	13021_ 1B000	_ABD_12 03-27	2_BL					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	99.4	12.4	111	ng/g	2500	F102336	22-Feb-21	1B25008	24-Feb-21	EPA 1631B	J

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Patrick Garcia-Strickland, Business Unit Manager

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824		Reported: 16-Mar-21 11:55									
			ES-13_0	13021 <u></u> 1B000	_ABD_13 03-28	3_BL					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	161	18.1	161	ng/g	2500	F102336	22-Feb-21	1B25008	24-Feb-21	EPA 1631B	

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824		Reported: 16-Mar-21 11:55									
			ES-13_0	13021_ 1B000	_ABD_14 03-29	4_BL					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	237	9.96	89.0	ng/g	2500	F102336	22-Feb-21	1B25008	24-Feb-21	EPA 1631B	

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824		Reported: 16-Mar-21 11	:55								
			ES-13_0	13021_ 1B000	_ABD_1: 03-30	5_BL					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	289	14.3	128	ng/g	2500	F102336	22-Feb-21	1B25008	24-Feb-21	EPA 1631B	

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824		Reported: 16-Mar-21 11	:55								
]	FRB-02_	012621 1B000	I_ABD_(03-31)1_BL					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	99.8	19.0	170	ng/g	2500	F102336	22-Feb-21	1B25008	24-Feb-21	EPA 1631B	J

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824	Project: Penobscot Project Number: 3617207486.04 Project Manager: Rod Pendleton												
]	FRB-02_	012621 1B000	ABD_(03-32	02_BL							
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes		
Sample Preparation: EPA 1631B	58.4	7.97	71.2	ng/g	2500	F102336	22 Feb 21	1825008	24 Feb 21	EDA 1621D	T		

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Patrick Garcia-Strickland, Business Unit Manager

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824	Project: Penobscot Project Number: 3617207486.04 Project Manager: Rod Pendleton												
]	FRB-02_	012721 1B000	I_ABD_(03-33)3_BL							
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes		
Sample Preparation: EPA 1631B													
Mercury	75.8	11.3	101	ng/g	2500	F102336	22-Feb-21	1B25008	24-Feb-21	EPA 1631B	J		

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Patrick Garcia-Strickland, Business Unit Manager

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824	Project: Penobscot Project Number: 3617207486.04 Project Manager: Rod Pendleton												
]	FRB-02_	012721 1B000	I_ABD_(03-34)4_BL							
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes		
Sample Preparation: EPA 1631B													
Mercury	69.5	22.2	198	ng/g	2500	F102336	22-Feb-21	1B25008	24-Feb-21	EPA 1631B	J		

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824	Project: Penobscot Project Number: 3617207486.04 Project Manager: Rod Pendleton												
]	FRB-02_	012721 1B000	1_ABD_(03-35)5_BL							
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes		
Sample Preparation: EPA 1631B													
Mercury	87.7	26.2	234	ng/g	2500	F102336	22-Feb-21	1B25008	24-Feb-21	EPA 1631B	J		

Eurofins Frontier Global Sciences, LLC

atuk Stulla

Patrick Garcia-Strickland, Business Unit Manager

٦

Frontier Global Sciences

Wood - MA			F	roject:	Penobscot						
271 Mill Road			Project N	umber:	361720748	6.04				Reported:	
Chelmsford MA, 01824			Project Ma	anager:	Rod Pendle	eton				16-Mar-21 11	:55
		EB_	CAPILL	ARY_	013021	ABD_Q	С				
				1B000	03-36						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes
Sample Preparation: EPA 1631B											
Mercury	ND	11.2	99.9	ng/g	2500	F102336	22-Feb-21	1B25008	24-Feb-21	EPA 1631B	U

Eurofins Frontier Global Sciences, LLC

stuk Stulla

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824	Project: Penobscot Project Number: 3617207486.04 Project Manager: Rod Pendleton												
			CORN_	012521 1B000	1_ABD-I 03-37	BAIT							
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Batch	Prepared	Sequence	Analyzed	Method	Notes		
Sample Preparation: EPA 1631B Mercury	ND	4.48	40.0	ng/g	1000	F102329	18-Feb-21	1C05005	04-Mar-21	EPA 1631B	U		

Eurofins Frontier Global Sciences, LLC

atuk Stullia

Frontier Global Sciences

Wood - MA	Project: Penobscot	
271 Mill Road	Project Number: 3617207486.04	Reported:
Chelmsford MA, 01824	Project Manager: Rod Pendleton	16-Mar-21 11:55

Quality Control Data

Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1B25008 - F102336											
Cal Standard (1B25008-CAL1)					Prepared &	z Analyzed:	24-Feb-21				
Mercury	0.615	-		ng/L	0.50000		123				
Cal Standard (1B25008-CAL2)					Prepared &	Analyzed:	24-Feb-21				
Mercury	1.048	-		ng/L	1.0000		105				
Cal Standard (1B25008-CAL3)					Prepared &	Analyzed:	24-Feb-21				
Mercury	4.535	-		ng/L	5.0000		90.7				
Cal Standard (1B25008-CAL4)					Prepared &	Analyzed:	24-Feb-21				
Mercury	18.08	-		ng/L	20.000		90.4				
Cal Standard (1B25008-CAL5)					Prepared &	Analyzed:	24-Feb-21				
Mercury	36.46	-		ng/L	40.000		91.1				
Calibration Blank (1B25008-CCB1)					Prepared &	Analyzed:	24-Feb-21				
Mercury	0.204	-		ng/L							
Calibration Blank (1B25008-CCB2)					Prepared &	Analyzed:	24-Feb-21				
Mercury	0.250	-		ng/L							
Calibration Blank (1B25008-CCB3)					Prepared &	Analyzed:	24-Feb-21				
Mercury	0.029	-		ng/L							
Calibration Blank (1B25008-CCB4)					Prepared &	Analyzed:	24-Feb-21				
Mercury	0.002	-		ng/L							
Calibration Blank (1B25008-CCB5)					Prepared &	z Analyzed:	24-Feb-21				
Mercury	0.009	-		ng/L	-						

Eurofins Frontier Global Sciences, LLC

atuk Stullind

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Frontier Global Sciences

Wood - MA			Pro	ject: Per	nobscot						
271 Mill Road	Project Number: Reported: Reported: Reported: Reported: Jested Number: Site Project Number: Site Project Manager: Reported: Id-Mar-21 II.55 Jested Number: Site Project Manager: Site Number: Site				ed:						
Chelmsford MA, 01824		1	Project Mana	ager: Ro	d Pendleton					16-Mar-21	11:55
			Quality	y Cont	rol Data						
Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1B25008 - F102336											
Calibration Blank (1B25008-CCB6)					Prepared &	& Analyzed:	24-Feb-21				
Mercury	0.186 - ng/L (1B25008-CCB7) Prepared & Analyzed: 24-Feb-21										
Calibration Blank (1B25008-CCB7)					Prepared &	& Analyzed:	24-Feb-21				
Mercury	-0.053	-		ng/L							U
Calibration Check (1B25008-CCV1)					Prepared &	& Analyzed:	24-Feb-21				
Mercury	4.410	-		ng/L	4.9950		88.3	77-123			
Calibration Check (1B25008-CCV2)					Prepared &	& Analyzed:	24-Feb-21				
Mercury	4.466	-		ng/L	4.9950		89.4	77-123			
Calibration Check (1B25008-CCV3)					Prepared &	& Analyzed:	24-Feb-21				
Mercury	4.275	-		ng/L	4.9950		85.6	77-123			
Calibration Check (1B25008-CCV4)					Prepared &	& Analyzed:	24-Feb-21				
Mercury	4.152	-		ng/L	4.9950		83.1	77-123			
Calibration Check (1B25008-CCV5)					Prepared &	& Analyzed:	24-Feb-21				
Mercury	4.118	-		ng/L	4.9950		82.4	77-123			
Calibration Check (1B25008-CCV6)					Prepared &	& Analyzed:	24-Feb-21				
Mercury	3.896	-		ng/L	4.9950		78.0	77-123			
Calibration Check (1B25008-CCV7)					Prepared &	& Analyzed:	24-Feb-21				
Mercury	4.033	-		ng/L	4.9950	-	80.7	77-123			
Instrument Blank (1B25008-IBL1)					Prepared &	& Analyzed:	24-Feb-21				
Mercury	ND	0.004	0.040	ng/L							U

Eurofins Frontier Global Sciences, LLC

atuk Stullind

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Frontier Global Sciences

Wood - MA			Pro	ject: Per	nobscot									
271 Mill Road			Project Nun	nber: 36	17207486.04	Ļ				Report	ed:			
Chelmsford MA, 01824	Project: Penobscot Reported: Project Number: 3617207486.04 Reported: Ide-Mar-21 11:55 Quality Control Data Outling Control Data Detection Reporting Spike Source %REC RPD Limit Limit Units Level Result %REC RPD Limit Units Level %REC Limit NN 2336 Sou8-IBL2) Prepared & Analyzed: 24-Feb-21 ND 0.004 ng/L Sou8-IGL1) Prepared & Analyzed: 24-Feb-21 0.239 ng/L Prepared & Analyzed: 24-Feb-21 0.239 ng/L Prepared & Analyzed: 24-Feb-21 0.239 ng/L ND ng/L ND Sou8-ICV1) <th colspa<="" th=""></th>													
			Quality	y Cont	rol Data									
Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes			
Batch 1B25008 - F102336														
Instrument Blank (1B25008-IBL2)					Prepared &	& Analyzed:	24-Feb-21							
Mercury	ND	0.004	0.040	ng/L							U			
Instrument Blank (1B25008-IBL3)					Prepared &	& Analyzed:	24-Feb-21							
Mercury	ND	0.004	0.040	ng/L							U			
Initial Cal Blank (1B25008-ICB1)					Prepared &	& Analyzed:	24-Feb-21							
Mercury	0.239	-		ng/L										
Initial Cal Check (1B25008-ICV1)					Prepared &	& Analyzed:	24-Feb-21							
Mercury	4.804	-		ng/L	4.9950		96.2	79-121						
Batch 1C05005 - F102329														
Cal Standard (1C05005-CAL1)					Prepared &	& Analyzed:	04-Mar-21							
Mercury	0.563	-		ng/L	0.50000		113							
Cal Standard (1C05005-CAL2)					Prepared &	& Analyzed:	04-Mar-21							
Mercury	0.908	-		ng/L	1.0000		90.8							
Cal Standard (1C05005-CAL3)					Prepared &	& Analyzed:	04-Mar-21							
Mercury	4.795	-		ng/L	5.0000		95.9							
Cal Standard (1C05005-CAL4)					Prepared &	& Analyzed:	04-Mar-21							
Mercury	19.93	-		ng/L	20.000		99.6							
Cal Standard (1C05005-CAL5)					Prepared &	& Analyzed:	04-Mar-21							
Mercury	40.43	-		ng/L	40.000		101							

Eurofins Frontier Global Sciences, LLC

atuk Stullind

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Frontier Global Sciences

Wood - MA			Pro	oject: Per	nobscot								
271 Mill Road			Project Nun	nber: 36	17207486.04					Report	ed:		
Chelmsford MA, 01824		Project: Penobscot Project Number: 3617207486.04 Project Manager: Rod Pendleton 16 Quality Control Data Quality Control Data Detection Reporting Spike Source %REC Limit Propared & Analyzed: 04-Mar-21 -0.238 - ng/L											
			Qualit	y Cont	rol Data								
Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 1C05005 - F102329													
Calibration Blank (1C05005-CCB1)					Prepared &	k Analyzed:	04-Mar-21						
Mercury	-0.238	-		ng/L							U		
Calibration Blank (1C05005-CCB2)					Prepared &	analyzed:	04-Mar-21						
Mercury	-0.367	-		ng/L							U		
Calibration Blank (1C05005-CCB3)					Prepared &	analyzed:	04-Mar-21						
Mercury	-0.240	-		ng/L							U		
Calibration Blank (1C05005-CCB4)					Prepared &	& Analyzed:	04-Mar-21						
Mercury	-0.353	-		ng/L							U		
Calibration Blank (1C05005-CCB5)					Prepared &	& Analyzed:	04-Mar-21						
Mercury	0.050	-		ng/L									
Calibration Blank (1C05005-CCB6)					Prepared &	& Analyzed:	04-Mar-21						
Mercury	-0.234	-		ng/L							U		
Calibration Blank (1C05005-CCB7)					Prepared &	& Analyzed:	04-Mar-21						
Mercury	-0.247	-		ng/L							U		
Calibration Blank (1C05005-CCB8)					Prepared &	k Analyzed:	04-Mar-21						
Mercury	-0.316	-		ng/L							U		
Calibration Blank (1C05005-CCB9)					Prepared &	& Analyzed:	04-Mar-21						
Mercury	-0.362	-		ng/L							U		
Calibration Blank (1C05005-CCBA)					Prepared &	& Analyzed:	04-Mar-21						
Mercury	-0.325	-		ng/L							Ū		

Eurofins Frontier Global Sciences, LLC

atuk Stullia

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824	AProject:PenobscotRoadProject Number:3617207486.04rd MA, 01824Project Manager:Rod Pendleton												
			Qualit	y Conti	rol Data								
Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 1C05005 - F102329													
Calibration Check (1C05005-CCV1)					Prepared &	Analyzed:	04-Mar-21						
Mercury	4.672	-		ng/L	4.9950		93.5	77-123					
Calibration Check (1C05005-CCV2)													
Mercury	4.402	-		ng/L	4.9950		88.1						
Calibration Check (1C05005-CCV3)					Prepared &	Analyzed:	04-Mar-21						
Mercury	4.446	-		ng/L	4.9950		89.0	77-123					
Calibration Check (1C05005-CCV4)					Prepared &	Analyzed:	04-Mar-21						
Mercury	4.472	-		ng/L	4.9950	<u>y</u>	89.5	77-123					
Calibration Check (1C05005-CCV5)					Prepared &	Analyzed:	04-Mar-21						
Mercury	4.457	-		ng/L	4.9950		89.2	77-123					
Calibration Check (1C05005-CCV6)					Prenared &	Analyzed	04-Mar-21						
Mercury	4.533	-		ng/L	4.9950	. Thatyzea.	90.8	77-123					
Calibration Check (1C05005-CCV7)					Prenared &	Analyzed	04-Mar-21						
Mercury	4.204	-		ng/L	4.9950	. Thatyzea.	84.2	77-123					
Calibration Check (1C05005-CCV8)					Prepared &	Analyzed	04-Mar-21						
Mercury	4.227	-		ng/L	4.9950	Anaryzeu.	84.6	77-123					
Calibration Check (1005005 CCV0)				-	Droporod 0	Analyzad	04 Mar 21						
Mercury	4.608	-		ng/L	4.9950	Anaryzed:	92.3	77-123					
				U	D 1.0	A	04 Mar 21						
Mercury	4.254	-		ng/L	4,9950	Analyzed:	85.2	77-123					

Eurofins Frontier Global Sciences, LLC

atuk Stullind

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Frontier Global Sciences

Wood - MA			Pro	ject: Per	nobscot						
2/1 Mill Road Chelmsford MA, 01824	Project Number: 3617207486.04 Project Manager: Rod Pendleton									Reported: 16-Mar-21 11:55	
Quality Control Data											11.55
Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1C05005 - F102329											
Instrument Blank (1C05005-IBL1)	Prepared & Analyzed: 04-Mar-21										
Mercury	ND	0.004	0.040	ng/L							U
Instrument Blank (1C05005-IBL2)					Prepared & Analyzed: 04-Mar-21						
Mercury	ND	0.004	0.040	ng/L							U
Instrument Blank (1C05005-IBL3)					Prepared &	Analyzed:	04-Mar-21				
Mercury	ND	0.004	0.040	ng/L							U
Initial Cal Blank (1C05005-ICB1)					Prepared &	Analyzed:	04-Mar-21				
Mercury	0.073	-		ng/L							
Initial Cal Check (1C05005-ICV1)					Prepared &	Analyzed:	04-Mar-21				
Mercury	5.076	-		ng/L	4.9950		102	79-121			
Batch F102329 - EFGS SOP2795 Ni	tric/Sulfuric	Hg Digestie	on								
Blank (F102329-BLK1)					Prepared: 18-Feb-21 Analyzed: 04-Mar-21						
Mercury	ND	0.090	0.800	ng/g	1						U
Blank (F102329-BLK2)					Prepared:	18-Feb-21 A	Analyzed: 04	4-Mar-21			
Mercury	ND	0.090	0.800	ng/g							U
Blank (F102329-BLK3)					Prepared:	18-Feb-21 A	Analyzed: 04	4-Mar-21			
Mercury	0.428	0.090	0.800	ng/g							J
LCS (F102329-BS1)					Prepared:	18-Feb-21 A	Analyzed: 04	4-Mar-21			
Mercury	7.658	0.090	0.800	ng/g	8.0000		95.7	75-125			

Eurofins Frontier Global Sciences, LLC

atuk Stulla

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Wood - MA Project: Penobscot 271 Mill Road Project Number: 3617207486.04 **Reported:** Chelmsford MA, 01824 Project Manager: Rod Pendleton 16-Mar-21 11:55 **Quality Control Data** %REC RPD Detection Reporting Spike Source Result Limit Units Level Result %REC Limits RPD Limit Analyte Limit Notes Batch F102329 - EFGS SOP2795 Nitric/Sulfuric Hg Digestion LCS Dup (F102329-BSD1) Prepared: 18-Feb-21 Analyzed: 04-Mar-21 Mercury 7.651 0.090 0.800 8.0000 95.6 75-125 0.0958 24 ng/g Matrix Spike (F102329-MS1) Source: 1B00003-37RE1 Prepared: 18-Feb-21 Analyzed: 04-Mar-21 463.6 11.2 100 799.20 ND 58.0 71-125 QM-07 Mercury ng/g Source: 1B00003-07 Matrix Spike (F102329-MS2) Prepared: 18-Feb-21 Analyzed: 04-Mar-21 223.3 121 71-125 Mercury 707.4 11.2 100 399.60 ng/g Matrix Spike Dup (F102329-MSD1) Source: 1B00003-37RE1 Prepared: 18-Feb-21 Analyzed: 04-Mar-21 799.20 ND 53.6 71-125 7.91 24 QM-07 Mercury 428.3 11.2 100 ng/g Source: 1B00003-07 Matrix Spike Dup (F102329-MSD2) Prepared: 18-Feb-21 Analyzed: 04-Mar-21 Mercury 863.1 11.2 100 ng/g 399.60 223.3 160 71-125 27.7 24 QM-07 Batch F102336 - EFGS SOP2795 Nitric/Sulfuric Hg Digestion Blank (F102336-BLK1) Prepared: 22-Feb-21 Analyzed: 24-Feb-21 0.626 Mercury 0.090 0.800 ng/g Blank (F102336-BLK2) Prepared: 22-Feb-21 Analyzed: 24-Feb-21 Mercury 0.098 0.090 0.800 J ng/g Blank (F102336-BLK3) Prepared: 22-Feb-21 Analyzed: 24-Feb-21 Mercury 0.151 0.090 0.800 ng/g LCS (F102336-BS1) Prepared: 22-Feb-21 Analyzed: 24-Feb-21 7.321 8.0000 91.5 75-125 Mercury 0.090 0.800 ng/g

Frontier Global Sciences

Eurofins Frontier Global Sciences, LLC

atuk Stullies

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Г

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Frontier Global Sciences

Wood - MA 271 Mill Road Chelmsford MA, 01824		Η	Project Num Project Mana	ject: Per Iber: 36 Iger: Ro	nobscot 17207486.04 d Pendleton	ł				Report 16-Mar-21	ed: 11:55
			Quality	y Cont	rol Data						
Analyte	Result	Detection Limit	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch F102336 - EFGS SOP2795 Nit	ric/Sulfuric	Hg Digestio	on								
LCS Dup (F102336-BSD1)					Prepared:	22-Feb-21 A	Analyzed: 2	4-Feb-21			
Mercury	6.972	0.090	0.800	ng/g	8.0000		87.2	75-125	4.88	24	
Matrix Spike (F102336-MS1)		Source:	1B00003-3	1	Prepared:	22-Feb-21 A	Analyzed: 2	4-Feb-21			
Mercury	598.3	16.4	147	ng/g	585.58	99.81	85.1	71-125			
Matrix Spike (F102336-MS2)		Source:	1B00003-34	4	Prepared:	22-Feb-21 A	Analyzed: 2	4-Feb-21			
Mercury	562.1	29.2	260	ng/g	1040.6	69.46	47.3	71-125			QM-05
Matrix Spike Dup (F102336-MSD1)	Source: 1B00003-31		Prepared: 22-Feb-21 Analyzed: 24-Feb-21								
Mercury	438.1	23.2	207	ng/g	828.36	99.81	40.8	71-125	70.3	24	QM-05
Matrix Spike Dup (F102336-MSD2)		Source:	1B00003-34	4	Prepared:	22-Feb-21 A	Analyzed: 2	4-Feb-21			
Mercury	765.2	26.4	235	ng/g	940.68	69.46	74.0	71-125	43.9	24	QM-05

Eurofins Frontier Global Sciences, LLC

atuk Stulla

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Frontier Global Sciences

5755 8th Street East Tacoma, WA 98424 Phone: (253) 922-2310

Wood - MA	Project: I	Penobscot				
271 Mill Ro	pad Project Number: 3	oject Number: 3617207486.04				
Chelmsford	I MA, 01824 Project Manager: I	Rod Pendleton	16-Mar-21 11:55			
	Notes and Defi	nitions				
U	Analyte was not detected and is reported as less than the LOD or as define or concentration of the sample.	ed by the client. The LOD has been adjusted for any dilution				
QM-07	M-07 The spike recovery was outside control limits for the MS and/or MSD. The batch was accepted based on LCS and LCSD recoveries within control limits and, when analysis permits, acceptable AS/ASD.					
QM-05	M-05 The spike recovery was outside acceptance limits for the MS/MSD and or AS/ASD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.					
J	The result is an estimated concentration.					
DET	Analyte DETECTED					
ND	Analyte NOT DETECTED at or above the method detection limit reported to the MRL.	if reported to the MDL or above the reporting limit if				
NR	Not Reported					
dry	Sample results reported on a dry weight basis					
RPD	Relative Percent Difference					

Eurofins Frontier Global Sciences, LLC

atuk Atulhad

The results in this report only apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ANALYSIS SEQUENCE

1B25008

1835007 Attached

Instrument: Hg2600-3

Calibration ID: UNASSIGNED

Analyzed: 2/24/2021

Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
1B25008-IBL1	QC	1			
1B25008-IBL2	QC	2			
1B25008-IBL3	QC	3			
1B25008-CAL1	QC	4	2100111		
1B25008-CAL2	QC	5	2100112		QUALITY AUSUMANCE
1B25008-CAL3	QC	6	2100344		PECD
1B25008-CAL4	QC	7	2100345		
1B25008-CAL5	QC	8	2100346		IMPLATE PGS
1B25008-ICV1	QC	9	2002777		
1B25008-ICB1	QC	10			
1B25008-CCV1	QC	11	2002777		
1B25008-CCB1	QC	12			
1B25008-CCV2	QC	13	2002777		
1B25008-CCB2	QC	14			
1B25008-CCV3	QC	15	2002777		
1B25008-CCB3	QC	16			
F102336-BS1	QC	17		1204925	
F102336-BSD1	QC	18		1204925	
F102336-BLK1	QC	19		1204925	
F102336-BLK2	QC	20		1204925	
F102336-BLK3	QC	21		1204925	
1B00003-31	Hg-CVAFS-T-7030	22			
F102336-MS1	QC	23		1204925	
F102336-MSD1	QC	24		1204925	
1B00003-34	Hg-CVAFS-T-7030	25			
1B25008-CCV4	QC	26	2002777		
1B25008-CCB4	QC	27			
F102336-MS2	QC	28		1204925	
F102336-MSD2	QC	29		1204925	
1B00003-20	Hg-CVAFS-T-7030	30			
1B00003-21	Hg-CVAFS-T-7030	31			
1B00003-22	Hg-CVAFS-T-7030	32		Í	
1B00003-23	Hg-CVAFS-T-7030	33			
1B00003-24	Hg-CVAFS-T-7030	34			
1B00003-25	Hg-CVAFS-T-7030	35			
1B00003-26	Hg-CVAFS-T-7030	36			

1B25008

Instrument: Hg2600-3

Calibration ID: UNASSIGNED

Analyzed: 2/24/2021

Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
1B00003-27	Hg-CVAFS-T-7030	37			
1B25008-CCV5	QC	38	2002777		
1B25008-CCB5	QC	39			
1B00003-28	Hg-CVAFS-T-7030	40			
1B00003-29	Hg-CVAFS-T-7030	41			
1B00003-30	Hg-CVAFS-T-7030	42			
1B00003-32	Hg-CVAFS-T-7030	43			
1B00003-33	Hg-CVAFS-T-7030	44			
1B00003-35	Hg-CVAFS-T-7030	45			
1B00003-36	Hg-CVAFS-T-7030	46			
1B25008-CCV6	QC	47	2002777		
1B25008-CCB6	QC	48			
1B25008-CCV7	QC	49	2002777		
1B25008-CCB7	QC	50			
1B25008-CCV8	QC	51	2002777		
1B25008-CCB8	QC	52			

Samples Loaded By

lahy 02/25/2/ By Date

U white 21257 Data Processed By

Date

Analyst:	AH/MV2(DE)	Sequence(s) #:	1B25008
Reviewer:		Dataset ID(s):	THg26003-210224-2
Date:	2/25/2021	WO (s) #:	Multiple
Batch #(s):	F102336		

• Select the correct preparation method.

Analyte	Prep Method		Matrix
🗆 тнд	EFAFS-T-AFS-SOP2985	FSTM Trap 70:30 Digest	Air/Gas
🗌 тНg	EFAFS-T-AFS-SOP2807	Modified Cold Aqua Regla	Sed/Soil
🔲 ТНд	EFAFS-T-AFS-SOP2821	Shared Bomb- HF/HNO3/HCI Digest	Sed/Soil
П тна	EFTM-T-TM-SOP2825	Nitric Acid Oven Bomb	Sed/Soil
🕑 тн ₉	EFAFS-T-AFS-SOP2795	70:30 Digest	Tissue
THg	EFAFS-T-AFS-SOP2800	KCI Trap BrCl Oxidation	Air/Gas
THg	EFTM-T-TM-SOP2837	Shared Nitric	Tissue
THg	EFSR-P-SP-SOP2796	BrCl Oxidation	Water
Hg0	NA	NA	Water
Inorg Hg	NA	NA	Water

	Analyst Initials:		Reviewer Initials	PG	5	
1. Compare SampleID with Benchsheet/Sequence/Raw Data	(Have all samples been imported?)		YES	🗌 NO		
2. Check for transcription errors from Excel spreadsheet (or F	Prep Benchsheet)/Raw data		YES	NO NO		
(a) On raw data (instrument print-out), does correct file (dat	taset ID#) name appear in description?		YES			
Naming convention: THg26001-yymmdd-1 or THg26002	2-yymmdd-1					
(b) Check 5% of transcription from Instrument print-out and	1 Excel file		YES			
Compare the "Dilute" and "Peak (raw)" columns to "Dilut	ition" and "Uncorrected Result" in Excel					
(c) Check standards & reagents in sequence & bench shee	et for correct usage (expiries).		YES	□ NO	□ N/A	
(d) Check and compare masses (review prep benchsheet)			YES	DN D	🗌 N/A	
(e) Check & compare initial & final volumes			YES	🗌 NO	⊡ N/A	
(f) Do aliquots and dilutions written on benchsheet match th	hose in Excel?		TES	🗌 NO	🗌 N/A	
50 ml / aliquot = Excel dilution value						
(g) Is the sequence #, analyst, date, and instrument # on th	ne QC page?		YES	🗌 NO		
(h) Is the analysis status correct? (analyzed/initial review/re	eviewed		YES	🗌 NO		
(i) Original prep bench sheet added to data package?		l	YES	🗌 NO		
(j) Benchsheet prep date MUST match actual prep date (ch	neck if re-shot vs re-extract)	I	YES	🗌 NO		
3. High QA? WO#(s)/Client(s):			YES	NO		
 Client specific QC? (if Yes, refer to Project Notes/LIMS) 		[YES	NO		
(a) Have the QC requirements been met for all WO#s?		[YES			
(b) Prep blanks corrections/assigned properly		ł	YES			
5a. 20 or fewer samples in batch?		[YES			
(i) 3 PBs, 1 LCS(or BS), 1 LCSD(or BSD), 1 DUP/Batch 1 M	MS/MSD (or AS/ASD)/10 samples?	[YES	NO NO		
(ii) 1 CCV and 1 CCB every 10 analytical runs?		[YES	🗌 NO		

Analyst:	AH/MV2(DE)	Sequence(s) #: 1B25008				
Reviewer:		Dataset ID(s): 1Hg26003-210224-2				
Date:	<u>2/25/2021</u> E102336	WO (s) #: Multiple				
Daten w(a).	1102000		Bautaura			
		Analyst Initials	Initials	<u> </u>	8	
5b. Has the B/	C section data been uploaded?		YES	🗍 NO	N/A	
QA/QC Data (Checked					
6 RSD CE (S	15%)		PASS			
Comments	e					
7. The calibrat	ion curve included a minimum of 5 Standards		YES			
Comments:						
8. 1st Calibrati	on Standard % Recoveries EPA 1631E (75-125%)		PASS	FAIL		
9. ICV and CC	V % Recoveries EPA 1631E (77-123%)		PASS	🔲 FAIL		
Comments:						
10. Do all calib	ration points pass acceptance criteria?		YES			
Comments:						
11.Are qualifier	rs consistant with the data review flowcharts?		YES	□ NO	□ N/A	
Comments:	:					
12. Explain any	y items on the failed data report from Element					
Comments:						
13. Are the indiv	vidual Preparation Blanks < PQL or <2.2xMDL for WI (refer t	to appropriate prep method PQL list)	PASS	FAIL		
(a) If not < P	QL or <2.2xMDL for WI, note which PB(s) are above o	control limit:				
(b) Is the me	an PB < PQL or <2.2xMDL for WI (for appropriate qua	alification)?	YES	ОИ		
(c) Was a Br	CI Blank analyzed for each preservation level?		YES		⊡•Ń/A	
(d) Are Prepa	aration Blanks summarized on QC page?		YES	ON 🗌		
14. Filtration Bl	ank Prepared (if yes, use FB qualifier)		YES	NO		
(a) Filtration	Blank prep date same as associated samples' prep da	ite	YES	□ NÔ	N/A	
(b) Filtration	Blank absolute value < PQL or <2.2xMDL for WI		YES	⊡NO	N/A	
15. IBLs (3 min	imum) individually < 0.50 ng/L, mean < 0.25 ng/L and	i STD of 0.10 ng/L?	PASS	🗍 FAIL		
Comments:						
16. CCBs individ	dually < 0.50 ng/L or 2.2 x MDL for WI?		PASS	FAIL		
Comments:						
17. Have Total	Solids been applied? (If NO, please ensure that they a	re done or nearly done)	YES	□ NO	N/A	
18. Is the correct	ct 'Source' designated for MD/MS/MSD?		YES			
19. For digested	d preps: was there a spike witness signature & date on	the prep bench sheet?	YES		N/A	

Analyst:	AH/MV2(DE)	_Sequence(s) #:	1825008				
Reviewer:		_Dataset ID(s):	THg26003-210224-2				
Date:	2/25/2021	_WO (s) #:	Multiple				
Batch #(s):	F102336	_					
		Analyst Initials	m	Reviewe Initials	'_PG	\$	_
20. MS/MSD 5	Spiked at least 1-5 X ambient or 5x MRL (whichever is hid	nher) ?	•	YES	Пио		
Comments:							
21. Are all san	mples within instrument calibration range? (or at minimum	dilution size)		PASS			
Comments:	·			_			
22. Are the sa	mples run at the correct dilution level for the method?			YES	🗌 NO		
Comments:							
23. Dissolved	< Total (if applicable)			YES	NO	⊡•N/A	
Comments:							
24. Effluent <	Influent (visually confirm if needed)			YES	NO NO	N/A	
Comments:	·						_
25. Are re-runs	s noted with reason?			YES	□ NO	□ N/A	
Comments:							
26. FSTM Data the FSTM A (in	asets: Check to ensure the 'Response' & 'Initial Result' co n sequence) & B/C (in batch) traps?	lumns match in bo	oth the Excel dataset & LIMS for	YES	ON []	₩ /A	
Comments	:						
27. Is the B tra	ap <5% A Traps			VES	L NO	_ -N/A	
Comments	:						
28. Are spiked	trap recoveries75-125% of true value?			VES	NO NO	≦ -n)∕A	
Comments:							
29.Have non-r	reportable samples been imported into LIMS and clicked t	o non-reportable?	1	YES YES	NO NO	□ N/A	
Comments:							
30. Have re-ext	tracts been created for non-reportable samples?			YES	NO NO	□ N/A	
31. Are there a office before sc	ny HIGH QA projects within the data? If so, place data pa canning.	ackage in QA		YES		∑ N/A	
32. Does the da	ata set need scanning?			YES		N/A	
33. Does the da	ataset have an LOQ/LOQ or DOC?			YE\$		⊡ N/A	
34. Water samp	ples: has the preservation log been included in dataset for	final volume verif	ication?	YES	🗌 NO	⊡ N/A	
35. Water sam	ples-is the final volume correct in the sequence?			YES	□NO	□N/A	
Files located	at: \\Cuprum\gen_admin\Quality Assurance\Training N	laster\DOCs	H				
36. Date of ana	lyst IDOC/CDOC: 2/(7/2)	31TTL IDO	C/CDOC within last 12 months?	YES			
37. Date of ana	lyst's SOP reading for method:		Current SOP revision read?	YES	NO NO		
38. Date of LOI	D:		LOD within last 3 months?	YES			
39. Date of LOC	Q:		LOQ within last 3 months?	YES	NO NO		
Data can not b	e reported without a current IDOC/CDOC, LOD or LOG	2.					

1			
Analyst:	AH/MV2(DE)	_Sequence(s) #:	1B25008
Reviewer:		Dataset ID(s):	THg26003-210224-2
Date:	2/25/2021	_WO (s) #:	Multiple
Batch #(s):	F102336	_	

40. Peer Reviewer's comments (use Peer Review Checklist Additional Comments form if necessary):

Additional Page (s)?

- 00
0
ō
- VÕ
Ň
Ĩ
1.
Ξ
- 3
- #
\mathbf{x}
- 63
-+
- 63
A
- Af
_
_8
• •
_92

Failing Data	1 Report - 1B25008														2٤
Sample ID	Analysis	Result	MRL	Dup Source Result Result	True Value	Units	% Rec.	Rec. LCL	Rec.] UCL	RD R	tPD imit	Over Cal	Failure	Qualifier	i to ∑ ∋
F102336-MSD1	Hg-CVAFS-T-7030	438.1	207	598.346499.8131	3 828.36	g/gn	40.8	71.00	25.00	70.3 2	4.00 PA	SS-OVER	FAIL-MSD (Rec. and RPD)	QM-05	l Lgg
F102336-MS2	Hg-CVAFS-T-7030	562.1	260	69.4550	4 1040.6	ng/g	47.3	71.00	125.00		PA	SS-OVER	FAIL-MS	QM-05	
F102336-MSD2	Hg-CVAFS-T-7030	765.2	235	562.084469.4550	4 940.68	a/gu	74.0	71.00	25.00 4	3.9 2.	4.00 PA	SS-OVER	FAIL-MSD (RPD)	QM-05	
1B25008-CCV8	Hg-CVAFS-T-7030	3.536	1.000		4.9950	ng/L	70.8	77.00	123.00		PA	SS-OVER	FAIL-CCV		
															1

Analyst Reviewed By

Date

Date Peer Reviewed By

F102336

Eurofins Frontier Global Sciences, LLC

Matrix: Tissue

Prepared using: Trace Metals - EFGS SOP2795 Nitric/Sulfuric Hg Digestion

Prepared: 2/22/2021

Lab Number	Sample ID and Source Sample	Initial (g)	Final (mL)	Spike1 ID	μl Spike1	Spike2 ID	μl Spike2	Extraction Comments
F102336-BLK1	Blank	0.25	20					
F102336-BLK2	Blank	0.25	20					
F102336-BLK3	Blank	0.25	20					
F102336-BS1	LCS	0.25	20	2100109	20			
F102336-BSD1	LCS Dup	0.25	20	2100109	20			
F102336-MS1	Matrix Spike [1B00003-31]	0.0853	10	2002758	50			
F102336-MS2	Matrix Spike [1B00003-34]	0.048	10	2002758	50			
F102336-MSD1	Matrix Spike Dup [1B00003-31]	0.0603	10	2002758	50			
F102336-MSD2	Matrix Spike Dup [1B00003-34]	0.0531	10	2002758	50			

					F
Standard ID(s):	Description:	Expiration:	Reagent ID(s):	Description:	Expiration:
2002758	THg 1,000ng/mL Secondary Spiking Standard	04-May-21 00:00	2003665	Boiling Chips for Trace Metals	29-Jun-21 00:00
2100109	THg 100ng/mL Primary Spiking Standard	12-Apr-21 00:00	2100342	5% BrCl	06-Jul-21 00:00
			2100386	70/30 Digestion Acid	21-Aug-21 00:00

F102336

Eurofins Frontier Global Sciences, LLC

Matrix: Tissue

Prepared using: Trace Metals - EFGS SOP2795 Nitric/Sulfuric Hg Digestion

Prepared: 2/22/2021

Lab Number	Sample ID	Initial (g)	Final (mL)	QC Sample	Sample Specs.	Location	Sample Comments	Analysis Comments
1B00003-20	ES-13_013021_ABD_05_BL	0.1446	10	-	-	eezer 23 F		
1B00003-21	ES-13_013021_ABD_06_BL	0.1051	10	-	-	eezer 23 F		
1B00003-22	ES-13_013021_ABD_07_BL	0.1112	10	-	-	eezer 23 F		
1B00003-23	ES-13_013021_ABD_08_BL	0.0854	10	-	-	eezer 23 F		
1B00003-24	ES-13_013021_ABD_09_BL	0.0859	10	-	-	eezer 23 F		
1B00003-25	ES-13_013021_ABD_10_BL	0.1558	10	-	-	eezer 23 F		
1B00003-26	ES-13_013021_ABD_11_BL	0.109	10	-	-	eezer 23 F		
1B00003-27	ES-13_013021_ABD_12_BL	0.1129	10	-	-	eezer 23 F		
1B00003-28	ES-13_013021_ABD_13_BL	0.0774	10	-	-	eezer 23 F		
1B00003-29	ES-13_013021_ABD_14_BL	0.1405	10	-	-	eezer 23 F		
1B00003-30	ES-13_013021_ABD_15_BL	0.0978	10	-	-	eezer 23 F		
1B00003-31	FRB-02_012621_ABD_01_BL	0.0735	10	QC	-	eezer 23 F	MS/MSD	
1B00003-32	FRB-02_012621_ABD_02_BL	0.1756	10	-	-	eezer 23 F		
1B00003-33	FRB-02_012721_ABD_03_BL	0.124	10	-	-	eezer 23 F		
1B00003-34	FRB-02_012721_ABD_04_BL	0.063	10	-	-	eezer 23 F		
1B00003-35	FRB-02_012721_ABD_05_BL	0.0534	10	-	-	eezer 23 F		
1B00003-36	EB_CAPILLARY_013021_ABD_QC	0.1251	10	-	-	S&R	Add DI at lab to make blank	

F102336

Eurofins Frontier Global Sciences, LLC

Matrix: Tissue

Prepared using: Trace Metals - EFGS SOP2795 Nitric/Sulfuric Hg Digestion

Prepared: 2/22/2021

ins
rof
eu

THg26003-210224-2

Page 11 of 37

Frontier Global Sciences

Analysis Datasheet for Total Mercury Date of Analysis: February 24, 2021 Instrument #: Hg2600-3 LIMS Sequence #: 1825007, 1825008

Analyst: Units ng/L

Calibration Statistics:

				Uncorrected			
				Response	Corrected Peak	Corrected	
	-	True Val	Årea	Factor	Height	Response Factor	% Recovery
	1	0.50 ng/L	165.72 units	331.45	108.92 units	217.85	123 A 04.0-
	-	1 00 201					TENO VOLET
	4 1		242.350 UNITS	242.30	185.56 units	185.56	104.8 %Rec
	г	5.00 ng/L	860.08 units	172.02	803.28 units	160.66	QU 7 %Der
	-	20.00 no/L	3258.47 unite	167 07	2701 62 main	160.00	
				70-707		TOU.UG	50.4 %KeC
	-	40.UU ng/L	5513.85 Units	162.85	6457.06 units	161 43	01 1 0k Doc
	0					C1 1404	TOUR TITE
	0						
	0						
	0						
	i						
-	CONT. St Dev RF +/- 25.19	Corr. RSD CF 14.2% RSD	Uncorr. Mean RF 214.32				

	Std Dev (ng/L)	±0.04
	Mean (ng/L)	0.27 ng/L
	Std Dev	±8.30
	Mean	56.80 units
	c	m
Blanks:	LabNumber	SEQ-IBL

Preparation Blanks

sample type	Batch ID	E	Mean	Std Dev
BLK	1	ſ	3.180 na/L	+1.042
BLK	2	ŝ	3.060 na/L	+0.387
BLK	m	m	3 645 nn/l	+3.630
BLK	4) C	0.000 no/l	000-0
BLK	5) C	0.000 no/l	
BLK	9	0	0.000 ng/L	
			1	

File: THg26003-210224-2

Page 67 of 93

Instrument	Analyst	Type	LabNumber	Dilution	Analyzed	FileID	RunEnd	Uncorrected Response	Batch	No PB	Diten				
Hg2600-3	8	ষ্ঠ	SEQ-IBL1	-	2/24/2021 11:40:38 15	803-1.RAW	11-40-38	A2 20			KEN	TITUTATIKESUIT	Final Result	InitialUni	Com
Hg2600-3	8	₫	SEQ-IBL2	-	2/24/2021 11:44:46 15	1.RAW	11-44-45	BO DR				0.030	0:030	ng/L	-
Hg2600-3	8	₹	SEQ-IBL3	-	2/24/2021 11:48:55 15	3805-1.RAW	11:48:55	47.25			2.0	-0.054	0,023	LIDI I	
Hg2600-3	B	3	SEQ-CAL1	-	2/24/2021 11:53:04 1:	3806-1.RAW	11:53:04	165.72			108.9	0.615	19190		
5-002001	B	ਭ	SEC-CAL2	-	2/24/2021 11:57:13 1:	5807-1.RAW	11:57:13	242.36			185.6	1.048	1 048	1/0	
E HUDEDU - 3	3 8	3	SECHCAL3		2/24/2021 12:01:21 15	5808-1.RAW	12:01:21	860.08			803.3	4,535	4 535	1/04	
C-00076U	3 8	3 3	SEC-CAL4		2/24/2021 12:05:30 1	5809-1.RAW	12:05:30	3258.42			3201.6	18.077	18.077	1/00	
Habbourg	3 8	513	SEC-CALS		2/24/2021 12:09:39 1	5810-1.RAW	12:09:39	6513.86			6457.1	36.457	36.457	1/04	
Hr7601-3	3 8	3 3			2/24/2021 12:13:50 1	5811-1.RAW	12:13:50	907.74			850.9	4.804	4.804	T/DU	
Ho7600-3	3 8	CAL	3EU-IUB E10335 DE4		2/24/2021 12:17:59 1:	5612-1.RAW	12:17:59	99.13			42.3	0.239	0.239	Light	
Ha2600-3	3 8	CAM	F10334 B0D4	2	2/24/2021 12:22:08 1	5813-1.RAW	12:22:08	833.74	-		776.9	4.228	84.553	ha/L	F102335
Ha2600-3	8 8	SIK.	E10335 BI K1	8	2/24/2021 12:26:17 11	x814-1.RAW	12:26:17	908.10	-		852.3	4,653	93.064	na/L	F102335
Hq2600-3	8	BIK	F102335-BLK2	2 6	2/24/2021 12:30:26 1	0815-1.RAW	12:30:26	134.27	£		77.5	0.437	4.374	n/fu	F102335
Hg2600-3	8	BLK	F102335-BLK3	2	1 00:40:1 12:02:02	2010-1.7AW	02:80:71	104.80	-		48.0	0.271	2.710	J/Du	F102335
Hg2600-3	8	SAM	1A00115-01	100	2/24/2021 12:42:54 15	818-1 RAW	12:30:44	100.28	-		43.5	0.246	2.455	ng/L	F102335
Hg2600-3	8	SAM	WS		2/24/2021 12-47-03 15	810-1 PAIN	12.42.04	4/6.30			421.7	2.349	234.917	1/60	F102335
Hg2600-3	8	SAM	MS		2/24/2021 12:51-12 15	R20-1 RAW	12-64-12	40,11			-16.7	#DIV/0	#DIV/01	ng/L	F102335
Hg2600-3	8	SAM	WS		2/24/2021 12:55:21 15	821-1.RAW	12-55-21	24.10			19.3		10/NIC#	1/6u	F102335
Hg2600-3	8	SAM	MS		2/24/2021 12:59:30 15	822-1.RAW	12-59-30	21 51			0.21-	ELTOT	#VALUE!	ug/L	-
Hg2600-3	8	ฐ	SEQ-CCV1	-	2/24/2021 13:03:39 15	823-1.RAW	13:03:39	837.86			781 1	A AIO	#VALUE!	1/6u	
Hg2600-3	8	R	SEQ-CCB1	-	2/24/2021 13:07:48 15	824-1.RAW	13:07:48	92.93			36.1	PUC D	014-4	J/Bu	
Hg2600-3	8	SAM	F102335-MS1	400	2/24/2021 13:11:58 15	1825-1.RAW	13:11:58	718.93			662.1	U22 2	1402 105	1/6	L40095
H02600-3	88	SAM	F102335-MSD1	400	2/24/2021 13:16:07 15	826-1.RAW	13:16:07	640.08	-		583.3	3.285	1314 111		F102355
192000-3	3 8	SAM	1400115-02	20	2/24/2021 13:20:17 16	827-1.RAW	13:20:17	633.36	-		576.6	3.192	159.587	1/100	E10235
Horsen 2	3 8	ANN A	1AUU115-U3	20	2/24/2021 13:24:26 15	3828-1.RAW	13:24:26	202.00	-		145.2	0.756	37.810	Jou	F102355
Hotenea	3 8	CAM	1000110-04	8	2/24/2021 13:28:35 15	5829-1.RAW	13:28:35	563.42	٢		506.6	2.797	139,840		F102335
Hubbhh-3	3 8	CAM		8	2/24/2021 13:32:45 11	5830-1.RAW	13:32:45	109.88	-		53.1	0.236	11.806		F102335
Ha2600-3	3 8	CAM	1400145-06	- 5	2/24/2021 13:36:54 15	3831-1.RAW	13:36:54	H 10.87	IG STAND	ARD DROPF	22.2	Error	#VALUE!	ng/L	HG STAND
Hq2600-3	8	SAM	1A00115-07	32	2/24/2021 13:41:04 14	WAN-1-2000	13:41:04	148.49	-		91.7	0.454	22.704	ng/L	F102335
Hg2600-3	8	SAM	1400115-08	3 25	2/24/20/21 13:40:13 15	10000 1. DAIM	13:40:13	141.39			84.6	0.414	20.700	-1/6u	F102335
Hg2600-3	8	SAM	1A00115-10	205	2/24/2021 13-53-32 15	RSE-1 RAW	13:48:23	980.86			924.1	5.154	257.685	1/6u	F102335
Hg2600-3	8	B	SEO-CCV2	-	2/24/2021 13:57:41 15	836-1 RAW	13-57-41	147.408	-†		6768	5,006	250.315	J/fu	F102335
Hg2600-3	8	ช	SEQ-CCB2		2/24/2021 14:01:51 15	837-1.RAW	14:01:51	101 16	-+		14.4	4.466	4.466	ng/L	
Hg2600-3	8	SAM	1A00115-11	50	2/24/2021 14:06:00 15	838-1.RAW	14:06:00	274.70	-		217.0	UC2.U	052.0	ug/L	Leeser
Hg2600-3	8	SAM	F102333-BS1	8	2/24/2021 14:10:10 15	1839-1.RAW	14:10:10	839.94	- ~		783.1	4 269	96, 335	J/Du	F102335
Hg2600-3	8	SAM	F102333-BSD1	ନ୍ଧ	2/24/2021 14:14:19 15	840-1.RAW	14:14:19	887.34	2		830.5	4 536	90 726		E102333
E-00076H	3 8	BLK N	F102333-BLK1	8	2/24/2021 14:18:28 15	5841-1.RAW	14:18:28	85.59	2		28.8	0,163	3.251	no/l	F10233
C-0092PH	3 8		F10233-BLK2	8	2/24/2021 14:22:38 15	842-1.RAW	14:22:38	79.95	2		23.2	0.131	2.614	na/L	F102333
Ha2600-3	8 8	CAM	1 ADD104-01	12500	2/24/2021 14:26:47 15	5843-1.RAW	14:26:47	86.16	2		29.4	0.166	3.315	ng/L	F102333
Ha2600-3	8 8	SAM	1400105-01		2/24/2021 14:30:57 12	044-1.KAW	14:30:57	3410.21	5		3353.4	18.933	236667.520	ng/L	F102333
Hg2600-3	8	SAM	1800048-01	20	2/24/2021 14:35:00 15	MAN, 1-0400	14:35:06	8926.27	10		8869.5	50.077	250385.961	r/fu	F102333
Hg2600-3	8	SAM	F102333-MS1	4004	2124/2021 14-23-10 1	847-1 DAW	14:38:10	606.90 Ac 47 o7			602.1	3.246	64.930	ng/L	F102333
Hg2600-3	8	3	SEQ-CCV3	-	2/24/2021 14:47:35 15	848-1 RAW	14:47:35	244 DA	1		1.1962	14.022	5848.709	ng/L	
Hg2600-3	8	ਤ	SEQ-CCB3	-	2/24/2021 14:51:45 15	849-1 RAW	14-64-45	81.90	1		1./6/	6/2/5	4.275	ng/L	
Hg2600-3	8	SAM	F102333-MSD1	400	2/24/2021 14:55:54 15	850-1.RAW	14:55:54	2568.11	6		5.1 2511 3	121 121	0.029	1/6u	
Hg2600-3	8	SAM	F102336-BS1	20	2/24/2021 15:00:04 15	851-1.RAW	15:00:04	899.53	1 03		61162	4 576	2008,207	1/100	
Hg2600-3	8	SAM	F102336-BSD1	20	2/24/2021 15:04:14 15	852-1.RAW	15:04:14	860.90	1 07		804.1	4 358	211012		F102330
Hg2600-3	8	BLK	F102336-BLK1	20	2/24/2021 15:08:23 15	853-1.RAW	15:08:23	126.05	100		6.03	0.391	018 2		F102330
Hg2600-3	8	BLK	F102336-BLK2	20	2/24/2021 15:12:33 15	854-1.RAW	15:12:33	67.70	0		10.9	0.067	0201	1/6	F102320
E-00976H	B	BLK	F102336-BLK3	8	2/24/2021 15:16:43 15	855-1.RAW	15:16:43	73.51	e		16.7	0.094	1.886		F10236
C-00261	3 8	CAM	100003-31 E407996 MP4	2500	2/24/2021 15:20:52 16	856-1.RAW	15:20:52	109.03	ო		52.2	0.293	733.626	uq/L	F102336
Ha2600-3	38	NAN	F10236_MSD1	2500	2/24/2021 15:25:02 15	867-1.RAW	15:25:02	418.65	3		361.8	2.042	5103.895	ng/L	F102336
Ho2600-3	88	NAS	1 PDDD2-24	0020	2/24/2021 15:29:11 15	8858-1.RAW	15:29:11	244.21	en		187.4	1.057	2641.655	mg/L	F102336
	3	5					· PC-CC-2		•						

Printed: 2/25/2021

Page 1 of 3

- r
- 1
- 5
- c
-
- 52
÷
÷.
- 14
-
- 52
- 5
ū
- 7
- 12
- 9
1
- 52
ā
-
- 44

	mments																							ш 	E-01																		
	5			F102336	F102336	F102336	F102336	F102336	F102336	F102336	F102336	F102336	E102338			E401996	1000001				DCC2011	F102336	F102330	F102333	F102333	F101423			F101423	F101423	F101423			E101123	101440								
Talifali Inđe		1/10	- 1/C	DQ/L	ng/L	ng/L	na/L	l/Du		uo/L	no/L	1/00	1/00	1/00	1/04	1/10		1/6		1/1		UQ/L	L DD			- T/Gu	ng/L	Ng/L	ng/L	ng/L	-1/6u	Hg/L	ng/L	ng/L	ng/L	na/L			1/04	1/00	1/100	1/50	
Eins Docult	A 1ED	701.4	200.02	CUU.8602	4063.257	2608.519	3779,427	4070.566	2483.979	1509.240	3371.584	1873.203	1121 687	4 118	0.009	340 2461	3374 801	1011 501	1075 375		200,024	400.484	170.121	224034.005	12.210	1331024.856	3.896	0.186	1460329.684	7743233.588	2102171.244	2754879.502	1837641.919	922235.680	914987.676	900989.553	725899.360	686175,114	4 033	-0.053	500584 038	3 536	277.2
InitialResult	4 157	707-1	2000	6/0'T	1.625	1.043	1.512	1.628	0.994	0.604	1.349	0.749	0.449	4.118	0.00	0 500	1.330	1 170	0.410	0.376	0.107	0.10/	TCON	22.4U3	11011	1.331	3.896	0.186	1.460	3.097	2.102	2.755	1.838	0.922	0.915	0.901	0.726	0.686	4.033	-0.053	0.600	3 536	2000
RESP	735.4			131.4	288.1	185.1	268.0	288.6	176.2	107.2	239.1	133.0	7.67	729.4	1.6	88.8	235.8	2002	77.0	66.0	4 22	1.00	0 0000	0.00%	122.2	135./	690.0	32.9	258.6	548.6	372.3	487,9	325.5	163.3	162.1	159.6	128.6	121.5	714.4	-9.4	106.2	626.3	
No PB Correction?	-																						+-							i													
Batch U			r		5	0	3	3	m	on,	60	60	0	1		0	9	e	3	67	e	e	0	N C		Ŧ		+	4	4	4	4	4	4	4	4	4	4			4		ł
Uncorrected Response	792.17	57.20	248.20	00 100	28.440	241.85	324.81	345.44	233.04	163.98	285.92	189.77	136.53	786.19	58.38	145.56	292.61	256,96	129.70	123.66	90.25	66.10	4024.81	102.09	100.00	102 242	100.02	097 JU	313.45	15.000	428.12	544.73	382.27	220.14	218.86	216.38	185.37	178.33	771.16	47.45	163.00	683.07	
RunEnd	15:37:31	15:41:41	15:45:50	15-50-00	10:00:00	01:90:01	15:58:20	16:02:30	16:06:39	16:10:49	16:14:59	16:19:09	16:23:19	16:27:29	16:31:38	16:35:48	16:39:58	16:44:09	16:48:19	18:52:29	16:56:40	17:00:51	17:05:01	17-00-11	17.13.24	17.17.24	47.04.44	14:12:11	10:07:71	10:00:71	11:00:01	11:38:22	11:42:33	17:46:44	17:50:55	17:55:08	17:59:21	18:03:31	18:07:41	18:11:51	18:16:01	18:20:11	10.01
FileID	15860-1.RAW	15861-1.RAW	15862-1.RAW	15863-1 RAW	15964-1 DAIA	VVVV	WAN-L-COOCI	15866-1.RAW	15867-1.RAW	15868-1.RAW	15869-1.RAW	15870-1.RAW	15871-1.RAW	15872-1.RAW	15873-1.RAW	15874-1.RAW	15875-1.RAW	15876-1.RAW	15877-1.RAW	15878-1.RAW	15879-1.RAW	15880-1.RAW	15881-1.RAW	15882-1 RAW	15883-1 RAW	5884-1 RAW	S885_1 DAW	NUN 1 DAM	10001 1 DAIA	1000/-1.NAW	CODO 1 DAIN	WAN-1-2000	TODA 1 DAVIN	WAN-L-LESCI	2692-1.KAW	5893-1.RAW	15894-1.RAW	15895-1.RAW	15896-1.RAW	5897-1.RAW	15898-1.RAW	5899-1.RAW	FOOD 1 DAW
	15:37:31	15:41:41	15:45:50	15-50-00	15.54-10	10.44.10	NZ-90:01	16:02:30	16:06:39	16:10:49	16:14:59	16:19:09	16:23:19	16:27:29	16:31:38	16:35:48	16:39:58	16:44:09	16:48:19	16:52:29	16:56:40	17:00:51	17:05:01	17:09:11	17-13-21	17-17-31	17-94-44	17-26-64	17.00.01	17-24-11	17.30.77	77.00.71	CC.24-11	11.40.44	96:06:71	17:55:08	17:59:21	18:03:31	18:07:41	18:11:51	18:16:01	18:20:11	10.04.04
Analyzed	2/24/2021	2/24/2021	2/24/2021	100014010	PCUCIPCIC	12024202	1202/12/2	2124/2021	2/24/2021	2/24/2021	2/24/2021	2/24/2021	2/24/2021	2/24/2021	2/24/2021	2/24/2021	2/24/2021	2/24/2021	2/24/2021	2/24/2021	2/24/2021	2/24/2021	2/24/2021	2/24/2021	2/24/2021	2/24/2024	PCUCIPCIC	FCUCIVCIC	TOTAL	FCUCIVCIC	PCUCIVCIC	100010010	702012010	202/42/2	1202/42/2	2/24/2021	2/24/2021	2/24/2021	2/24/2021	2/24/2021	2/24/2021	2/24/2021	1-CUCIPCIC
Dilution	-	1	2500	2500	2500	2600	2000	2000	0092	2500	7200	0097	00977	-		2500	2500	2500	2500	2500	2500	2500	10000	8	100000	-	-	100000	250000	100000	100000	100000	100000	100000	100000	100000	1000001	DODDODL	-	-	1000000	-	•
LabNumber	SEQ-CCV4	SEQ-CCB4	F102336-MS2	F102336-MSD2	1B00003-20	180003-21	1 RUDUR-22		100000 24	1 000003 25	1 00000 70			SEC-CCV5	SECUCIÓN SECUCIÓN	1600003-28	1800003-29	1B00003-30	1B00003-32	1B00003-33	1B00003-35	1B00003-36	1A00105-01RE1	1B00048-01RE1	1A00021-02RE1	SEQ-CCV6	SEQ-CCB6	1A00021-03RE1	1A00021-04RE1	1A00021-05RE1	1A00021-06RE1	1A00021-07RE1	1A00021-08RE1	1400031-00051	1400021-10051	1 4 00001 1 1 000	1 * 20001 10011		SECTORY	SEQ-CCB7	1A00021-13RE1	SEQ-CCV8	SEQ-CCB8
Type	B	ষ্ঠ	SAM	SAM	SAM	SAM	CAM	CAM	CAM	CAM	ENVO	ENC.	L NO	5	3	NAM	SAM	SAM	SAM	R	3	SAM	SAM	SAM	SAM	SAM	SAM	CAM	SAM	CAM	NWS J		5	3	E S	3	B						
Analyst	8	8	8	8	8	8	6	3 8	3 8	3 8	3 8	3 8	3 3	3 8	3 8	3 1	3 8	B	8	8	8	8	8	8	8	8	8	8	00	8	8	8	8	8 8	3 8	3 8	3 8	3 8	3 8	3 8	3 4	3	8
nstrument	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hq2600-3	Ho2600-3	E-UU9CUH	HUJGOULS	2-009CPH	2-00026H	2-00076		c-nnozhu	C-002CPT	C-nnozhu	C-00261	Hg2000-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hq2600-3	Hg2600-3	Hq2600-3	Hq2600-3	Ha2600-3	Hn2600-3	Ha2600-3	Hu7600-2	102600-2	C-UUSCH	C-00261	-10200 3	-0020-11	Hg2buu-5	Hg2600-3

																																ARD DROPPED																
		Commani														F102335	F102335	F102235	F102335	F102335	F102335	F102335				E40005E	F102335	F102335	F102335	F102335	F102335	HG STAND	F102335	F102335	F102335		20000 FL	F102220	F102333	F102333	F102333	F102333	F102333	F102333	F102333			F102336
		-AutoCourt	-	qua 9					-	-	1	1	4		÷- •					-	-	÷	-	-	. .	T			-	÷	÷			. 🖵						-	-	~	÷				-	~ ~
			Х	ð ð	58	5 ð	ð	ð	ð	ð	Ş	8	Ð	ð	ðð	5 ð	5 8	őð	ð	ХÓ	ð	ð	ð	ð i	ðð	5 ð	5 ð	őð	ð	ð	έġ	5ð	56	ð	ð	¥ 9	5 8	5 ð	Ē	ð	ð	ð	£	田	5 8	ð	ð	ðð
		teak (Raw) Cor rol (c.1)	3284.41 Clean	43.28 Sample	28 48 Campie	62.20 Sample	60.96 Sample	47.25 Sample	165.72 Sample	242.36 Sample	860.08 Sample	3258.42 Sample	6513.86 Sample	907.74 Sample	99.13 Sample	000 40 Cample	134 27 Sample	104.80 Sample	100.28	478.50 Sample	40.11 Sample	37.45 Sample	37.21 Sample	31.51 Sample	037.00 Sample	718.93 Sample	640.08 Sample	633.36 Sample	202.00 Sample	563.42 Sample	109.68 Sample	148 49 Sample	141.39 Sample	980.86 Sample	954.75 Sample	447.81 Sample	274 70 Sample	839.94 Sample	887.34 Sample	85.59 Sample	79.95 Sample	86.16 Sample	3410.21 Sample	8926.27 Sample	2647.87 Sample	813.94 Sample	61.89 Sample	2568.11 Sample 899.53 Sample
8.298176019 14.60923995 25.18733237	14.22098742	Runff P	11:24:03	11:20:12	11.36.20	11:40:38	11:44:46	11:48:55	11:53:04	11:57:13	12:01:21	12:05:30	12:09:39	12:13:50	80-00-01	12-26-17	12:30:26	12:34:35	12:38:44	12:42:54	12:47:03	12:51:12	12:55:21	06:86:21	10.00.09	13:11:58	13:16:07	13:20:17	13:24:26	13:28:35	04:20:01	13:41:04	13:45:13	13:48:23	13:53:32	14:00:51	14:06:00	14:10:10	14:14:19	14:18:28	14:22:38	14:26:47	14:30:57	14:35:05	14:43:25	14:47:35	14:51:45	15:00:04
2/24/2021 Blank SD: 11:21:11 Blank RSD%: CF SD:	CF RSD%:	A RewDate	15799-1.RAW	15801-1 RAW	15802-1 RAW	15803-1.RAW	15804-1,RAW	15805-1.RAW	15806-1.RAW	15807-1.RAW	15808-1.RAW	15809-1.RAW	15614 4 D 2004	WAN 1-11001	15813.1 PAW	15814-1 RAW	15815-1.RAW	15816-1.RAW	15817-1.RAW	15818-1.RAW	15819-1.RAW	15820-1.RAW	15821-1.KAW	15922 1 DAW	15824-1 RAW	15825-1.RAW	15826-1.RAW	15827-1.RAW	15828-1.RAW	15829-1.RAW	15831-1 RAW	15832-1, RAW	15833-1.RAW	15834-1.RAW	15835-1.RAW	15837-1.RAW	15838-1.RAW	15839-1.RAW	15840-1.RAW	15841-1.RAW	15842-1.RAW	15843-1.RAW	100441.1-44001	15846-1 FANV	15847-1.RAW	15848-1.RAW	15849-1.RAW	15851-1.RAW
Conc = (Area-56.80 Run Date: 2 QC Warnings:7/QC E Run Time: 1		ME% FIRICONS Rec% C							123.00	104.77	90.71	90.36	41.14											88 20	000	124202.77									CE 08	0.00									8482.09	85.50	0.00	
Calib Eqn: Status: R²:		Canc (ppl)	40°0	0.00	0.00	0.35	0.34	0.27	10.0	CO.T	40.4 00.81	36.46	4 80	0.24	87.73	96.24	4.37	2.71	2.46	236.10	0.00	0.0		4,41	0.20	1495.38	1317.29	162.77	40.99	14.99	0.13	25.88	23.88	260.86	47.47	0.25	61.51	88.43	93.79	3.25	2.61	3.32	250389.02	67.99	5851.77	4.27	U.U3 6671 83	95.16
56.801 177.11 1	-2	U U U	56.80	56.80	56.80	0.00	0.00	0.00	00.00	00.0U	56.80	56.80	56.80	56.80	56.80	56.80	56.80	56.80	56.80	00.6U	00.00	00.0U	56.80	56.80	56.80	56.80	56.80	56.80	20.00	56.80	56.80	56.80	56.80	26.8U	56.80	56.80	56.80	56.80	56.80	20.80	20.80	20.0U	58.80	56.80	56.80	56.80	20.0U	56.80
g260(CalibFa ### R:	g260U3-210224					8 							• •	· -	20	20	10	9	10	nni				-	***	400	400	00	00	20	-	50	9	00	s -	-	50	20	88	07		12500	5000	20	400		400	50
Operati AH Worksh TH Method #:	Descrip IH	LUNG OF N				A1 *2	X	A3	45	A6	A7	AB	A9	A10	A11	A12	A13	A14	A10					A17	A18	A19	A20	A21	- Ca	B3	B21	B4	B5 Be	B0 B7	B8	B9	B10	811	B12 D13	210	11	B16	B17	B18	B19	C20	B20	B21
TotalMercury EPA1631	Surrisks/10	Clean	SM	SVV	WS	SEQ-IBL1		SEC-CAL1	SFO-CAL2	SEQ-CAL3	SEQ-CAL4	SEQ-CAL5	SEQ-ICV	SEQ-ICB	F102335-BS1	F102335-BSD1	F102335-BLK1	E102330-BLKZ	1 102000-DLN0	WS.	WS	MS	WS	SEQ-CCV1	SEQ-CCB1	F102335-MS1	F102335-MSD1	1AU0115-U2 1A00115-02	1A00115-04	1A00115-05	BLANKTEST	1A00115-06	1A00115-07	1A00115-10	SEQ-CCV2	SEQ-CCB2	1A00115-11	F102333-BS1	F102333-BSD1 E102333 BLV1		F102333-BLK3	1A00104-01	1A00105-01	1A00048-01	F102333-MS1	SEQ-CCV3	F102333-MSD1	F102336-BS1

90000 F		F102336	F102336	F102336	F102336	F102336	F102336	F102336			F102336	F102336	F102336	E102338	F102336	F102336	F102336	F102336	F102336	F102336			F102336	F102336	F102336	F102336	F102336	F102336	F102336	F102333, E	F102333,E-01	F101423		1404 400	F101423	E101422	F101423	F101423	F101423	F101423	E101493	E101493	E101423	0741011		E101422	
÷		-	-	-	~	~	~	-	~	-	-	-		• •		-	***	-	-	-	-	***	÷-	-	~	-		-	-	-	- 1								-			~ ~					• •
ò	58	Š	Š	ð	ð	ð	ð	ð	ð	ð	ð	ð	ě	Š	ð	š	ð	ð	ð	ð	ð	Ş	ð	Хo	Х	ş	ð	ð	Š	E	ð ð	52	5 8	5 6	58	Śč	ð	Ň	Xo	NO	Ň	č	č	č	őð	ě	
860.90 Samula			b/./U sample	/3.51 Sample	109.03 Sample	418.85 Sample	244.21 Sample	88.06 Sample	792.17 Sample	57.20 Sample	248.20 Sample	344.92 Sample	241.86 Sample	324.81 Sample	345.44 Sample	233.04 Sample	163.98 Sample	295.92 Sample	189.77 Sample	136.53 Sample	786.19 Sample	58.38 Sample	145.56 Sample	292.61 Sample	256.96 Sample	129.70 Sample	123.66 Sample	90.25 Sample	56.10 Sample	4024.61 Sample	182.03 Sample	746.79 Sample	R0.R7 Sample	315 45 Sample	605.37 Samula	429.12 Sample	544.73 Sample	382.27 Sample	220.14 Sample	218.86 Sample	216.38 Sample	185.37 Samole	178.33 Sample	771.16 Sample	47.45 Sample	163.00 Sample	
15:04:14	15-00-22	07-00-01 18-00-01	10.12.33	01:10:43	20:0Z:01	15:25:02	15:29:11	15:33:21	15:37:31	15:41:41	15:45:50	15;50:00	15:54:10	15:58:20	16:02:30	16:06:39	16:10:49	16:14:59	16:19:09	16:23:19	16:27:29	16:31:38	16:35:48	16:39:58	16:44:09	16:48:19	16:52:29	16:56:40	10:00:71	10:00:21	17-13-91	17:17:31	17-21-41	17-25-51	17:30:01	17:34:11	17:38:22	17:42:33	17:46:44	17:50:55	17:55:08	17:59:21	18:03:31	18:07:41	18:11:51	18:16:01	10.00
15852-1.RAW	15853-1 RAW	15854 1 DAIN				10657-1.KAW	10606-1.KAW	15859-1.RAW	15860-1.RAW	15861-1.RAW	15862-1.RAW	15863-1.RAW	15864-1.RAW	15865-1.RAW	15866-1.RAW	15867-1.RAW	15868-1.RAW	15869-1.RAW	15870-1.RAW	106/1-1.KAVV	15872-1.RAW	158/3-1.KAW	15874-1.RAW	15875-1.RAW	WAH.1-9/901	15877-1.RAW	VAN.1-8/861	WAN.1-8/861			15883-1 RAW	15884-1.RAW	15885-1.RAW	15886-1 RAW	15887-1.RAW	15888-1.RAW	15889-1.RAW	15890-1.RAW	15891-1.RAW	15892-1.RAW	15893-1.RAW	15894-1.RAW	15895-1.RAW	15896-1.RAW	15897-1.RAW	15898-1.RAV/	
					00 00	79°LA0			83.04	0.00	134929.79									00 CQ	00.20	00.00										77.92	0.00											80.67	0.00		UL 04
B0.80	7.82	1.23	1.89	79 7.67	5107 54	0645 30		12.144	4.10	0.00	2/01.65	4066.90	2612.16	3783.07	4074.21	2407.022	1012.86 2075 20	1070 05	10/0/00	1 1 2	100	1050 80	2228 45	2825.22	1020250	DA3.68	479 13	131 27	224037.07	15.27	1331024.86	3.90	0.19	1460329.68	7743233.59	2102171.24	2754879.50	1837641.92	922235.66	914987.68	900989,55	725899,36	686175.11	4.03	0.00	599584.94	2 5/
56.80	56.80	56.80	56,80	56.80	56.80	56.80	56.80	20,00	00'00	20,00	20.60	09.00	56.80	06.80	56.80	00.00	20.00	20.00	20.00	56.80	56.80	56.80	56.80	56.80	56.80	56.80	56.80	56.80	56 80	56.80	56.80	56.80	56.80	56.80	56.80	56.80	56.80	56.80	56.80	56.80	56.80	56.80	56.80	56.80	56.80	56.80	56 80
20	20	20	20	2500	2500	2500	2500			1	2500	0002	2500	20002	2500	0020	2500	2500	2500) -)	• q.	2500	2500	2500	2500	2500	2500	2500	10000	20	1E+06	÷	-	1E+06	3E+06	1E+06	1E+06	1E+06	1E+06	1E+06	115+06	1=+06	1E+06	-	-	1E+06	Ļ
5	C2	c	5	S	C6	1 C7	CB	000	010	3	5	212	220	± 50		240	a 10	610	020	C21	A1	A2	33	A4	A5	AG	A7	AB	1.A9	1 A10	1 A11	A12	A13	1 A14	1 A15	1 A16	1 A17	210	- A18	NZV -			791	201	84	28 J	50
F102336-BSD1	F1UZ336-BLK1	F102336-BLK2	F102336-BLK3	1B00003-31	F102336-MS1	F102336-MSD:	1B00003-34	SEO-CCV4	SEO-CCB4	E102336-MS2	F102338-MSD5			12-000001	1E00003-22	1B00003-24	1B00003-25	1B00003-26	1B00003-27	SEQ-CCV5	SEQ-CCB5	1B00003-2B	1B00003-29	1B00003-30	1B00003-32	1B00003-33	1B00003-35	1B00003-36	1A00105-01RE	1B00048-01RE	1A00021-02RE	SEQ-CCV6	SEQ-CCB6	1A00021-03RE	1A00021-04RE	1A00021-05HE	1 ADDRY 57051			TANUTZUNUAL		3711-120004			SEQ-CCB7	TAUUUZ1-13KE	SEC-CCVS

SEQ-IBL1 SEQ-IBL2	
SEQ-IBL3	
SEQ-CALL SEG. CAL 2	
SEQ-CALZ	
SEQ-CALS	
SEQ-CALS	
SEQ-ICV	
SEQ-ICB	
F102335-BS1	
F102335-BSD1	
F102335-BLK1	
F102335-BLK2	in concer e i
F102335-BLK3	1800003-34 L
1A00115-01	SEU-LLV4 L
WS	5EQ-CLB4 (
WS	F102330-MI32 (
WS WC	1R00003.20 (
WO COM	1B00003-20 (
SEQ-CCVT	1B00003-22 (
F102335-MS1	1B00003-23 (
F102335-MSD1	1800003-24 (
1A00115-02	1B00003-25 (
1A00115-03	1800003-26 (
1A00115-04	1800003-27 (
1A00115-05	SEQ-CCV5 (
BLANKTEST	SEQ-CCB5 /
1A00115-06	1600003-26 4
1AU0115-07	1800003-23
1A00115-08	1800003-30
SED.CCV2	1B00003-33 /
SEQ-CCB2	1800003-35 /
1A00115-11	1800003-36 /
F102333-BS1	1A00105-01RE1/
F102333-BSD1	1800048-01RE1/
F102333-BLK1	1A00021-02RE1/
F102333-BLK2	SEU-COVE
F102333-BLK3	
1AUU104-01	1A00021-030E1/
1A00049.01	1A00021-05RE1
F102333.MS1	1A00021-06RE1/
SEQ-CCV3	1A00021-07RE1/
SEQ-CCB3	1A00021-08RE1/
F102333-MSD1	1A00021-09RE1/
F102336-BS1	1A00021-10RE1/
F102336-BSD1	1A00021-11RE1[
F102336-BLK1	TAUUUZI-12HE1E
F102336-BLK2	
F 102336-BEK3	
1000003-31 E102226 Met	SEQ-COV8
F102336-MSD1	SEQ-CCB8

Alan 2/25/21

1

1C05005

1C05006 Attached

Instrument: Hg2600-3

Calibration ID: UNASSIGNED

Analyzed: 3/4/2021

Lab Number	Analysis	Order	STD ID	ISTD IE	Comments
1C05005-IBL1	QC	1			
1C05005-IBL2	QC	2			
1C05005-IBL3	QC	3			
1C05005-CAL1	QC	4	2100111		OTALLTY ACCUDANCE
1C05005-CAL2	QC	5	2100112	1	CONTRACTOR ADDRESS
1C05005-CAL3	QC	6	2100468		
1C05005-CAL4	QC	7	2100469		
1C05005-CAL5	QC	8	2100470		101114 5 165
1C05005-ICV1	QC	9	2002777		
1C05005-ICB1	QC	10			
F102329-BS1	QC	11			
F102329-BSD1	QC	12			
F102329-BLK1	QC	13		-	
F102329-BLK2	QC	14			
F102329-BLK3	QC	15			
1C05005-CCV1	QC	16	2002777		
1C05005-CCB1	QC	17			
1B00003-37	Hg-CVAFS-T-7030	18			
F102329-MS1	QC	19			
F102329-MSD1	QC	20			
1B00003-07	Hg-CVAFS-T-7030	21			
F102329-MS2	QC	22			
F102329-MSD2	QC	23			
1C05005-CCV2	QC	24	2002777		
1C05005-CCB2	QC	25			
1B00003-01	Hg-CVAFS-T-7030	26			
1B00003-02	Hg-CVAFS-T-7030	27			
1B00003-03	Hg-CVAFS-T-7030	28			
1 B00003-0 4	Hg-CVAFS-T-7030	29			
1B00003-05	Hg-CVAFS-T-7030	30		Ī	
1B00003-06	Hg-CVAFS-T-7030	31			
1B00003-08	Hg-CVAFS-T-7030	32			
1B00003-09	Hg-CVAFS-T-7030	33			
1 B 00003-10	Hg-CVAFS-T-7030	34			
1C05005-CCV3	QC	35	2002777		
1C05005-CCB3	QC	36			

Page 73 of 93

1C05005

Instrument: Hg2600-3

Calibration ID: UNASSIGNED Г

Lab Number	Analysis	Order	STD ID	ISTD ID	Comments
1B00003-11	Hg-CVAFS-T-7030	37			
1B00003-12	Hg-CVAFS-T-7030	38		-	
1B00003-13	Hg-CVAFS-T-7030	39			
1B00003-14	Hg-CVAFS-T-7030	40			
1B00003-15	Hg-CVAFS-T-7030	41			
1B00003-16	Hg-CVAFS-T-7030	42			
1B00003-17	Hg-CVAFS-T-7030	43			
1B00003-18	Hg-CVAFS-T-7030	44			
1B00003-19	Hg-CVAFS-T-7030	45			
1C05005-CCV4	QC	46	2002777		
1C05005-CCB4	QC	47			
1C05005-CCV5	QC	48	2002777		
1C05005-CCB5	QC	49			
1C05005-CCV6	QC	50	2002777		
1C05005-CCB6	QC	51			
1C05005-CCV7	QC	52	2002777		
1C05005-CCB7	QC	53			
1C05005-CCV8	QC	54	2002777		
1C05005-CCB8	QC	55			
1C05005-CCV9	QC	56	2002777		
1C05005-CCB9	QC	57			
1C05005-CCVA	QC	58	2002777		
1С05005-ССВА	QC	59			
1C05005-CCVB	QC	60	2002777		
1C05005-CCBB	QC	61			
1C05005-CCVC	QC	62	2002777		
1C05005-CCBC	QC	63			

3520) Date Samples Loaded By

while the 3 51 14 Data Processed By

Date

Analyzed: 3/4/2021

Analyst:	LEL/MV2(DE)	Sequence(s) #:	1C05005
Reviewer:		Dataset ID(s):	THg-26003-210304-1
Date:	3/5/2021	WO (s) #:	1B0003
Batch #(s):	F101414		

• Select the correct preparation method.

Analyte	Prep Method		Matrix
П тна	EFAFS-T-AFS-SOP2985	FSTM Trap 70:30 Digest	Air/Gas
🗌 ТНg	EFAFS-T-AFS-SOP2807	Modified Cold Aqua Regia	Sed/Soil
🗌 тнд	EFAFS-T-AFS-SOP2821	Shared Bomb- HF/HNO3/HCI Digest	Sed/Soil
П тна	EFTM-T-TM-SOP2825	Nitric Acid Oven Bomb	Sed/Soil
THg	EFAFS-T-AFS-SOP2795	70:30 Digest	Tissue
🗌 тнд	EFAFS-T-AFS-SOP2800	KCI Trap BrCi Oxidation	Air/Gas
THg	EFTM-T-TM-SOP2837	Shared Nitric	Tissue
THg	EFSR-P-SP-SOP2796	BrCI Oxidation	Water
Hg0	NA	NA	Water
Inorg Hg	NA	NA	Water

	Analyst Initials:	Review Initials	or()	5	
1. Compare SampleID with Benchsheet/Sequence	/Raw Data (Have all samples been imported?)	TES			
2. Check for transcription errors from Excel spread	sheet (or Prep Benchsheet)/Raw data	YES	NO NO		
(a) On raw data (instrument print-out), does corr	rect file (dataset ID#) name appear in description?	TYES	ON 🗌		
Naming convention: THg26001-yymmdd-1 or	r THg26002-yymmdd-1				
(b) Check 5% of transcription from Instrument pr	rint-out and Excel file	TES 1	NO NO		
Compare the "Dilute" and "Peak (raw)" colum	ins to "Dilution" and "Uncorrected Result" in Excel	/			
(c) Check standards & reagents in sequence & b	pench sheet for correct usage (expiries).	🗹 YES	NO NO	□ N/A	
(d) Check and compare masses (review prep be	nchsheet)	TYES	NO NO	- N/A	
(e) Check & compare initial & final volumes		YES	NO NO	N/A	
(f) Do aliquots and dilutions written on benchshe	et match those in Excel?	YES	NO 🗌	□ N/A	
50 ml / aliquot = Excel dilution value					
(g) Is the sequence #, analyst, date, and instrum	ent # on the QC page?	Tes .	□ NO		
(h) Is the analysis status correct? (analyzed/initia	al review/reviewed)		🗌 NO		
(i) Original prep bench sheet added to data pack	age?	YES			
(j) Benchsheet prep date MUST match actual pre	ep date (check if re-shot vs re-extract)	YES	🗋 NO		
3. High QA? WO#(s)/Cl	lient(s):	YES	NO		
4. Client specific QC? (if Yes, refer to Project Notes	s/LIMS)	YES	NO NO		
(a) Have the QC requirements been met for all W	VO#s?	VES	ON 🗌		
(b) Prep blanks corrections/assigned properly		T YES			
5a. 20 or fewer samples in batch?		YES	NO NO		
(i) 3 PBs, 1 LCS(or BS), 1 LCSD(or BSD), 1 DUP	P/Batch 1 MS/MSD (or AS/ASD)/10 samples?	YES	□ NO		
(ii) 1 CCV and 1 CCB every 10 analytical runs?		YES	NO NO		

Door Poviow Chock Li	at for TUA by 2800 CV	AEC (CODIGIO) 20	48 Dave 4 (041410048)
LECI VEALEM PLICK TI		-AF3 (30P2022) 20	10 KeV 1 (04/1/2010)

Analyst:	LEL/MV2(DE)	Sequence(s) #: 1	C05005				
Reviewer:		Dataset ID(s): <u>T</u>	Hg-26003-210304-1				
Date: Batch #(s):	3/5/2021	WO (s) #:1	B0003				
Daton #(a).						· · · · ·	
		Analyst Initials	L	Initials	<u> </u>	>	
5b. Has the B	/C section data been uploaded?			YES			
QA/QC Data	Checked						
6. RSD CF (≤	15%)			PASS	FAIL		
Comments							
7. The calibrat	ion curve included a minimum of 5 Standards			YES	D NO		
Comments:							
8. 1st Calibrati	on Standard % Recoveries EPA 1631E (75-125%)			PASS	FAIL		
9. ICV and CC	V % Recoveries EPA 1631E (77-123%)			PASS	FAIL		
Comments:				n	3/512		
10. Do all calib	ration points pass acceptance criteria?			YES	NO		
Comments:	CCU BJC Ja	iled me 3	815/21				
11.Are qualifie	rs consistant with the data review flowcharts?			YES	NO NO	N/A	
Comments							
12. Explain any	items on the failed data report from Element						
Comments:							
13. Are the indiv	ridual Preparation Blanks < PQL or <2.2xMDL for WI (refer to	appropriate prep method	PQL list)	PASS			
(a) If not < P	QL or <2.2xMDL for WI, note which PB(s) are above co	ntrol limit:					
(b) is the me	an PB < PQL or <2.2xMDL for WI (for appropriate quality	fication)?		YES	NO		
(c) Was a Br	CI Blank analyzed for each preservation level?			YES	NO NO		
(d) Are Prep	aration Blanks summarized on QC page?			YES	NO		
14. Filtration Bl	ank Prepared (if yes, use FB qualifier)			YES	NO		
(a) Filtration	Blank prep date same as associated samples' prep date	9		YES	NO		
(b) Filtration	Blank absolute value < PQL or <2.2xMDL for WI			YES	NO	⊡ N/A	
15. IBLs (3 min	imum) individually < 0.50 ng/L, mean < 0.25 ng/L and S	STD of 0.10 ng/L?		PASS	FAIL		
Comments:							
16. CCBs individ	dually < 0.50 ng/L or 2.2 x MDL for WI?			PASS	FAIL		
Comments:							
17. Have Total	Solids been applied? (If NO, please ensure that they are	e done or nearly done)		YES		N/A	
18. is the correct	ct 'Source' designated for MD/MS/MSD?			YES			
19. For digester	d preps: was there a spike witness signature & date on t	he prep bench sheet?		YES		□ N/A	

					<u> </u>	.,	
Analyst:	LEL/MV2(DE)	_Sequence(s) #:	1C05005				
Reviewer:		_ Dataset ID(s):	<u>THg-26003-210304-1</u>				
Date:	3/5/2021	_WO (s) #:	1B0003				
Datch w(s).							
		Analyst Initials	h	Reviewe	' <u> </u>	2	
20. MS/MSD s	bliked at least 1-5 X ambient or 5y MRL (whichever is bi	aber) 2		TYES			
Comments:					e		
21. Are all san	ples within instrument calibration range? (or at minimum	dilution size)		PASS	FAIL		
Comments:		,			_		_
22. Are the sai	nples run at the correct dilution level for the method?			YES			
Comments:							
23. Dissolved	< Total (if applicable)			YES			
Comments:							
24. Effluent < 1	Influent (visually confirm if needed)			YES	<u></u> NO	-N/A	
Comments:							
25. Are re-runs	noted with reason?		<i>,</i>	YES	□ NO	N/A	
Comments:							
26. FSTM Data the FSTM A (in	sets: Check to ensure the 'Response' & 'Initial Result' co sequence) & B/C (in batch) traps?	lumns match in bo	th the Excel dataset & LIMS for	T YES	NO NO	⊡ N/A	
Comments:							
27. Is the B tra	p <5% A Traps			VES	L] NO	N/A	
Comments:	<u></u>						
28. Are spiked	trap recoveries75-125% of true value?			U YES	LI NO	⊡_N/A	
Comments:							
29.Have non-m	eportable samples been imported into LIMS and clicked t	o non-reportable?		YES	NO	I N∕A	
Comments:	Parts been created for near reportable country.						
31. Are there ar	WHIGH OA projects within the data? If so, place data pa	ckago in OA					
office before sca	anning.	ickage in QA					
32. Does the da	ta set need scanning?			YES		N/A	
33. Does the da	taset have an LOQ/LOQ or DOC?			YES		N/A	
94. Water samp	es: has the preservation log been included in dataset for	final volume verifie	cation?	YES	NO NO	⊡N/A	
5. Water samp	les-is the final volume correct in the sequence?			🗌 YES	N O	□ N/A	
Files located a	t: \\Cuprum\gen_admin\Quality Assurance\Training N	laster\DOCs					
6. Date of anal	yst IDOC/CDOC: <u>377031</u>	MaciDoo	CODC within last 12 months?	YES	NO NO		
7. Date of anal	yst's SOP reading for method: 3-0-000)	UN	Current SOP revision read?	YES			
8. Date of LOD	:		LOD within last 3 months?	YES	NO NO		
9. Date of LOG	:		LOQ within last 3 months?	YES	NO		
ata can not be	reported without a current IDOC/CDOC, LOD or LOG	2.					

Analyst:	LEL/MV2(DE)	_Sequence(s) #:	1C05005
Réviewer:		Dataset ID(s):	THg-26003-210304-1
Date:	3/5/2021	_WO (s) #:	1B0003
Batch #(s):	F101414	_	

40. Peer Reviewer's comments (use Peer Review Checklist Additional Comments form if necessary):

· · · · · · · · · · · · · · · · · · ·	
	·

Additional Page (s)?

- X
- 24
2
- U
Ē
1
-
- 14
- 0
- 2
6
2
_
- 53
- 63
A
- Ar
.8
- =
660
<u>ا</u>

Failing Dat:	a Report - 1C05005															28
Sample ID	Analysis	Result	MRL	Dup Result	Source Result	True Value	Units	% Rec.	Rec. LCL	Rec. UCL	RPD	RPD Límit	Over Cal	Failure	Qualifier	fo £S (
F102329-MS1	Hg-CVAFS-T-7030	463.6	100	1	0.05904	799.20	g/gn	54.2	71.00	125.00			ASS-OVER	FAIT -MS	LO NO	י פטפ ו
E102200 1 2021	Un CUMER T 7010														10-IMD	ł
L102229-MSD1	118-C VAITS-1-/USU	428.3	100	463.6213	0.05904	799.20	g/gn	49.8	71.00	125.00	8.48	24.00 F	ASS-OVER	FAIL-MSD (Rec.)	OM-07	ļ
F10220 Meho	He-CVAFS T 7030	1 070	50,													
70001AI-670701 1		603.1	100	707.4382	23.3414	399.60	g/gu	160	71.00	125.00	27.7	24.00 F	ASS-OVER	FAIL-MSD (Rec. and RPD)	OM-07	
1C05005-CCVB	He-CVAFS-T-7030	0 778	1 000			0000	2									
		077.0	1.000			9,240	ng/L	185	77.00	123.00		н	ASS-OVER	FAIL-CCV		
1005005-000	He-CVAFS-T-7030	2637	1 000													
		170.0	0001		•	4.9950	J/gu	173	77.00	123.00		4	ASS-OVER	FAIL-CCV		

Analyst Reviewed By

Date

Peer Reviewed By

Date

Page 79 of 93

Page 1 of 1

	Sample Preparat	ion Review	v Checkli	st			Revision; 4
Technician/Date: _ 🗘 _	3/1	Someles to					Effective: Dec. 11, 2017
Upload/Date:	5/10	Reviewer/D	lap: <u>PA</u>		Batch	1#: <u>F1023</u>	<u>~1</u>
		NevieweiiD	ate:				
SOP2836 Oven Digestion (Total Reco	paration Method				Initials	SOP Date	100 Data
SOP2837 Tissue Nitric Digestion			AFS	-	R	8/31 hr	11 M / C
SOP2840 Modified Aqua Regia		Flichwa : E	CVAFS				<u></u>
SOP2820 RP	the state of the s		the second				
SOP2821 HF Bomb Digestion				(Comments:		
SOP2022 Nitric Bomb Digestion	WWWWWWWWWW	ale (Chie	CVARSES	1941 -			
US024145 Oven Digestion (As , Se Spe	eciation)	THE REPORT OF THE REAL		C	Onditionally fo	motiod instates.	
SOP5145 Microwave Digestion (3051)	(ceuticale)	And And	laise statistic	W	us34fila\General a	and Admin\Quality 4	Tiles located at:
	The search of the search			((Contact QA for any	y problems regardir	19 these training (Training Mas
 P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I P I						•	a choice training mes.)
Analytes: N	[Reviewer	,	Tertiary
 Is any SOP/DOC expiring within one we 	ek of Submission Date?		YES		Initials		Review
2 Check prop mathed	a current IDOC/CDOC.		If YES.	notify sum	NO NO		
(a) For Courieries is any state			YES	in any oup			ediately.
3 Compare sample ID 8 sould be a	g used in LIMS?	ICPMS	CV-AFS	5 🔀 70:30			
4. Check for transcription container ID with	benchsheet & in LIMS		Z YES				
(a) Check and compare initiat as Lin	hsheet		🔀 YES				
(b) Check and compare mass	blumes		YES		⊠ N/A		
(c) Has the number of pills been desume	1.1/0		YES		N/A		
(d) Have assay loopook copies hear attac	nted (Special Info 5 in bei	nchsheet)?	YES		N/A		
(e) For re-digests have e-mails been attact	ched & avg masses enter	red?	YES		N/A		
(f) Benchsbeet prep date MUST match	ched and verified?		YES		N/A	Π	
5. Samples per Batch? Check OC Boowing	ctual prep date	_	YES				
(a) PBs per batch?	ments	<u>≤</u> ≤ 20	<u>≤</u> 10			$\overline{\Box}$	
(b) Are pre and post homogenization bloc		3 P8s	2 PBs	🗌 1 PBs			
(c) BS, BS/BSD or CRM in batch?	iks in datch?	_	YES				
(d) MS/MSD in batch?		∐BS	SS/BSD	CRM			
(e) MD in batch?			YES		N/A		
(f) is there at least one duplicate OC source	ce in hoteha		VES		🔀 N/A		
(g) Are there any client specific requests					🔀 N/A		П
Document:	do requests, etc?		L YES		≥'N/A		
(h) Correct LIMS spike ID included for BS	BS/BSD and/n. MOR. 40					_	
(i) Correct 'source' designated for MD/MS/	MSD2	ינ	YES		□ N/A		
(j) For EFGS-filtered samples, was a filtrati	ion blank included 2				N/A		
6. Special prep requirements?					N/A		
(a) For 1638: Have samples sat for 48 hou	IS after preservation?				▶ N/A		
(b) For 200.8: Have samples sat for 16 hou	JIS after preservation?				N/A		
(c) For DOD have pipettes been calibrated	day of prep?				N/A		
Are the samples appropriately spiked?					l⊿'N/A		
(a) Is the spike and amount used appropria	ate and entered into LIMS	2 1			N/A		
(b) For <u>all</u> spiking was there a witness? (Init	tials must be in logbook)				[_] N/A		
(C) Spikes added: NOTE: Due to LIMS software exacts		Ē	YES				
spikes are used. Enter new	LIMS ID below and used	to be create	d when mult	tiple/ suppl	emental		
Spike LIMS ID : Two 758	ID DOIOW and USE	ladie to list al	I spikes incl	uded in it.			
Spike Name LIMS ID	ul Spike Nome	115.00.1-					
1,000 / 2 202755		LIMS ID	<u> </u>				
							_
	┼─┼───┤						
	<u>†−</u> <u>†</u> −−−		-+				
	······						

F102341

Eurofins Frontier Global Sciences, LLC

epared: 2/24/2021	4													
Pr	Extraction Comments													
itric/Sulfuric Digestion	Client						City Of Lynnwood	City Of Lynnwood	City Of Lynnwood	City Of Lynnwood	City Of Lynnwood	City Of Lynnwood	City Of Lynnwood	City Of Lynnwood
Trap N	ul Spike2				1									
IS FSTM	Spike2 ID													
SOP298	ul Spikel			T	200	200						\square	\square	
s - EFGS	Spike1 ID				2002758	2002758								
e Metal	Final (mL)	100	100	100	100	100	100	100	100	100	100	100	100	100
g: Trac	lnitial (Trap)	-	-	1	-		-1	-	-	-	-	-	-	-
Prepared usin	Sample ID and Source Sample	Blank	Blank	Blank	TCS	LCS Dup	09561 R1 A Inlet Spike	09685 R1 B Inlet	09689 R1 A Outlet Spike	09732 R1 B Outlet	09748 R2 A Inlet Spike	09765 R2 B Inlet	09596 R2 A Outlet Spike	09709 R2 B Outlet
Matrix: Air	Lab Number	F102341-BLK1	F102341-BLK2	F102341-BLK3	F102341-BS1	F102341-BSD1	1B00090-01	1B00090-02	1B00090-03	1B00090-04	1B00090-05	1B00090-06	1B00090-07	1B00090-08

Jar lot #00076735

Start time - 9:00 Temp - 57.7C, CF - 58.8C End time - 11:00. Temp - 58.1C, CF - 59.2C
 Standard ID(s):
 Description:

 2002758
 THg 1,000ng/mL Secondary Spiking

 Standard
 Standard

Expiration: 04-May-21 00:00

Reagent ID(s):Description:210038670/30 Digestion Acid21004275% BrCl

Expiration: 21-Aug-21 00:00 06-Jul-21 00:00

	ature is reached												~ ~	- Zhuld								Verified By: WW 214	
24/21	75±5°C for 2-4 hours. 15±5°C for 2-4 hours. 45°C (nitrogen purge for 30 minutes). ur hours. ur hours. ur flon ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	(<u>کا کا Swi Jul (الله مرم) کا مرام</u> (<u>اللا Swi Jul (اللام) مرم) الله مرم</u>	Calibration Date: No Calibration Date: No	of Calibrated? 人Yes No Cock Position:M	Sample ID Number	1 B aux 0 - 1 - R	R markh rec	1 12 6W10 - 0X 13			3		2 241 21									*Hotblock diagram located in back of logbook	
Date: 2	nol: Hot plate 7 llate 75±5°C fi Ilate 75±5°C fi S°C for over fo MPe: [d Glass MPe: [d Glass n.#: 1105 [do N, CF: 5°.3	ke vol.: 2 🗤 Spike vol.:	0,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	#: <u>154 616</u> #: <u>15772 6</u> #Hotb	Vial #	19	20.	21	22	23	52	26	R	82	30	31	32	33	H.	35	36	20 / QA2020-043 Page 4	· • • • • •
1 m2	- KOH/Metha 70:30: Hot p ury - KBr/CH ₂ 2014 AR: 18-2 2014 AR: 18-2 2014 AR: 18-2 2014 AR: 18-2 2014 AR: 18-2 2014 AR: 18-2) BS Spi late) MS	Pipette S Pipette S	Dispenser	Stand Stand	0.1), (1.0	<u>،</u> ز	22	101	21	5.0	2,4	171	2	1.0	1.0	1.0	1.0	1.0	3 / Effective 6/4/20	
h#: F102	international Mercury - otal Mercury - Methyl Merc שואראשון אירעיינע אירעיינע שואראינע שואראינע שואראינע	(initial and c		ng Chip lot #_		MV	NA NA	NN N	42	2 <	zs	4	S	94		8	Ø	\$	٩	2	2	stions / LOG-HG-01	
an: R Batc	S-T-AFS-SOP2986 Tissues - N S-T-AFS-SOP2795 Tissues - T S-T-AFS-SOP5134 Sediments S-T-AFS-SOP5134 Sediments S-T-AFS-SOP2307 Solids - Tol <i>50P</i> 7557 557 <i>10P</i> 2557 <i>10P</i>	thess: 10 ml (LIMS ID:	ID: //ふ S ID: /// IS ID: 2/いびょん	トンシッシュ :ID: ID: Frime	Samples up an in the second seco	F 107341 - BLV	F107341 - BUWZ	F 107341 - DUKS	150-112013	1 K 11 USU - USU 1	18 22 - 02	10- 020001	1 Beuss - Ur	180040 -03	19cus 2 - on	180050 - UN	10 who -w	1Baurio -US	180W40-06	1Burso -Ub	10- 95mg1	ier Global Sciences / Mercury Sample Diges	
Technici	EFAR EFAR EFAR EFAR EFAR Balances Time in	Final vol Spike Wi	HCI LIMS HNO3 LIM 70/30 LIM	Other Aci Glass Vial	Vial #				×~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1261 -					10 ST			5				Eurofins Front	

Page 82 of 93

F102329

Eurofins Frontier Global Sciences, LLC

Matrix: Tissue

Prepared using: Trace Metals - EFGS SOP2795 Nitric/Sulfuric Hg Digestion

Prepared: 2/18/2021

Lab Number	Sample ID and Source Sample	Initial (g)	Final (mL)	Spike1 ID	μl Spike1	Spike2 ID	μl Spike2	Extraction Comments
F102329-BLK1	Blank	0.25	20					
F102329-BLK2	Blank	0.25	20					
F102329-BLK3	Blank	0.25	20					
F102329-BS1	LCS	0.25	20	2100109	20			
F102329-BSD1	LCS Dup	0.25	20	2100109	20			
F102329-MS1	Matrix Spike [1B00003-37RE1]	0.125	10	2002758	100			
F102329-MS2	Matrix Spike [1B00003-07]	0.125	10	2002758	50			
F102329-MSD1	Matrix Spike Dup [1B00003-37RE1]	0.125	10	2002758	100			
F102329-MSD2	Matrix Spike Dup [1B00003-07]	0.125	10	2002758	50			

Standard ID(s):	Description:	Expiration:	Reagent ID(s):	Description:	Expiration:
2002758	THg 1,000ng/mL Secondary Spiking Standard	04-May-21 00:00	2003665	Boiling Chips for Trace Metals	29-Jun-21 00:00
		04-May-21 00:00	2100342	5% BrCl	06-Jul-21 00:00
2100109	THg 100ng/mL Primary Spiking Standard	12-Apr-21 00:00	2100386	70/30 Digestion Acid	21-Aug-21 00:00

F102329

Eurofins Frontier Global Sciences, LLC

Matrix: Tissue

Prepared using: Trace Metals - EFGS SOP2795 Nitric/Sulfuric Hg Digestion

Prepared: 2/18/2021

Lab Number	Sample ID	Initial	Final (mL)	QC Sample	Sample Specs.	Location	Sample Comments	Analysis Comments
1B00003-01	MMBKD-01_012521_ABD_01_BL	0.125	10	-	-	eezer 23 F		
1B00003-02	MMBKD-01_012521_ABD_02_BL	0.125	10	-	-	eezer 23 F		
1B00003-03	MMBKD-01_012521_ABD_03_BL	0.125	10	-	-	eezer 23 I		
1B00003-04	MMBKD-01_012521_ABD_04_BL	0.125	10	-	-	eezer 23 F		
1B00003-05	MMBKD-01_012521_ABD_05_BL	0.125	10	-	-	eezer 23 F		
1B00003-06	MMBKD-01_012521_ABD_06_BL	0.125	10	-	-	eezer 23 F		
1B00003-07	MMBKD-01_012521_ABD_07_BL	0.125	10	QC	-	eezer 23 F	Requested MS/MSD	
1B00003-08	MMBKD-01_012521_ABD_08_BL	0.125	10	-	-	eezer 23 F		
1B00003-09	MMBKD-01_012521_ABD_09_BL	0.125	10	-	-	eezer 23 F		
1B00003-10	MMBKD-01_012521_ABD_10_BL	0.125	10	-	-	eezer 23 F		
1B00003-11	MMBKD-01_012521_ABD_11_BL	0.125	10	-	-	eezer 23 F		
1B00003-12	MMBKD-01_012521_ABD_12_BL	0.125	10	-	-	eezer 23 F		
1B00003-13	MMBKD-01_012521_ABD_13_BL	0.125	10	-	-	eezer 23 F		
1B00003-14	MMBKD-01_012521_ABD_14_BL	0.125	10	-	-	eezer 23 F		
1B00003-15	MMBKD-01_012521_ABD_15_BL	0.125	10	-	-	eezer 23 F		
1B00003-16	ES-13_013021_ABD_01_BL	0.125	10	-	-	eezer 23 F		
1B00003-16RE1	ES-13_013021_ABD_01_BL	0.125	10	-	-	eezer 23 F	Added 3/5/2021 by MV2	Added 3/5/2021 by MV2
Р 0003-17 ас	ES-13_013021_ABD_02_BL	0.125	10	-	-	eezer 23 I		
0003-18	ES-13_013021_ABD_03_BL	0.125	10	-	-	eezer 23 F		
of								

F102329

Eurofins Frontier Global Sciences, LLC

Matrix: Tissue

Prepared using: Trace Metals - EFGS SOP2795 Nitric/Sulfuric Hg Digestion

Prepared: 2/18/2021

1B00003-18RE1	ES-13_013021_ABD_03_BL	0.125	10	-	-	eezer 23 I	Added 3/5/2021 by MV2	Added 3/5/2021 by MV2
1B00003-19	ES-13_013021_ABD_04_BL	0.125	10	-	-	eezer 23 I		
1B00003-37	CORN_012521_ABD-BAIT	0.25	20	QC	-	eezer 23 I		
1B00003-37RE1	CORN_012521_ABD-BAIT	0.25	20	QC	-	eezer 23 I	Added 3/5/2021 by MV2	Added 3/5/2021 by MV2

	_
	5
	2
2	-
	0
	3
	0
	2
ä	5 m
	4

THg26003-210304-1

Frontier Global Sciences

Analysis Datasheet for Total Mercury Date of Analysis: March 04, 2021 Instrument #: Hg2600-3 LIMS Sequence #:

Analyst: LEL Units ng/L

Calibration Statistics:

				Uncorrected			
				Response	Corrected Peak	Corrected	
LabNumber	e	True Val	Area	Factor	Height	Response Factor	% Recovery
SEQ-CAL1	TI	0.50 ng/L	159.77 units	319.54	76.22 units	152.44	112.6 %Rec
SEQ-CAL2	1	1.00 ng/L	206.41 units	206.41	122,86 units	122.86	90.8 %Rec
SEQ-CAL3	1	5.00 ng/L	732.53 units	146.51	648.97 units	129.79	95.9 %Rec
SEQ-CAL4	1	20.00 ng/L	2780.44 units	139.02	2696.89 units	134.84	00 6 % Dec
SEQ-CALS	1	40.00 ng/L	5554.89 units	138.87	5471.34 units	136 78	101 1 94 Dec
SEQ-CAL6	0	i				0.1.007	TONIN/ TITOT
SEQ-CAL7	0						
SEQ-CAL8	0						
SEQ-CAL9	o						
Corr. Mean RF 135.34	Corr. St Dev RF +/- 10.97	Corr. RSD CF 8.1% RSD	Uncort, Mean RF 190.07				

		7
	Std Dev (ng/L	±0.08
	Mean (ng/L)	0.44 ng/L
	Std Dev	±14.59
	Mean	83.55 units
	c	m
slanks:	LabNumber	SEQ-IBL

Preparation Blanks

Std Dev	±3.208	±19.304	±9.707			
Mean	1.648 ng/L	22.980 ng/L	-3.277 ng/L	0.000 na/L	0.000 no/l	0.000 ng/L
n	9	ę	6	0	0	0
Batch ID	1	2	'n	4	ŝ	9
sample type	BLK	BLK	BLK	BLK	BLK	BLK

File: THg26003-210304-1

ł

100

1

; ło	15	; ə	6	2 2]			_		_		1	- - ,	ſ	!	_	-		_	-	,	·,					,				-		-	-			<u> </u>					,	• •				,		_	,			_		_	
	Comments																																																								
	InitialUnits	ng/L	ng/L		ng/L		1/0	JQ/L	ng/L			ng/L			1/1	1/1		1/6	- 1/6	1 <u>9</u> /L		UQ/L	ng/L	hg/L	ng/L	ng/L	ng/L	ng/L		ng/L	1/F					19/L	177		1/20		1/0/1	11/1			UQ/L	1/54		1/10	- I/Du	- JAu		101	ng/L	ng/L	ng/L	ng/L	na/L
	FinalResult	-0.096	-0.020	0.11/	0.563	202.0	4./95	19.920	40.426	0/0.0	0.0/3	95./31	200.05	1900	100.01	06473 104	01600 062	120264 420	#//AITICI	# VALUE	# VALUE	2/0/4	817.1	95161.228	85450.106	111309.713	464.538	375.738	5795.261	5354.301	2791.768	+/6-7400	062.00/01	201-1-	-745 112	10050 317	ADT 2 TAA	141 000	EUED 13E		T00'660'	2011-222	2010125	171,6100	116'0140	4 445	UPC U	2182 207	480.578	3392.677	2904.301	3515,894	1047.381	2479.639	925.577	4415.069	42.608
	initial Result	-0.096	07070-	/1110	0.503	0.200	20.01	076'6T	#0.42b	0/0/0	C/0/0	10/.4	-0.017	1000	0.267	48.212	40.804	48 106	Error	Enne	4 675	2/0.1	-0.230	24,004	34.180	22.262	252.0	0.150	2.318	2,142	111/	310 1	CTC-L	292-1-	-0.245	4 020	1 025	2 072	100 0	2 060	0.770	1 181	1 448	071 C	27100	4 446	-0.240	1 273	1.952	1.357	1.162	1.406	0.419	0.992	0.370	1.766	0.107
	REGP	-13.0	2.2	0.0	7.0/	0.017	7606 0	5471 2	C.1/FC	0.00	SED O	0.250	-0.3	4	36.2	6525.2	5522.7	6510.9	21.0	2	637.3	C. C.C.	-34.4	6-TCTC	1.0201	3013.1	51.5	20.4	513.8	290'0	2.1CT	504.1	205.8	-49.7	-33.0	544.2	260.7	537.8	273.6	400.7	105.7	159.9	196.0	203 5	272.7	601.7	-32.4	172.4	264.3	183.8	157.3	190.4	56.8	134.3	50.2	239.1	22.2
No PB	Correction?								-													-											-													1		1									_
Batch		Ì	İ				1		+-		t	-		-	-	-	-	-					-					-		++			-		-	-	+-	<u> </u>	-		-		-	+-				-	-	=	-	Ŧ	-	-	-	-	2
Uncorrected	Response	40.04	00.33	150.77	206.41	732 53	2780.44	5554.89	770.58	93.45	742 53	741 91	81.22	83.14	119.75	6608.80	5606.23	6594.45	104.58	88.87	715.85	5134	5235 43	4709.60	2008 61	002001	103.00	00'001	379.54	234 7R	582 38	687.69	679.37	33.85	50.60	627.74	344.24	621.34	357.15	484.25	189.22	243.44	279.57	377.01	456 70	685.28	51.12	255.98	347.86	267.31	240.87	273.98	140.34	217.88	133.75	322.66	105.74
		10.25-10	10:39:28	10:43:37	10:47:46	10:51:55	10:56:04	11:00:13	11:04:23	11:08:32	11:12:43	11:16:52	11:21:02	11:25:11	11:29:21	11:33:30	11:37:39	11:41:49	11:45:58	11:50:08	11:54:17	11:58:26	12-02-36	12-08-45	17-40-55	17-15-04	19-10-13	12.22.02	12.27.37	12-31-41	12:35:51	12:40:00	12:44:10	12:48:19	12:52:29	12:56:38	13:00:48	13:04:58	13:09:08	13:13:17	13:17:27	13:21:37	13:25:47	13:29:57	13:34:07	13:38:16	13:42:26	13:46:35	13:50:45	13:54:54	13:59:04	14:03:13	14:07:23	14:11:33	14:15:42	14:19:52	14:24:01
FileTD	18540 1 DAVA	16550-1 RAW	16551-1.RAW	16552-1.RAW	16553-1.RAW	16554-1.RAW	18555-1.RAW	16556-1.RAW	16557-1.RAW	16558-1.RAW	16559-1.RAW	16560-1.RAW	16561-1.RAW	16562-1.RAW	16563-1.RAW	16564-1.RAW	16565-1.RAW	16566-1.RAW	16567-1.RAW	16568-1.RAW	16569-1.RAW	16570-1.RAW	16571-1.RAW	16572-1.RAW	16573-1 RAW	6574-1 RAW	16575-1.RAW	6576-1 RAW	6577-1 RAW	6578-1 RAW	16579-1.RAW	6580-1.RAW	16581-1.RAW	6582-1.RAW	6583-1.RAW	B584-1.RAW	6585-1.RAW	6588-1.RAW	6587-1.RAW	6588-1.RAW.	6589-1.RAW	6590-1.RAW	6591-1.RAW	6592-1.RAW	6593-1.RAW	B594-1.RAW	6595-1.RAW	6596-1.RAW	6597-1.RAW	6598-1.RAW	6599-1.RAW	6600-1.RAW	6601-1.RAW	6602-1.RAW	6903-1.RAW	6604-1.RAW	6805-1.RAW
Annual of the second	2/4/2/021 4/0-24-44	3/4/2/021 10:31.10	3/4/2021 10:39:28	3/4/2021 10:43:37	3/4/2021 10:47:46	3/4/2021 10:51:55	3/4/2021 10:56:04	3/4/2021 11:00:13	3/4/2021 11:04:23	3/4/2021 11:08:32	3/4/2021 11:12:43	3/4/2021 11:16:52	3/4/2021 11:21:02	3/4/2021 11:25:11	3/4/2021 11:29:21	3/4/2021 11:33:30	3/4/2021 11:37:39	3/4/2021 11:41:49	3/4/2021 11:45:58	3/4/2021 11:50:08	3/4/2021 11:54:17	3/4/2021 11:58:26	3/4/2021 12:02:36	3/4/2021 12:06:45	3/4/2021 12-10-55	3/4/2021 12-15-04	3/4/2021 12:19:13	3/4/2021 12:23:23	3/4/2021 12:27:32	3/4/2021 12:31:41	3/4/2021 12:35:51 1	3/4/2021 12:40:00 1	3/4/2021 12:44:10 1	3/4/2021 12:48:19	3/4/2021 12:52:29 1	3/4/2021 12:56:38 1	3/4/2021 13:00:48	3/4/2021 13:04:58	3/4/2021 13:09:08	3/4/2021 13:13:17 1	3/4/2021 13:17:27 1	3/4/2021 13:21:37 1	3/4/2021 13:25:47 1	3/4/2021 13:29:57 1	3/4/2021 13:34:07 1	3/4/2021 13:38:16 1	3/4/2021 13:42:26 1	3/4/2021 13:46:35 1	3/4/2021 13:50:45 1	3/4/2021 13:54:54 1	3/4/2021 13:59:04 1	3/4/2021 14:03:13 1	3/4/2021 14:07:23 1	3/4/2021 14:11:55 1	1 24:01:41 1202/6/S	74/20/21 14:14:12:07	3/4/2021 14:24:0111
Dilution	1	-	-	-	-	F	-	1	-	1	20	20	50	20	20	2000	2000	2500			1	-	2500	2500	5000	2000	2500	2500	2500	2500	2500	2500	-	**	1000	2500	2500	2500	2500	2500	1000	2500	2500	2500	2500	-	-	2500	2500	2500	2500	2500	25001	7500	2000		400
LabNumber	SEQ-IBL1	SEQ-IBL2	SEQ-IBL3	SEQ-CAL1	SEQ-CAL2	SEQ-CAL3	SEQ-CAL4	SEQ-CAL5	SEQ-ICV1	SEQ-ICB1	F102329-BS1	F102329-BSD1	F102329-BLK1	F102329-BLK2	F102329-BLK3	1B00028-04RE3	1B00028-05RE3	1B00028-09RE1	WS.	WS	SEQ-CCV1	SEQ-CCB1	1B00028-04RE4	1B00028-05RE4	1B00028-09RE2	1B00065-07RE3	1B00003-37	=102329-MS1	=102329-MSD1	1B00003-07	=102329-MS2	-102329-MSD2	SEQ-CCV2	SEQ-CCB2	B00065-07RE4	B00003-01	B00003-02	B00003-03	B00003-04	B00003-05	IB00065-07RE3	B00003-06	B00003-08	B00003-09	B00003-10	SEQ-CCV3	SEQ-CCB3	B0003-11	B00003-12	BUUUU3-13	BUUU03-14	BUUUU3-15		ANNAR-18	B0001-10	Interacto	101+1+101
Sample	G	ß	ß	B	3	ਭ	ฮ	3	ß	3	SAM	SAM	R	BLK	EK Sil	SAM	MN/S	MAN	New York	KAM	3	ਡੋ	SAM	SAM	₹	3	SAM	SAM	SAM	SAM	NAN	MAR	MAR	MAX	SAM	SAM	SAM	3	5	WWS	MAN	NAM NAM	MAN N	CAM	CAM	CAM 1	SAM 1	MAZ	100								
Ampiyot	LEL	E	回	Ē	E			5	릐		E	Ē	<u> </u>	3	-		- - -			- - = !	E I		Ē	E	E	LEL	LEL	Ш	Ē	릭	E					9			+ = :	-+ -		= =		EI.				3		d g			╡	1			-
Instrument	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	H92600-3	Hg2600-3	Hg2600-3	Hg2600-3	H92600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg250U-3	Hg20UU-3	19200U-3	5-0026L	C-002CT0	C-000761	10200U-3	rig 2000-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg2600-3	Hg260U-3	Hg2600-3	hg26U0-3	Hg2600-5	5-00925H	102000 B	Hg2600-3	5-00-25H	Hg2000-3	Hg2600-3	Hg2600-3	Hg2bUU-5				C-00264	C-0026U	HAZGOLZ	Hn2600-3	Ha2600-3	Ha2600-3	Ho2600-3										

Page 87 of 93

Printed: 3/5/2021

Page 1 of 4

1

00-3 LEL CAL 00-3 LEL SAN 00-3 LEL SAN	BF0-CCV4	Dilution	Analyzed	FileID	RunEnd	Uncorrected B Response	atch No Fi ID Correctiv	Son? RESP	InfidelResult	FinalReaut	InitialUnits	Comments
00-3 LEL SAN 00-3 LEL BUX 00-3 LEL BUX	SEQ-CCB4		3/4/2021 14:28:11	16606-1.RAW	14:28:11	688.77		605.2	4.472	4,472	no/l	
00-3 LEL BLK	1 F101414-BS2		3/4/2021 14:32:21	16607-1.RAW	14:32.21	35.74		-47,8	-0.353	-0.353	ng/L	
	C F101414-BLK1	1001	14/202141 12/2/4/0	10000-1.KAW	14:36:31	95.14	2	11.6	0.028	11.257	ug/L	
	K F101414-BLK2	1 00	3/4/2021 14:44:50	16610-1 RAW	14:44:41	97.91	10	14.4	0.106	10.607	J/Gu	
	F101414-BLK3	100	3/4/2021 14:49:01	16611-1.RAW	14:49:01	144 76	NC	111	0.131	13.110	ng/L	
	1 1A00107-01	10	3/4/2021 14:53:11	16612-1.RAW	14:53:11	115.82	VC	27.2	0.452	45.224	1/6u	
	1 F102341-BS1	400	3/4/2021 14:57:21	16613-1.RAW	14:57:21	658.67	0	1777	4 758	R11.72	ug/L	
	F102341-BSD1	100	3/4/2021 15:01:31	16614-1.RAW	15:01:31	619.05	0	535.5	080 5	400 802	J/L	
	F10241-BLV1	8	3/4/2021 15:05:40	18615-1.RAW	15:05:40	75.57	60	-8.0	-0.059	-5 901	Ig/L	
)-3 LEL BIK	F102341-BLK3	214	3/4/2021 15:09:51	16616-1.RAW	15:09:51	78.36	e	-5.2	-0.038	-3.835	ng/L	
D-3 LEL CAL	SED-COVA		3/4/2021 15:14:00	16617-1.RAW	15:14:00	82.57	en	-1.0	-0.007	-0.778	- I'A'L	
			3/4/2021 15:18:10	16618-1.RAW	15:18:10	686.82		603.3	4.457	4 457	1/0/1	
EI SAM	E10336.004		3/4/2021 15:22:20	16619-1.RAW	15:22:20	90.30		6.7	0.050	0.050	1/02	
		400	3/4/2021 15:26:30	16620-1.RAW	15:26:30	598.48	0	514.9	3 813	1575 115		-
		400	3/4/2021 15:30:41	16621-1.RAW	15:30:41	643.87	0	2.03	0 148	211.02C1		
	F102320-BLK1	9	3/4/2021 15:34:51	16622-1.RAW	15:34:51	62.35	0	-112	-0.167	00776001		
	E400305 51 1/0	8	3/4/2021 15:39:01	16623-1.RAW	15:39:01	102.10	10	18.5	0 137	13 702	1/1	
	T IU23ZO-BLK3	8	3/4/2021 15:43:11	16624-1.RAW	15:43:11	73.76	0	6	0.070	20/*01	1/0 1/1	
-2 LEL CAN	10-20005	001	3/4/2021 15:47:21	16625-1.RAW	15:47:21	126.30	3	47.7	0340	CC21/-		
	IBUUUDZ-UZ	100	3/4/2021 15:51:31	16626-1.RAW	15:51:31	105.09	0	21 5	C01 0	C00'4C	1001	
	1 DUUUDZ-US	90	3/4/2021 15:55:42	16627-1.RAW	15:55:42	62.98	0	202-	U110	CGT'ST	LINE L	
LA LEL CAM	100002-04	9	3/4/2021 15:59:53	16628-1.RAW	15:59:53	89.31	0	8	0.075	7 570	1/6u	
		100	3/4/2021 16:04:03	16629-1.RAW	16:04:03	79.30	3	4	1000	2010		
	SEQ-CCV6	***	3/4/2021 16:08:14	16830-1.RAW	16:08:14	697.09		613 5	4 533	00110		
	SEM-CC86	-	3/4/2021 16:12:25	16631-1.RAW	16:12:25	51.82		-31.7	NCC UT	500.F		
	1BUUVU-UZ	9	3/4/2021 18:16:35	16632-1.RAW	16:16:35	81.63	0	-10	0100	-0.234	- Id/L	
		100	3/4/2021 16:20:45	16633-1.RAW	16:20:45	149.73	3	66.7	0.572	11011	110/1	
			3/4/2021 16:24:56	16634-1.RAW	16:24:56	126.15	8	42.6	0.348	C37 25	7/7	
3 LFI SAM	180000-02		3/4/2021 16:29:08	16835-1.RAW	16:29:06	100.17	0	16.6	0.156	15,557		
3 LEL SAM	180090-03	001	3/4/2021 16:33:17	16636-1.RAW	16:33:17	91.01	0	7.5	0.088	8.788		
3 LEL SAM	1800080-04	8	3/4/2021 16:37:27	16637-1.RAW	16:37:27	137.42	e	53.9	0.431	43.080		
3 LEL SAM	1B0090-05	00	3/4/2021 12/2/4/2	TD038-1.RAW	16:41:37	104.61	6	21.1	0.188	18.839		
3 LEL SAM	1800090-06	, 00	140001 10:40:41	1914 C 1914	16:45:47	127.47	8	43.9	0.357	35.725	na/L	
B LEL SAM	180090-07	100	2/4/2014 10-40-07	100401 - 04001	10:84:01	91.24	3	7.7	060.0	8.956	ng/L	
B LEE CAL	SEQ-CCV7		21412021 10.04.01	WAN-1-14001	10:04:01	123.26	9	39.7	0.326	32.613	na/L	
	SEQ-CCB7		2/4/2001 12/02/12/	10042-1.0AV	11:80:01	652.56		569.0	4.204	4.204	ng/L	
I LEL SAM	1B00090-08	100	17-20-11 12021-00	18644 4 DAM	17:20:02	50.08		-33.5	-0.247	-0.247	ng/L	
3 LEL SAM	1B00052-01	2500	3/4/2002 1 12:02:00	16645-1 PAIN	17.10.31	6/.19	0	-16.4	-0.088	-8.814	ng/L	
LEL SAM	1B00052-02	2500	3/4/2021 17-14-58	18846-1 PAW	17.10.47	130.74	4	47.2	0.349	871.565	ng/L	
LEL SAM	1B00052-03	2500	3/4/2021 17-19-08	16647-1 RAW	17.10-00	130.00	4	47.0	0.347	868.217	ng/L	
LEL SAM	1800052-04	2500	3/4/2021 17:23:18	18648-1 RAW	17-22-18	C14.83	4	631.4	4,665	11662.556	ng/L	
LEL SAM	1800070-01	2500	3/4/2021 17:27:28	16649-1 RAW	17:27:20	10.000	4 1	499.5	3.691	9226.756	ng/L	
LEL SAM	1B00070-02	2500	3/4/2021 17:31:38	16650-1 RAW	17-31-38	640.00	4 1	561.8	4.151	10376.856	ng/L	
LEL SAM	1B00070-03	2500	3/4/2021 17:35-4R	16651-1 RAW	101.00	87.000	4	554.7	4.099	10246.788	ng/L	
LEL SAM	1B00070-04	2500	3/4/2021 17-40-01	10652-1 RAW	17.40.01	131.13	4	54.2	0.400	1000.809	T/6u	
LEL SAM	1B00090-01	2500	3/4/2021 17:44:11	16653-1 RAW	17:44:11	1080 38	*	31./	0.234	585.850		
B	SEQ-CCV8		3/4/2021 17:48:22	18654-1. RAW	17:48:22	R5K R7	+	2,052	1.305	18412.826	1/6u	
S I	SEQ-CCB8	-	3/4/2021 17:52:33	16855-1.RAW	17:52:33	40.83		1.2/0	4.227	4.227		
LEL SAM	1800090-02	2500	3/4/2021 17:56:43	16656-1.RAW	17:56:43	414.54	4	1.24-	-0.516	-0.316		
	1B00090-03	2500	3/4/2021 18:00:54	16657-1.RAW	18:00:54	1145.63	4	1062 1	7 647	072720	LIDI/L	
	1 BUUU90-04	2500	3/4/2021 18:05:04	16658-1.RAW	18:05:04	453,99	4	370.4	757.0	CON DTOKT	1/0u	
	11800090-05	2500	3/4/2021 18:09:16	16659-1.RAW	18:09:16	1357,59	4	1274.0	0.412	13622 274		
	11BUU080-06	2500	3/4/2021 18:13:26	16660-1.RAW	18:13:26	419.92	4	336.4	2.485	470'00007		
	1 BUUUSO-U/	2500	3/4/2021 18:17:37	16661-1.RAW	18:17.37	1261.38	4	1177.8	8 707	71755 237	1/6	
I FI CAM	100062 04	2500	3/4/2021 18:21:49	16662-1.RAW	18:21:49	514.28	4	430.7	3.182	7956 161	19/1	
I.F. SAM	140005-01	0621	3/4/2021 18:25:59	16663-1.RAW	18:25:59	2840.18	5	2756.6	20.367	25459.295		
LEL SAM	1800052-03	1950	3/4/2U21 16:30:08	18864-1.RAW	18:30:09	3046.80	5	2963.2	21.894	27367.795	no/L	
EI E	SEQ-CCV9	1	24/2021 18:34:21	16665-1.RAW	18:34:21	3063.62	22	2980.1	22.018	27523.118	no/L	
CAL	SEQ-CCB9		16-02-01 12-02-00	10000-1.KAVV	18:36:31	707.22	_	623.7	4.608	4.608	ng/L	
LEL SAM	1B00052-04	1250	3/4/2021 18:48:52 1	10058-1 RAW	10.46.42	10.45		-48.9	-0.362	-0.362	ng/L	
LEL SAM	1B00070-01	1250	3/4/2021 18:51:03 1	16669-1 RAW	10.40.02	2401.00	0	2378.3	17.573	21965.657	ng/L	
LEL SAM	1800070-02	1250	3/4/2021 18:55-13 1	IBRZ0.1 PAIN	10.01.00	02,8002	0	2605.8	19.253	24066.619	1/6u	

Page 88 of 93

Page 2 of 4

Printed: 3/5/2021

ment	Andret	Sample	LabNumber	Dilution	Analused	FileID	RunEnd	Uncorrected Response	Batch ID 4	No PB		Twitter (D. Annult	the second of the second is	Particular Inc.	
6-3	E	SAM	1B00070-03	1250	3/4/2021 18:59:24	16671-1.RAW	18:59:24	2906.69	I.C		2823.1	20.850	HINGOVIDUAL		Columents
00-3	E	SAM	1B00070-04	1250	3/4/2021 19:03:34	16672-1 RAW	19:03:34	2774.64	142		2691.1	19 883	74854 743	1	
00-3	Ē	SAM	1B00003-37RE1	1000	3/4/2021 19:07:45	16673-1.RAW	19:07:45	83.49	-0		-0.1		-0.437	1/24	
00-3	Ē	SAM	1B00003-16RE1	1000	3/4/2021 19:11:55	10674-1.RAW	19:11:55	168.19	II.C		84.6	0.625	675 319		
6-0	E	SAM	1B0003-18RE1	1000	3/4/2021 19:16:05	16675-1.RAW	19:16:05	179.51			96.0	Emor	#VALUE	- 1/I	
6	E	SAM	F101414-BS3	400	3/4/2021 19:20:15	16676-1.RAW	19:20:15	144.03	2		60.5	0,389	155.758	1/00/1	
с- С-	E	SAM	F101414-BS4	100	3/4/2021 19:24:26	16677-1.RAW	19:24:26	134.24	2		50.7	0.145	14.471	ng/L	
0-3	EE	ß	SEQ-CCVA	-	3/4/2021 19:28:36	16678-1.RAW	19:28:36	659.31			575.8	4.254	4.254	1/04	
6-00	E	₹	SEQ-CCBA	-	3/4/2021 19:32:47	16679-1.RAW	19:32:47	39.60			44.0	-0.325	-0.325	- 1/DU	
6-3	Ę	SAM	1B00052-01RE1	1000	3/4/2021 19:36:57	16680-1.RAW	19:36:57	260.96	e		177.4	1.314	1314.082	l/ou	
m	LEL	SAM	1B00052-02RE1	1000	3/4/2021 19:41:09	16681-1.RAW	19:41:09	281.32	e		197.8	1.465	1464,536	na/L	
3	ГĒ	SAM	1B00070-03RE1	1000	3/4/2021 19:45:19	16682-1.RAW	19:45:19	299.37	e		215.8	1.598	1597.855	na/L	
Ч	E	SAM	1B00070-04RE1	1000	3/4/2021 19:49:30	16683-1.RAW	19:49:30	291.86	6		208.3	1.542	1542.360	na/L	
6-3	LEL	SAM	1A00021-10RE1	625000	3/4/2021 19:53:40	16684-1.RAW	19:53:40	30.88	8		-52.7	-0.389	-243217.381	na/L	
3	щ	SAM	1A00021-11RE1	625000	3/4/2021 19:57:51	16685-1.RAW	19:57:51	45.23	ø		-38.3	-0,283	-176986.775	no/L	
E E	핔	SAM	1A00021-13RE1	625000	3/4/2021 20:02:01	16686-1.RAW	20:02:01	28.81	ø		-54.7	-0.404	-252783.719	na/L	
r- E	E	SAM	1A00021-09RE1	625000	3/4/2021 20:08:11	16687-1.RAW	20:06:11	50.91	8		-32,6	-0.241	-150737.417	na/L	
- 20-33	Ē	SAM	1A00021-12RE1	200000	3/4/2021 20:10:22	16688-1.RAW	20:10:22	46.56	9		-37,0	-0.273	-546711.229	na/L	
ň	Ē	SAM	1A00021-01RE1	1000000	3/4/2021 20:14:33	16689-1.RAW	20:14:33	31.74	g	1	-51.8	-0.383	-382834.453	na/L	
г. о	Ē	R	SEQ-CCVB	-	3/4/2021 20:18:43	16690-1.RAW	20:18:43	1332.48			1248.9	9.228	9.228	na/L	
e G	LEI	¥	SEQ-CCBB	-	3/4/2021 20:22:54	16691-1.RAW	20:22:54	52.04			-31.5	-0.233	-0.233	na/L	
6-0	LEL	SAM	1400021-10RE1	200000	3/4/2021 20:27:04	16692-1.RAW	20:27:04	56.71	9		-26.8	-0.198	-396718.829	ng/L	
m G	Ē	SAM	1A00021-11RE1	200000	3/4/2021 20:31:14	16693-1.RAW	20:31:14	220.27	9		136.7	1.010	2020250.475	no/L	
	LEL	SAM	1A00021-15RE1	2000	3/4/2021 20:35:25	16694-1.RAW	20:35:25	96.99	é		13.4	660.0	198.562	na/L	
- 20- 20-	LEI	SAM	1A00021-15RE1	2000	3/4/2021 20:39:35	16695-1.RAW	20:39:35	37.59	8		-46.0	-0.340	-679.118	no/L	
00-13 00-13	LEL	SAM	1A00021-16RE1	2000	3/4/2021 20:43:45	16696-1.RAW	20:43:45	47.61	60		-35,9	-0.266	-531.132	ng/L	
m M	LEL	ਭ	SEQ-CCVC	-	3/4/2021 20:47:56	16697-1.RAW	20:47:56	1251.13			1167.6	8.627	8.627	no/L	
	Ē	3	SEO-COBC	•	3/4/2021 20-52-08	16608-1 PAW	20-52-08	A5 18			20.4	COLV			

Page 89 of 93

Page 3 of 4

ł

ł
TotalMercury EPA1631	Operat: LEL Workst TH9260 Method ####	BlankSi CalibFa R: Vi 140204	86.028 Callb Eq 133.72 Status: 1 R ² :	S C S	cc = (Arca-86.02 Run Date: Warnings:6/QC E Run Time: 9999	3/4/2021 Blank SD: 10:03:18 Blank RSD%: CF SD:	12.90128327 14.99666659 9.962053563				
Samplete	Localis" F.		-I. Concision	CM N	St. Co. St. A Ban 4	CF RSD%:	7.449813955				
Clean			0.00	0.67		n Ravidale 16543-1 RAW	10-06-10	kak (Faw) Contral (et	f) Plags	Furthers & Comile	ιξ.
Clean Flush			0.00	0.12		16544-1.RAW	10:09:02	15.65 Clean	5ð	, , ,,	
WS			86.03			16545-1.RAW	10:14:36	82.56 Flush	Я	~	
WS.			86.03	0.14		16547-1.RAW	10.18.45	91.90 Sample	ЗŞ		
SEC-IRI 1	Δ1	•	86.03 2.05	0.0		16548-1.RAW	10:27:02	82.65 Sample	58		
SEQ-IBL2	8	- 4-	0.00	0.50		18549-1.RAW	10:31:11	70.54 Sample	ð		
SEQ-IBL3	A.3	-	00.0	0.74		16551-1 RAW	10(35)19	80.78 Sample	ðð		
SEQ-CAL1	A4	-	B6.03	0.55	110.29	16552-1.RAW	10:43:37	150 77 Sample	52		
	A5		B6.03	0.90	90.02	16553-1.RAW	10:47:46	206.41 Sample	Śč		
SEQ-CALA	40 47	- 4	86.03 86.03	4.83	96.69	16554-1.RAW	10:51:55	732.53 Sample	őð		
SEQ-CAL5	AB		86.U3 86.D3	20.15	100.75	16555-1.RAW	10:56:04	2780.44 Sample	šð		
SEQ-ICV1	88 88		86.03	40.8U	102.24	16556-1.RAW	11:00:13	5554.89 Sample	8	-	
SEQ-ICB1	A10	-	0.00	0.70		16558-1 RAW	11:04:23	//0.58 Sample	бð	. .	
F102329-BS1	A11	50	86.03	98.19		16559-1.RAW	11:12:43	742.53 Samila	5 8	+	
F102320-B1 k1	A12	200	B6.03	98.10 		16560-1.RAW	11:16:52	741.91 Sample	őð		
F102329-BLK2	A10	2 2	86.U3	0.0		16561-1.RAW	11:21:02	81.22 Sample	ð	· .	
F102329-BLK3	A15	38	80.03 BR 03	0.00		16562-1.RAW	11:25:11	83.14 Sample	ð	-	
1B00028-04RE3	A16	2000	86,03	7557.05		10005-1.KAW	11:29:21	119.75 Sample	ð	-	
1B00028-05RE3	A17	2000	86.03	2562.27		16565-1 RAW	11.35(30)	6606.22 Comple	8		R 2500X
1600028-09RE1	A18	2500	B6.03 12	1678.11		16566-1.RAW	11:41:49	6594 45 Sample			
SM			86.03	0.14		16567-1.RAW	11:45:58	104.58 Sample	Š		
SEQ-CCV1	424	-	80,U3 86 03	0.02		16568-1.RAW	11:50:08	88.87 Sample	ð	-	
SEQ-CCB1	10		86.03	1.4	94.20	16569-1.RAW	11:54:17	715.85 Sample	YO	-	
1B00028-04RE4	A19	2500	86.03	0.00	0.00	165/0-1.KAW	11:58:26	51.34 Sample	ð	÷	
1B00028-05RE4	A20	2500	86.03 8	6441.64		16572-1 RAW	12:02:30	02330.43 Sample	8		
1800028-09RE2	B2	2000	86.03 11	2568,54		16573-1.RAW	12:10:55	3096.61 Sample	E S		
100003-37 100003-37	20	2000	86.03 20 20	434.81		16574-1.RAW	12:15:04	115.10 Sample	őð		R 1000X
F102329-MS1	B5	2500	50.03 50.03	335.68		16575-1.RAW	12:19:13	103.98 Sample	ð	1 RR 1000	X
F102329-MSD1	88	2500	86.03	5374 61	11/26.82	16576-1.RAW	12:23:23	397.38 Sample	ð	-	
1B00003-07	B7	2500	86.03	2781.01		16578-1 RAW	12:27:32	373.51 Sample	бð		
F102329-MS2	B8	2500	86.03	8905.59	320.00	16579-1.RAW	12:35:51	562 38 Sample	58		
F 1UZ3Z9-MSUZ SFO-CCV2	B9 B10	2500	86.03	D874.44		16580-1.RAW	12:40:00	667.69 Sample	δð		
SEQ-CCB2	B11		86.03	44 C	88.74	16581-1.RAW	12:44:10	679.37 Sample	ð	+	
1B00065-07RE4	B21	1000	86.03	0.00	00.00	18583-1.RAW	12:48:19	33.85 Sample	ð ð	-	
1B00003-01	B12	2500	86.03 1	0127.57		16584-1.RAW	12:56:38	627 74 Sample	Śč	1 ABED	R 1000X, SUSPECT DILUTION ERROF
1B00003-02	B13 P14	2500	86.03	4827.46		16585-1.RAW	13:00:48	344.24 Sample	δð		
1B00003-04	101	2500	86.03	82.3000		16586-1.RAW	13:04:58	621.34 Sample	ð	-	
1B00003-05	B16	2500	86.03	7444.92		VARA-1-18001	13:09:08	357.15 Sample	ð	~-	
1B00065-07RE3	B17	1000	86.03	771.69		16580-1 PAIN	13:13:17	484.25 Sample	ðð	-	
1B00003-06	C18	2500	86.03	2942.94		16590-1.RAW	13.01.27	aldmax 22.801	δð	1 ABED, C	ONFIRMATION RR
1800003-08	B18	2500	86.03	3618.40		16591-1.RAW	13:25:47	279.57 Sample	Śð		
1B00003-10	B20	2500	0000 0000 0000	5440.01		16592-1.RAW	13:29:57	377.01 Sample	δð		
SEQ-CCV3	10	- -	86.03	48.8780 4 4 4	00 GO	16593-1.RAW	13:34:07	456.70 Sample	ð	-	
SEQ-CCB3	G.	-	86.03	00 7 0	0.00	16595-1 FAW	13:38:16 13:43:08	685.26 Sample	8 g	. .,	
1B00003-11	បីខ្ល	2500	86.03	3177.29		16596-1.RAW	13:48:35	255.98 Sample	5 ð		
1B00003-13	5 8	2500	86.03 86.03	4895.09 110 20		16597-1.RAW	13:50:45	347.86 Sample	ð		
1B00003-14	38	2500	86.03	0804.90		16596-1.KAW	13:54:54	267.31 Sample	ð		
1B00003-15	C7	2500	86.03	3513.91		16600-1.RAW	13(09)04	240.87 Sample 273.08 Sample	8 g	4~ 5	
1B00003-16	CB	2500	86.03	1015.47		16601-1.RAW	14:07:23	140.34 Sample	Śð	1 RR 1000	

RR 1000X	LOD, TRAP, RR	LOQ, TRAP, RR											R RFD F102336	B BED, F102325	B BED, F102325	B BED, F102325 B BED, F102325			B BED, F102325 B BED, F102325	B BED, F102325	B BED, F102341	B BEU, F102341 B RFD F102341	B BED, F102341	B BED, F102341	B BED, F102341 B BED, F102341			B BED, F102341 A RED F102325	A BED, F102325	A BED, F102325	A BED, F102325 A BED, F102325	A BED, F102325	A BED, F102325	A BED, F102325 A BED E102341	A BEU, F 102341		A BED, F102341	A BED, F102341	A BED, F102341 A BED, F102341	A BED, F102341	A BED, F102341	A BED, F102341	C BED, F102325 C BED, F102325	C BED, F102325
					- +-	÷		· .	÷			~		- +	-						÷			. .		44-	 .		-		~	ι- ι			·				-
ð ð ð	ððð	555	ðð	ðð	Śð	бð	δð	ŏ	ðð	бð	ð	Зð	бð	ð	Š	ð ð	őð	ş	5 č	ŏð	ę 9	бð	ð	δð	ð ð	őð	ĕð	бð	ð	ŏð	бð	ŏ	ð	ðð	őð	ð	ðð	5ð	őð	ð	ð i	ðð	58	ð
217.88 Sample 133.75 Sample 322.66 Sample	105.74 Sample 688.77 Sample 35.74 Sample	97.91 Sample	101.30 Sample 144.76 Sample	115.82 Sample 658.67 Sample	619.05 Sample	75.57 Sample	ra.do Semple 82.57 Semple	696.82 Sample	90.30 Sample For 48 Sample	643.87 Sample	62.35 Sample	102.10 Sample	126.30 Sample	105.09 Sample	62.88 Sample	79.30 Sample	697.09 Sample	51.82 Sample	01.00 Sample	126.15 Sample	100.17 Sample	137.42 Sample	104.61 Sample	127.47 Sample	91.24 Sample	652.56 Sample	50.09 Sample	130.74 Sample	130.56 Sample	/14.93 Sample	645.33 Sample	638.29 Sample	137.73 Sample	110.24 Sample	655.67 Sample	40.83 Sample	414.54 Sample	453.99 Sampe	1357.59 Sample	419.92 Sample	1261.36 Sample	2840 16 Sample	3046.80 Sample	3063.62 Sample
14:11:33 14:15:42 14:19:52	14:24:01 14:28:11 14:32:21	14:36:31	14:44:50	14:53:11 14:57:21	15:01:31	15:05:40 15-00-64	15:14:00	15:18:10	15.22.20 15.26.30	15:30:41	15:34:51	15.39:01	15:47:21	15:51:31	15:55:42	16:04:03	16:08:14	16:12:25	16:20:45	16:24:56	16:29:06 16:33:17	16:37:27	16:41:37	16:45:47 16:40:67	16:54:07	16:58:17	17:02:27 17:06-37	17:10:47	17:14:58	17-23-1R	17:27:29	17:31:38	17:35:48	17:44:11	17:48:22	17:52:33	17.56.43	18:05:04	18:09:16	18:13:26	18:17:37	18:25:59	18:30:09	18:34:21
16602-1.RAW 16603-1.RAW 16804-1.RAW	16605-1.RAW 16606-1.RAW 16607-1.RAW	16608-1.RAW 16609-1.RAW	1001U-1.FAW 16611-1.FAW	10012-1.KAW 16613-1.RAW	16614-1.RAW	16616-1.RAW	16617-1.RAW	16618-1.RAW	16620-1.RAW	16621-1.RAW	16622-1.RAW	18624-1 RAW	16625-1.RAW	16626-1.RAW	1002/-1.MAW	16629-1.RAW	16630-1.RAW	16631-1.RAW	16633-1.RAW	16634-1.RAW	16636-1.RAW	16637-1.RAW	16638-1.RAW	18639-1.RAW	16641-1.RAW	16642-1.RAW	10043-1.RAW 16644-1 RAW	16645-1.RAW	16648-1.RAW	16648-1.RAW	16649-1.RAW	16650-1.RAW	16852_1 RAW	16653-1.RAW	16654-1.RAW	18655-1.RAW	16657-1 RAW	16658-1.RAW	16659-1.RAW	16660-1.RAW	16661-1.RAW	16663-1.RAW	16664-1.RAW	16665-1.RAW
	80.15 0.00							89.86	0.00								91.39	0.00								84.73	0.00								85.20	0.00								
2465.09 892.19 4423.99	0.00	27.25 8.88 11.47	43.82	1712.94	398.61 0.00	0.00	0.00	4,49	1532,89	1668,65	0,00	0.00	30,12	14.26	2.45	0.00	4.57	800	47.64	30.01	3.73	38.43	13.90 30 da	3.90	27.84	4.24	0.00	835.85	11757 69	9292,36	10458,40	1U324.70 966.66	546.67	18589,81	4.28	0.00 8141 67	19809,69	6879,19	23772.40	5242.35 24073 77	8006.35	25744,87	27676.51	21,000,12
86.03 86.03 86.03	86.03 86.03	86,03 86,03 86,03	86.03 86.03	86.03	86.03 B6.03	86.03	86.03 20 20	86.03 86.03	86.03	B6.03	80.03 86.03	86.03	86.03 20 20	80'02 80'02	86.03	86.03	86.03 86.03	86.03	86.03	80.03 80.03 80.03	86.03	86.03	86.03 86.03	86.03	86.03	86.03 R6.03	86.03	86.03	86.03	86.03	86.03	88.03	86.03	86.03	86.03	86.03	86.03	86.03	86.03	50.02 50.02	B6,03	86.03	86.03 ee.os	CN.00
2500 2500 2500		400 100 100	100	400	<u>8</u> 6	100	100		400	400	<u>3 6</u>	100	100	<u>10</u>	100	100		100	100		100	100	1001	100	100		100	2500	2500	2500	2500	2500	2500	2500	. .	2500	2500	2500	2500	2500	2500	1250	1250	002
8925	013	018 017	C19 C20	53 53	5 2	A3	A4 A5	29 Se	A7	88 40	A10	A11	A12	A14	A15	A16	A1/ A18	A19	A20	B1	B2	0	18	BB	B7	5 G	B10	11 11	813	814	B15 B15	B17	B18	B19 Don	122U	ō	8	ទីខ្ល	5 8	38	6	8 S	Ca	2
-17 -18 -19		~ <u>7</u> 2	53 23	- è	55	8	9		- 2	5 T	2	2																																

륑

2

			C BED, F102325	C BED, F102325	C BED, F102325	C BED, F102325	C BED, F102325				LOD, TRAP	LOQ. TRAP			A BED	ABFD	ABED	ABED	55	9	- 9	F6	12	F8			F5	F5	55	56	F 6		
	۳	~	~	-	~	-	~	4-	Ļ	~	-	Ţ	F	-	-	+	-	-	4	~		-	-	.	~	H	-	-	ę.,	-	÷	÷	-
	ð	ð	ð	ð	ð	8	ð	ð	ð	ð	ð	ð	ð	ð	ð	ð	ð	ð	ð	ð	ð	ş	ð	ð	ð	ð	ð	ð	ð	ð	ð	УÓ	Хo
	707.22 Sample	34.61 Sample	2461.88 Sample	2689.36 Sample	2706.27 Sample	2906.69 Sample	2774.64 Sample	83.49 Sample	168.19 Sample	179.51 Sample	144.03 Sample	134.24 Sample	659.31 Sample	39.60 Sample	260.96 Sample	281.32 Sample	299.37 Sample	291.86 Semple	30.88 Sample	45.23 Sample	28.81 Sample	50.91 Sample	46.58 Sample	31.74 Sample	1332.4B Sample	52.04 Sample	56.71 Sample	220.27 Sample	96.99 Sample	37.59 Sample	47.61 Sample	1251.13 Sample	45.18 Sample
	15:B5:91	18:42:42	18:46:52	18:51:03	18:55:13	18:59:24	19:03:34	19:07:45	19:11:55	19:16:05	19:20:15	19:24:26	19:28:36	19:32:47	19:36:57	19:41:09	19:45:19	19:49:30	19:53:40	19:57:51	20:02:01	20:06:11	20:10:22	20:14:33	20:18:43	20:22:54	20:27:04	20:31:14	20:35.25	20:39:35	20:43:45	20:47:56	20:52:06
10000 1 00001	10000-1.FAV	1000/-1.KAW	WAY.L-PODD	16669-1.RAW	166/0-1.RAW	166/1-1.RAW	166/2-1.RAW	16673-1.RAW	166/4-1.RAW	16675-1.RAW	16676-1.RAW	166/7-1.RAW	166/8-1.RAW	16679-1.RAW	16680-1.RAW	16681-1.RAW	16682-1.RAW	16683-1.RAW	16684-1.RAW	16685-1.RAW	16686-1.RAW	16687-1.RAW	16688-1.RAW	16689-1.RAW	16690-1.RAW	16691-1.RAW	16692-1.RAW	16693-1.RAW	16694-1.RAW	16695-1.RAW	16696-1.RAW	16697-1.RAW	16698-1.RAW
10.00	0000	0.00																															
4.65	000	2220B 87	PARENC	24402 30	25368 25	25132 AB	000	614 20		173 50	26.05			1308 10	1487.48	1400.40	1080.40	028.20	0.00	0.00		0.00	0.0	00.00	20.0			162 04	40.001		0.74	0	000
86.03	86.03	86.03	88.03	88.03	88.03	86.03	88.03	80.03	88.03	20.03	80.85	86.03	36 D3	20.05					3 2	0.00 0.00	30		200		203	50.00	20.03	300	200		603		22.2
-	~	1250	1250	1250	1250	1250	0001	000	0001	400		-	• -	1000				B25000	626000	625000		20110	10+02		• -	2E+06					-		
C11	C12	C13	C14	C15	C18	C17	C18	C19	C20	C21	A1	A2	A3	A4	A5	AB	47		A9	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21		
SEQ-CCVB	SEQ-CCB9	1B00052-04	1B00070-01	1B00070-02	1B00070-03	1B00070-04	1B00003-37RE1	1B00003-16RE1	1B00003-16RE1	F101414-BS3	F101414-BS4	SEQ-CCVA	SEQ-CCBA	1B00052-01RE1	1BD0052-02RE1	1B00070-03RF1	1B00070-04RF1	1A00021-10RE1	1A00021-11RF1	1A00021-13RE1	1A00021-09RE1	1A00021-12RE1	1A00021-01RE1	SEQ-CCVB	SEQ-CCBB	1A00021-10RE1	1A00021-11RE1	1A00021-15RE1	1A00021-15RE1	1A00021-16RE1	SEQ-CCVC	SEQ-CCBC	

ġ

	1B00090-07 1B00090-08	1800052-01 1800052-01	1800052-03	SEU-ULVY	1800052-04	1B00070-01	1B00070-03	1B00070-04	1B00003-37RE1	1B00003-16RE1 1B00003-18RE1	F101414-BS3	F101414-BS4	SEQ-CCVA	SEN-CUBA	180062-07851	1B00070-03RE1	1B00070-04RE1	1A00021-10RE1	1A00021-118E1	1A00021-09RE1	1A00021-12RE1	1A00021-01RE1	SEQ-CCVB	SEU-LUBB	. 1A00021-10RE1	1400021-15051	1400021-15BF1	1A00021-16RE1	SEQ-COVC	SEQ-CCBC
F1014148S1 SE0-CCV4 SE0-CCV4 F101414BS2 F101414BLK1 F101414BLK1 F101414BLK3 F101414BLK3 F101414BLK3 F101414BLK3	F102341-BSD1	F102341-BLK1 F102341-BLK2	SEQ-COV5	F10225-851	F102325-85D1 F102325-8LK1	F102325-BLK2 F102325-BLK3	1B00052-01	1800052-03	1B00052-04 1 B00052-04	SED-CCV6	3EU-UUB6 1800070-02	1800070-03	1B00090-01	1800090-02	1B00090-04	1800090-05	1B00090-07	SEQ-COV7	1800090-08	1800052-01 1800052-01	1800052-03	1B00052-04	1B00070-02	1B00070-03	1B00070-04 1B00090-01	SEQ-CCV8	SEQ-CCB8	1B/00/90-03	1B00090-04	1800090-05 1800090-05
SEQ.IBL1 SEQ.IBL2 SEQ.IBL3 SEQ.CAL1 SEQ.CAL2 SEQ.CAL2 SEQ.CAL3 SEQ.CAL3 SEQ.CAL3 SEQ.CAL3 SEQ.CAL3	SEQ-ICVT SEQ-ICB1 5402200555	F102329-8501 F102329-85D1 F102329-81 K1	F102329-BLK2 F102329-BLK3	1B00028-04RE3	1800028-09RE1	w5 WS	SEQ-CCV1	1B00028-04RE4	1800028-05HE4	1800065-07RE3	F102329-MS1	F102329-MSD1	F102329-MS2	FI02329-MSD2	SEQ-CCB2	1800065-07RE4	IB00003-02	1800003-03 1800003-04	1800003-05	1800003-06	B0003-08	B00003-10	SEQ-CCV3	SEU-ULB3	1200003-12	B00003-13	B00003-15	B00003-16	B0003-17	B00003-19

19/5/5/

Page 37 of 37

APPENDIX E ANALYTICAL DATA VALIDATION REPORTS

APPENDIX E 2021 DUCK AND CO-LOCATED SEDIMENT SAMPLING DATA VALIDATION SUMMARY

Data Validation Summary 2021 Duck and Co-Located Sediment Sampling Penobscot River 2021 Monitoring Penobscot River, Maine

1.0 INTRODUCTION

Duck blood biota samples and co-located sediment samples were collected in January 2021 from the Penobscot River located in Maine. Samples were analyzed by Eurofins Frontier Global Sciences, Inc. (Eurofins) located in Tacoma, Washington and included in sample delivery groups (SDG) 1A00115, 1B00003, and 1B00004. Samples were analyzed by Eurofins TestAmerica (TestAmerica) located in Pittsburg, Pennsylvania and are included in SDG J116528. Samples were analyzed by one or more of the following: Clean Water Act (CWA, 2012) and United States Environment Protection Agency (USEPA) Lloyd Kahn Method (USEPA, 1988):

Laboratory	Parameter	Analytical Method	Validation Level
Eurofins	Mercury, total	CWA 1631B and E	10% Stage III/ 90% Stage IIB
Eurofins	Methyl mercury, total	CWA 1630	10% Stage III/ 90% Stage IIB
TestAmerica	Total Organic Carbon (TOC)	Lloyd Kahn	10% Stage III/ 90% Stage IIB

A Stage IIb data validation was completed on SDGs 1A00115, 1B00003, and J116528. A Stage III data validation was performed on ten percent of samples from these SDGs. Data from equipment blanks did not undergo validation because results from these samples are only used to assess data usability for field samples. Data validation was completed using National Functional Guidelines for Inorganic Superfund Data Review (USEPA, 2017) and EPA New England Environmental Data Review Supplement for Regional Data Review Elements and Superfund Specific Guidance/Procedures (USEPA, 2013) where applicable. Data quality evaluations were completed using quality control (QC) limits specified in the Draft Quality Assurance Project Plan (QAPP) Penobscot River 2020 Monitoring [Wood, 2020]. The project laboratory reported results using a combination of two detection limits including the reporting limit (RL) and the method detection limit (MDL). Results for compounds that are not detected in samples are reported as U qualified results at the RL. Positive detections between the MDL and RL are qualified as estimated (J) by the laboratory.

Data validation review and qualification actions are discussed in the following subsections. It should be noted that only instances that result in an impact to data quality are presented in this report. There may be QC elements outside of QAPP and/or method control limits not presented in this report since there is no impact to data quality. Samples included in this data evaluation are presented in Table 1.

Data qualifications were completed if necessary, in accordance with the guidelines or the professional judgment of the project chemist. The following qualifiers as applied during data validation or reported by the laboratory are included in the final data set:

- J = The reported concentration is considered an estimated value
- U = The target compound was not detected above the method detection limit
- UJ = The target compound was not detected above the method detection limit and is considered an estimated value.

Validation reason codes were applied to results associated with QC measurements outside project QC goals. The validation qualification actions, and associated validation reason codes applied to sample results are summarized on Table 2. The following data validation reason codes were applied to one or more sample results:

LR = Laboratory replicate relative percent difference (RPD) limit exceeded MS-H = Matrix spike (MS) and/or MS duplicate (MSD) recovery high MS-L = MS and/or MSD recovery low MS-RPD = MS/MSD RPD limit exceeded

A complete summary of final sample results is provided in Table 3.

Data were evaluated based on the following parameters:

- * Data Completeness and Chain of Custody
- * Holding Times and Preservation
- * Blanks
- * Initial Calibration
- * Continuing Calibration
- * LCS and LCS Duplicate (LCSD) MS/MSD
- Laboratory Duplicates/ Replicates
- * Field Duplicates
- * Detection Limits
- * Sample Result Verification/Electronic Evaluation Verification (EDD)
- * Ongoing Precision Recovery
- * = indicates that criteria were met and/or no impact to data quality for this parameter

With the exception of the following items discussed below, results were determined to be usable as reported by the laboratory.

2.0 Mercury – 1631

Matrix Spike

SDG 1A00115 – MMBKD-01_012521_SED_00-01 was selected by the laboratory for MS/MSD analysis; however, sample FRB-02_012621_SED_03-05 was requested on the chain of custody. No impact to data quality.

SDG 1B00003 – Sample MMBKD-01_012521_ABD_07_BL was used as the source for the MS/MSD analysis. The MSD recovery for total mercury (160%) was above the QC limit of 125%. Sample results for MMBKD-01_012521_ABD_01_BL, MMBKD-01_012521_ABD_02_BL, MMBKD-01_012521_ABD_03_BL, MMBKD-01_012521_ABD_04_BL, MMBKD-01_012521_ABD_05_BL, MMBKD-01_012521_ABD_06_BL, MMBKD-01_012521_ABD_07_BL, MMBKD-01_012521_ABD_08_BL, MMBKD-01_012521_ABD_09_BL, MMBKD-01_012521_ABD_10_BL, MMBKD-01_012521_ABD_11_BL, MMBKD-01_012521_ABD_12_BL, MMBKD-01_012521_ABD_13_BL, MMBKD-01_012521_ABD_14_BL, MMBKD-01_012521_ABD_15_BL, ES-13_013021_ABD_02_BL, and ES-13_013021_ABD_04_BL were qualified as estimated (J) due to the potential high bias. (J – MS-H)

SDG 1B00003 – Sample FRB-02_012621_ABD_01_BL was used as the source for the MS/MSD analysis. The MSD recovery for total mercury (40.8%) was below the QC limit of 71%. Sample results for ES-13_013021_ABD_05_BL, ES-13_013021_ABD_06_BL, ES-13_013021_ABD_07_BL, ES-13_013021_ABD_08_BL, ES-13_013021_ABD_09_BL, ES-13_013021_ABD_10_BL, ES-13_013021_ABD_11_BL, ES-13_013021_ABD_12_BL, ES-13_013021_ABD_13_BL, ES-13_013021_ABD_14_BL, ES-13_013021_ABD_15_BL, FRB-02_012621_ABD_01_BL, FRB-02_012621_ABD_02_BL, FRB-02_012721_ABD_03_BL, FRB-02_012721_ABD_04_BL, and FRB-02_012721_ABD_05_BL were qualified as estimated (J) due to the potential low bias. (J – MS-L)

Additionally, the MS/MSD RPD was elevated (70.3%) above the QC limit of 24%. The laboratory is calculating the RPD based on MS and MSD recoveries instead of concentrations detected in the MS and MSD. Wood re-calculated RPDs between the MS and MSD results to confirm that precision values were within limits. The RPD was still outside of criteria at (53.6%). The detected sample results for ES-13_013021_ABD_05_BL, ES-13_013021_ABD_06_BL, ES-13_013021_ABD_07_BL, ES-13_013021_ABD_08_BL, ES-13_013021_ABD_09_BL, ES-13_013021_ABD_10_BL, ES-13_013021_ABD_11_BL, ES-13_013021_ABD_12_BL, ES-13_013021_ABD_13_BL, ES-13_013021_ABD_14_BL, ES-13_013021_ABD_15_BL, FRB-02_012621_ABD_01_BL, FRB-02_012621_ABD_02_BL, FRB-02_012721_ABD_03_BL, FRB-02_012721_ABD_04_BL, and FRB-02_012721_ABD_05_BL were qualified as estimated (J) due to the imprecision. (J – MS-RPD)

SDG 1B00003 – Sample FRB-02_012621_ABD_04_BL was used as the source for the MS/MSD analysis. The MS recovery for total mercury (47.3%) was below the QC limit of 71%. Sample results for ES-13_013021_ABD_05_BL, ES-13_013021_ABD_06_BL, ES-13_013021_ABD_07_BL, ES-13_013021_ABD_08_BL, ES-13_013021_ABD_09_BL, ES-13_013021_ABD_10_BL, ES-13_013021_ABD_11_BL, ES-13_013021_ABD_12_BL, ES-13_013021_ABD_13_BL, ES-13_013021_ABD_14_BL, ES-13_013021_ABD_15_BL,

Page 3 of 5

FRB-02_012621_ABD_01_BL, FRB-02_012621_ABD_02_BL, FRB-02_012721_ABD_03_BL, FRB-02_012721_ABD_04_BL, and FRB-02_012721_ABD_05_BL were qualified as an estimated concentration (J) due to the potential low bias. (J – MS-L)

Additionally, the MS/MSD RPD was elevated (43.9%) above the QC limit of 24%. The laboratory is calculating the RPD based on MS and MSD recoveries instead of concentrations detected in the MS and MSD. Wood re-calculated RPDs between the MS and MSD results to confirm that precision values were within limits. The RPD was still outside of criteria at (72.3%). The detected sample results for ES-13_013021_ABD_05_BL, ES-13_013021_ABD_06_BL, ES-13_013021_ABD_07_BL, ES-13_013021_ABD_08_BL, ES-13_013021_ABD_09_BL, ES-13_013021_ABD_10_BL, ES-13_013021_ABD_11_BL, ES-13_013021_ABD_12_BL, ES-13_013021_ABD_13_BL, ES-13_013021_ABD_14_BL, ES-13_013021_ABD_15_BL, FRB-02_012621_ABD_01_BL, FRB-02_012721_ABD_03_BL, FRB-02_012721_ABD_04_BL, and FRB-02_012721_ABD_05_BL were qualified as estimated (J) due to the imprecision. (J – MS-RPD)

SDG 1B00003 – Sample CORN_012521_ABD_BAIT was used as the source for the MS/MSD analysis. The MS/MSD recovery for total mercury (58.0%/53.6%) was below the QC limit of 71%. Sample result for CORN_012521_ABD_BAIT was qualified as having an estimated reporting limit (UJ) due to the potential low bias. (UJ – MS-L)

3.0 Methyl Mercury – 1630

Matrix Spike

SDG 1A00115 – Wood did not request a sample for MS/MSD analysis on the chain of custody and the lab did not select a project sample for MS/MSD analysis. No qualifications are warranted.

4.0 Total Organic Carbon – Lloyd Kahn

Lab Replicate

SDG 180-116528-1 – The sample replicate RPD was above the QC acceptance criteria of 30%, in sample MMBKD-01_012521_SED_00-01, at 38%. The TOC result for this sample was qualified as estimated due to the imprecision. (J-LR)

References:

- U.S. Environmental Protection Agency (USEPA), 2009. "Guidance for Labeling Externally Validated Laboratory Analytical data for Superfund Use"; Office of Solid Waste and Emergency Response; EPA 540-R-08-005; January 13, 2009.
- U.S. Environmental Protection Agency (USEPA), 2013. "EPA New England Environmental Data Review Supplement for Regional Data Review Elements and Superfund Specific Guidance/Procedures"; Quality Assurance Unit Staff; Office of Environmental Measurement and Evaluation; April 22, 2013.
- U.S. Environmental Protection Agency (USEPA), 2017. "National Functional Guidelines for Inorganic Superfund Methods Data Review"; Office of Superfund Remediation and Technology Innovation; EPA-540-R-2017-001; January 2017.
- Wood, 2020. "Draft Quality Assurance Project Plan Penobscot River 2020 Monitoring", Penobscot River, Maine, June 2020.
- Eurofins, 2017. "AMEC Sediment Lab Homogenization and Subsampling Procedure." Work Instruction EFSR-P-SP-WI15953; August 8, 2017.
- U.S. Environmental Protection Agency (USEPA), 2004. "Final Update IIIB and Method 9071B of Final Update IIIA"; Test Methods for Evaluating Solid Waste Physical/Chemical Methods SW-846; Office of Solid Waste and Emergency Response, EPA-SW-846-03-03B; November 2004.
- U.S. Environment Protection Agency (USEPA), 1988. "Determination of Total Organic Carbon in Sediment", Lloyd Kahn, Quality Assurance Specialist; July 27, 1988.

Data Validator: Denise King

Vines King

Reviewer: Elizabeth Penta

eljalith pente

March 17, 2021

March 17, 2021

Page 5 of 5

DATA VALIDATION REPORT SAMPLE AND ANALYSIS SUMMARY 2021 DUCK SAMPLING and CO-LOCATED SEDIMENT SAMPLING PENOBSCOT RIVER 2021 MONITORING PENOBSCOT RIVER, MAINE

SDGs 01A00115, 1B00003, 1B00004 and 180-116528-1

					Με	ethod Class	% Solids	тос	Mercury	Methyl Mercury
					Analys	sis Method	SM 2540G	Lloyd Kahn	EPA 1631	EPA 1630
SDG	Media	Location	Field Sample ID	Lab Sample ID	Sample Date	QC Code				
180-116528-1 / 1A00115	SED	ES-13	ES-13_012621_SED_00-01	180-116528-8 / 1A00115-08	1/26/2021	FS	1	1	1	1
180-116528-1 / 1A00115	SED	ES-13	ES-13_012621_SED_01-03	180-116528-9 / 1A00115-10	1/26/2021	FS	1	1	1	1
180-116528-1 / 1A00115	SED	ES-13	ES-13_012621_SED_03-05	180-116528-10/ 1A00115-11	1/26/2021	FS	1	1	1	
180-116528-1 / 1A00115	SED	FRB-02	FRB-02_012621_SED_00-01	180-116528-5 / 1A00115-05	1/26/2021	FS	1	1	1	1
180-116528-1 / 1A00115	SED	FRB-02	FRB-02_012621_SED_01-03	180-116528-6/ 1A00115-06	1/26/2021	FS	1	1	1	1
180-116528-1 / 1A00115	SED	FRB-02	FRB-02_012621_SED_03-05	180-116528-7 / 1A00115-07	1/26/2021	FS	1	1	1	
180-116528-1 / 1A00115	SED	MMBKD-01a	MMBKD-01_012521_SED_00-01	180-116528-1 / 1A00115-01	1/25/2021	FS	1	1	1	1
180-116528-1 / 1A00115	SED	MMBKD-01a	MMBKD-01_012521_SED_01-03	180-116528-2 / 1A00115-02	1/25/2021	FS	1	1	1	1
180-116528-1 / 1A00115	SED	MMBKD-01a	MMBKD-01_012521_SED_01-03_DUP	180-116528-4 / 1A00115-04	1/25/2021	FD	1	1	1	1
180-116528-1 / 1A00115	SED	MMBKD-01a	MMBKD-01_012521_SED_03-05	180-116528-3 / 1A00115-03	1/25/2021	FS	1	1	1	
1B00003	BL	ES-13	ES-13_013021_ABD_01_BL	1B00003-16RE1	1/30/2021	FS			1	
1B00003	BL	ES-13	ES-13_013021_ABD_02_BL	1B00003-17	1/30/2021	FS			1	
1B00003	BL	ES-13	ES-13_013021_ABD_03_BL	1B00003-18RE1	1/30/2021	FS			1	
1B00003	BL	ES-13	ES-13_013021_ABD_04_BL	1B00003-19	1/30/2021	FS			1	
1B00003	BL	ES-13	ES-13_013021_ABD_05_BL	1B00003-20	1/30/2021	FS			1	

Prepared by: BCG 03/10/2021

Reviewed by: DMK 03/17/2021

DATA VALIDATION REPORT SAMPLE AND ANALYSIS SUMMARY 2021 DUCK SAMPLING and CO-LOCATED SEDIMENT SAMPLING PENOBSCOT RIVER 2021 MONITORING PENOBSCOT RIVER, MAINE

SDGs 01A00115, 1B00003, 1B00004 and 180-116528-1

					Μ	thod Class	% Solids	тос	Mercury	Methyl Mercury
					Analy	sis Method	2540G	Lioyd Kahn	ЕРА 1631	EPA 1630
SDG	Media	Location	Field Sample ID	Lab Sample ID	Sample Date	QC Code				
1B00003	BL	ES-13	ES-13_013021_ABD_06_BL	1B00003-21	1/30/2021	FS			1	
1B00003	BL	ES-13	ES-13_013021_ABD_07_BL	1B00003-22	1/30/2021	FS			1	
1B00003	BL	ES-13	ES-13_013021_ABD_08_BL	1B00003-23	1/30/2021	FS			1	
1B00003	BL	ES-13	ES-13_013021_ABD_09_BL	1B00003-24	1/30/2021	FS			1	
1B00003	BL	ES-13	ES-13_013021_ABD_10_BL	1B00003-25	1/30/2021	FS			1	
1B00003	BL	ES-13	ES-13_013021_ABD_11_BL	1B00003-26	1/30/2021	FS			1	
1B00003	BL	ES-13	ES-13_013021_ABD_12_BL	1B00003-27	1/30/2021	FS			1	
1B00003	BL	ES-13	ES-13_013021_ABD_13_BL	1B00003-28	1/30/2021	FS			1	
1B00003	BL	ES-13	ES-13_013021_ABD_14_BL	1B00003-29	1/30/2021	FS			1	
1B00003	BL	ES-13	ES-13_013021_ABD_15_BL	1B00003-30	1/30/2021	FS			1	
1B00003	BL	FRB-02	FRB-02_012621_ABD_01_BL	1B00003-31	1/26/2021	FS			1	
1B00003	BL	FRB-02	FRB-02_012621_ABD_02_BL	1B00003-32	1/26/2021	FS			1	
1B00003	BL	FRB-02	FRB-02_012721_ABD_03_BL	1B00003-33	1/27/2021	FS			1	
1B00003	BL	FRB-02	FRB-02_012721_ABD_04_BL	1B00003-34	1/27/2021	FS			1	
1B00003	BL	FRB-02	FRB-02_012721_ABD_05_BL	1B00003-35	1/27/2021	FS			1	
1B00003	BL	MMBKD-01a	MMBKD-01_012521_ABD_01_BL	1B00003-01	1/25/2021	FS			1	
1B00003	BL	MMBKD-01a	MMBKD-01_012521_ABD_02_BL	1B00003-02	1/25/2021	FS			1	
1B00003	BL	MMBKD-01a	MMBKD-01_012521_ABD_03_BL	1B00003-03	1/25/2021	FS			1	
1B00003	BL	MMBKD-01a	MMBKD-01_012521_ABD_04_BL	1B00003-04	1/25/2021	FS			1	
1B00003	BL	MMBKD-01a	MMBKD-01_012521_ABD_05_BL	1B00003-05	1/25/2021	FS			1	
1B00003	BL	MMBKD-01a	MMBKD-01_012521_ABD_06_BL	1B00003-06	1/25/2021	FS			1	
1B00003	BL	MMBKD-01a	MMBKD-01_012521_ABD_07_BL	1B00003-07	1/25/2021	FS			1	
1B00003	BL	MMBKD-01a	MMBKD-01_012521_ABD_08_BL	1B00003-08	1/25/2021	FS			1	
1B00003	BL	MMBKD-01a	MMBKD-01_012521_ABD_09_BL	1B00003-09	1/25/2021	FS			1	

Prepared by: BCG 03/10/2021 Reviewed by: DMK 03/17/2021

DATA VALIDATION REPORT SAMPLE AND ANALYSIS SUMMARY 2021 DUCK SAMPLING and CO-LOCATED SEDIMENT SAMPLING PENOBSCOT RIVER 2021 MONITORING PENOBSCOT RIVER, MAINE

SDGs 01A00115, 1B00003, 1B00004 and 180-116528-1

					Me Analy	ethod Class sis Method	% Solids SM 2540G	TOC Lloyd Kahn	Mercury EPA 1631	Methyl Mercury EPA 1630
SDG	Media	Location	Field Sample ID	Lab Sample ID	Sample Date	QC Code				
1B00003	BL	MMBKD-01a	MMBKD-01_012521_ABD_10_BL	1B00003-10	1/25/2021	FS			1	
1B00003	BL	MMBKD-01a	MMBKD-01_012521_ABD_11_BL	1B00003-11	1/25/2021	FS			1	
1B00003	BL	MMBKD-01a	MMBKD-01_012521_ABD_12_BL	1B00003-12	1/25/2021	FS			1	
1B00003	BL	MMBKD-01a	MMBKD-01_012521_ABD_13_BL	1B00003-13	1/25/2021	FS			1	
1B00003	BL	MMBKD-01a	MMBKD-01_012521_ABD_14_BL	1B00003-14	1/25/2021	FS			1	
1B00003	BL	MMBKD-01a	MMBKD-01_012521_ABD_15_BL	1B00003-15	1/25/2021	FS			1	
1B00003	Solid	QC	CORN_012521_ABD-BAIT	1B00003-37RE1	1/25/2021	Bait			1	
1B00003	BS	QC	EB_CAPILLARY_013021_ABD_QC	1B00003-36	1/30/2021	EB			1	
1B00004	BW	QC	EB_DeconlinerHSBowl_020121_SED_QC	1B00004-01	2/1/2021	EB			1	1

Notes:

BL = Blood

BS = Blank Solid

SED = Sediment

SDG = Sample Delivery Group

BW = Blank Water SM = Standard Methods

EB = Equipment Blank

TOC = Total Organic Carbon

EPA = US Environmental Protection Agency

FS = Field Sample

ID = Identification

QC = Quality Contol

DATA VALIDATION REPORT

DATA VALIDATION QUALIFIERS ADDED

2021 BLACK DUCK AND CO-LOCATED SEDIMENT SAMPLING

PENOBSCOT RIVER 2021 MONITORING

PENOBSCOT RIVER, MAINE

Method	Lab Sample ID	Field Sample ID	Parameter Name	Lab Result	Lab Qualifier	Validated Result	Validated Qualifier	Validation Reason Code	Units
E1631	1B00003-37RE1	CORN_012521_ABD-BAIT	Mercury	40	U	40	UJ	MS-L	NG/G
E1631	1B00003-16RE1	ES-13_013021_ABD_01_BL	Mercury	50		50	J	MS-H	NG/G
E1631	1B00003-17	ES-13_013021_ABD_02_BL	Mercury	198		198	J	MS-H	NG/G
E1631	1B00003-19	ES-13_013021_ABD_04_BL	Mercury	353		353	J	MS-H	NG/G
E1631	1B00003-20	ES-13_013021_ABD_05_BL	Mercury	180		180	J	MS-L, MS-RPD	NG/G
E1631	1B00003-21	ES-13_013021_ABD_06_BL	Mercury	360		360	J	MS-L, MS-RPD	NG/G
E1631	1B00003-22	ES-13_013021_ABD_07_BL	Mercury	366		366	J	MS-L, MS-RPD	NG/G
E1631	1B00003-23	ES-13_013021_ABD_08_BL	Mercury	291		291	J	MS-L, MS-RPD	NG/G
E1631	1B00003-24	ES-13_013021_ABD_09_BL	Mercury	176		176	J	MS-L, MS-RPD	NG/G
E1631	1B00003-25	ES-13_013021_ABD_10_BL	Mercury	216		216	J	MS-L, MS-RPD	NG/G
E1631	1B00003-26	ES-13_013021_ABD_11_BL	Mercury	172		172	J	MS-L, MS-RPD	NG/G
E1631	1B00003-27	ES-13_013021_ABD_12_BL	Mercury	99.4	J	99.4	J	MS-L, MS-RPD	NG/G
E1631	1B00003-28	ES-13_013021_ABD_13_BL	Mercury	161		161	J	MS-L, MS-RPD	NG/G
E1631	1B00003-29	ES-13_013021_ABD_14_BL	Mercury	237		237	J	MS-L, MS-RPD	NG/G
E1631	1B00003-30	ES-13_013021_ABD_15_BL	Mercury	289		289	J	MS-L, MS-RPD	NG/G
E1631	1B00003-31	FRB-02_012621_ABD_01_BL	Mercury	99.8	J	99.8	J	MS-L, MS-RPD	NG/G
E1631	1B00003-32	FRB-02_012621_ABD_02_BL	Mercury	58.4	J	58.4	J	MS-L, MS-RPD	NG/G
E1631	1B00003-33	FRB-02_012721_ABD_03_BL	Mercury	75.8	J	75.8	J	MS-L, MS-RPD	NG/G
E1631	1B00003-34	FRB-02_012721_ABD_04_BL	Mercury	69.5	J	69.5	J	MS-L, MS-RPD	NG/G
E1631	1B00003-35	FRB-02_012721_ABD_05_BL	Mercury	87.7	J	87.7	J	MS-L, MS-RPD	NG/G
E1631	1B00003-01	MMBKD-01_012521_ABD_01_BL	Mercury	804		804	J	MS-H	NG/G
E1631	1B00003-02	MMBKD-01_012521_ABD_02_BL	Mercury	385		385	J	MS-H	NG/G
E1631	1B00003-03	MMBKD-01_012521_ABD_03_BL	Mercury	795		795	J	MS-H	NG/G
E1631	1B00003-04	MMBKD-01_012521_ABD_04_BL	Mercury	404		404	J	MS-H	NG/G
E1631	1B00003-05	MMBKD-01_012521_ABD_05_BL	Mercury	592		592	J	MS-H	NG/G

X:\Projects\USDC - Penobscot River 2020 Monitoring-3617207486\3.0_Site_Data\3.4_Test_Results\Validation_Files\Avian and Co-Located Sediment\Penobscot - Black Duck Table 2Penobscot - Black Duck Table 2 Prepared by: BCG 03/18/2021

DATA VALIDATION REPORT

DATA VALIDATION QUALIFIERS ADDED

2021 BLACK DUCK AND CO-LOCATED SEDIMENT SAMPLING

PENOBSCOT RIVER 2021 MONITORING

PENOBSCOT RIVER, MAINE

Method	Lab Sample ID	Field Sample ID	Parameter Name	Lab Result	Lab Qualifier	Validated Result	Validated Qualifier	Validation Reason Code	Units
E1631	1B00003-06	MMBKD-01_012521_ABD_06_BL	Mercury	236		236	J	MS-H	NG/G
E1631	1B00003-07	MMBKD-01_012521_ABD_07_BL	Mercury	223		223	J	MS-H	NG/G
E1631	1B00003-08	MMBKD-01_012521_ABD_08_BL	Mercury	290		290	J	MS-H	NG/G
E1631	1B00003-09	MMBKD-01_012521_ABD_09_BL	Mercury	434		434	J	MS-H	NG/G
E1631	1B00003-10	MMBKD-01_012521_ABD_10_BL	Mercury	551		551	J	MS-H	NG/G
E1631	1B00003-11	MMBKD-01_012521_ABD_11_BL	Mercury	255		255	J	MS-H	NG/G
E1631	1B00003-12	MMBKD-01_012521_ABD_12_BL	Mercury	390		390	J	MS-H	NG/G
E1631	1B00003-13	MMBKD-01_012521_ABD_13_BL	Mercury	271		271	J	MS-H	NG/G
E1631	1B00003-14	MMBKD-01_012521_ABD_14_BL	Mercury	232		232	J	MS-H	NG/G
E1631	1B00003-15	MMBKD-01_012521_ABD_15_BL	Mercury	281		281	J	MS-H	NG/G
EPA-Lloyd Kahn	180-116528-1	MMBKD-01_012521_SED_00-01	Carbon	94,000		94,000	J	LR	MG/KG

<u>Units</u>

MG/KG = Nanogram per gram

NG/G = Nanogram per gram

<u>Notes</u>

EPA = US Environmental Protection Agency ID = Identification RPD = Relative percent difference

Validation Qualifier

J = Value is estimated

U = The target compound was not detected above the method detection limit

UJ = The target compound was not detected above the method detection limit and is considered an estimated value.

Validation Reason Codes

LR = Laboratory replicate RPD limit exceeded

MS-H = Matrix spike (MS) and/or MS duplicate (MSD) recovery high

MS-L = MS and/or MSD recovery low

MS-RPD = MS/MSD RPD limit exceeded

 X:\Projects\USDC - Penobscot River 2020 Monitoring-3617207486\3.0_Site_Data\3.4_Test_Results\Validation_Files\Avian and Co-Located Sediment\Penobscot

 - Black Duck Table 2Penobscot - Black Duck Table 2

DATA VALIDATION REPORT

VALIDATED SAMPLE RESULTS

2021 DUCK AND CO-LOCATED SEDIMENT SAMPLING

PENOBSCOT RIVER 2021 MONITORING

PENOBSCOT RIVER, MAINE

			Lab	Eurofin Global	s Frontier Sciences	Eurofin Global	s Frontier Sciences	Eurofin Global	s Frontier Sciences	Eurofin Global	s Frontier Sciences	Eur Pitts	ofins burgh
			Method Parameter Units	% : Perce Pe	Solids nt Solids rcent	747 Me N	4_1631 ercury IG/G	E´ Me N	l631 ercury G/G	KOF Methy N	l_1630 Mercury G/G	EPA-Llo Cai MG	oyd Kahn bon i/KG
Location	Sample Date	Field Sample ID	QC Code	Final Result	Final Qualifier	Final Result	Final Qualifier	Final Result	Final Qualifier	Final Result	Final Qualifier	Final Result	Final Qualifier
ES-13	1/26/2021	ES-13_012621_SED_00-01	FS	40		253				12.3		66,000	
ES-13	1/26/2021	ES-13_012621_SED_01-03	FS	40.7		239				8.6	J	44,000	
ES-13	1/26/2021	ES-13_012621_SED_03-05	FS	72.6		32.1						12,000	
ES-13	1/30/2021	ES-13_013021_ABD_01_BL	FS					50	J				
ES-13	1/30/2021	ES-13_013021_ABD_02_BL	FS					198	J				
ES-13	1/30/2021	ES-13_013021_ABD_03_BL	FS					40	U				
ES-13	1/30/2021	ES-13_013021_ABD_04_BL	FS					353	J				
ES-13	1/30/2021	ES-13_013021_ABD_05_BL	FS					180	J				
ES-13	1/30/2021	ES-13_013021_ABD_06_BL	FS					360	J				
ES-13	1/30/2021	ES-13_013021_ABD_07_BL	FS					366	J				
ES-13	1/30/2021	ES-13_013021_ABD_08_BL	FS					291	J				
ES-13	1/30/2021	ES-13_013021_ABD_09_BL	FS					176	J				
ES-13	1/30/2021	ES-13_013021_ABD_10_BL	FS					216	J				
ES-13	1/30/2021	ES-13_013021_ABD_11_BL	FS					172	J				
ES-13	1/30/2021	ES-13_013021_ABD_12_BL	FS					99.4	J				
ES-13	1/30/2021	ES-13_013021_ABD_13_BL	FS					161	J				
ES-13	1/30/2021	ES-13_013021_ABD_14_BL	FS					237	J				
ES-13	1/30/2021	ES-13_013021_ABD_15_BL	FS					289	J				
FRB-02	1/26/2021	FRB-02_012621_ABD_01_BL	FS					99.8	J				
FRB-02	1/26/2021	FRB-02_012621_ABD_02_BL	FS					58.4	J				
FRB-02	1/26/2021	FRB-02_012621_SED_00-01	FS	50.1		8.94	J			7.8	U	21,000	
FRB-02	1/26/2021	FRB-02_012621_SED_01-03	FS	50.9		16.9	J			7.4	U	24,000	
FRB-02	1/26/2021	FRB-02_012621_SED_03-05	FS	54.9		14.2	J					22,000	
FRB-02	1/27/2021	FRB-02_012721_ABD_03_BL	FS					75.8	J				
FRB-02	1/27/2021	FRB-02_012721_ABD_04_BL	FS					69.5	J				

X:\Projects\USDC - Penobscot_Black Duck and Co-Located Sediment_Table_3Penobscot_Black Duck and Co-Located Sediment_Table_3 Sediment_Table_3

DATA VALIDATION REPORT

VALIDATED SAMPLE RESULTS

2021 DUCK AND CO-LOCATED SEDIMENT SAMPLING

PENOBSCOT RIVER 2021 MONITORING

PENOBSCOT RIVER, MAINE

			Lab	Eurofin Global	s Frontier Sciences	Eurofin Global	s Frontier Sciences	Eurofin Global	s Frontier Sciences	Eurofin Global	s Frontier Sciences	Euro Pitts	ofins burgh
		Pa	Method trameter Units	% S Perce Pe	Solids nt Solids rcent	747 Me N	4_1631 ercury IG/G	E1 Me N	l631 ercury G/G	KO⊢ Methyl N	l_1630 Mercury G/G	EPA-Llo Car MG	oyd Kahn bon i/KG
Location	Sample Date	Field Sample ID	QC Code	Final Result	Final Qualifier	Final Result	Final Qualifier	Final Result	Final Qualifier	Final Result	Final Qualifier	Final Result	Final Qualifier
FRB-02	1/27/2021	FRB-02_012721_ABD_05_BL	FS					87.7	J				
MMBKD-01a	1/25/2021	MMBKD-01_012521_ABD_01_BL	FS					804	J				
MMBKD-01a	1/25/2021	MMBKD-01_012521_ABD_02_BL	FS					385	J				
MMBKD-01a	1/25/2021	MMBKD-01_012521_ABD_03_BL	FS					795	J				
MMBKD-01a	1/25/2021	MMBKD-01_012521_ABD_04_BL	FS					404	J				
MMBKD-01a	1/25/2021	MMBKD-01_012521_ABD_05_BL	FS					592	J				
MMBKD-01a	1/25/2021	MMBKD-01_012521_ABD_06_BL	FS					236	J				
MMBKD-01a	1/25/2021	MMBKD-01_012521_ABD_07_BL	FS					223	J				
MMBKD-01a	1/25/2021	MMBKD-01_012521_ABD_08_BL	FS					290	J				
MMBKD-01a	1/25/2021	MMBKD-01_012521_ABD_09_BL	FS					434	J				
MMBKD-01a	1/25/2021	MMBKD-01_012521_ABD_10_BL	FS					551	J				
MMBKD-01a	1/25/2021	MMBKD-01_012521_ABD_11_BL	FS					255	J				
MMBKD-01a	1/25/2021	MMBKD-01_012521_SED_01-03_DUP	FD	38.5		142				10.2	U	56,000	
MMBKD-01a	1/25/2021	MMBKD-01_012521_ABD_12_BL	FS					390	J				
MMBKD-01a	1/25/2021	MMBKD-01_012521_ABD_13_BL	FS					271	J				
MMBKD-01a	1/25/2021	MMBKD-01_012521_ABD_14_BL	FS					232	J				
MMBKD-01a	1/25/2021	MMBKD-01_012521_ABD_15_BL	FS					281	J				
MMBKD-01a	1/25/2021	MMBKD-01_012521_SED_00-01	FS	25		360				14.9	U	94,000	J
MMBKD-01a	1/25/2021	MMBKD-01_012521_SED_01-03	FS	41.1		149				9.5	U	54,000	
MMBKD-01a	1/25/2021	MMBKD-01_012521_SED_03-05	FS	52.4		28.7	J					34,000	
QC	1/25/2021	CORN_012521_ABD-BAIT	FS					40	UJ				

<u>Units</u>

MG/KG = Nanogram per gram

NG/G = Nanogram per gram

Validation Qualifier

J = Value is estimated

U = The target compound was not detected above the method detection limit.

UJ = The target compound was not detected above the method detection limit and is considered an estimated value.

X:\Projects\USDC - Penobscot River 2020 Monitoring-3617207486\3.0_Site_Data\3.4_Test_Results\Validation_Files\Avian and Co-Located Sediment\Penobscot_Black Duck and Co-Located Sediment_Table_3 Sediment_Table_3

Notes

EPA = US Environmental Protection Agency

- FD = Field duplicate
- FS = Field sample
- ID = Identification
- KOH = Potassium hydroxide

Prepared by : BCG 03/19/2021 Reviewd by: DMK 03/19/2021